Algorithms - Exercise 7

Due Wednesday 15/12 24:00

1. Consider the following approximation algorithm for MAX-LIN-2:

Input: A system of m linear equations over the field Z_2 with variables x_1, \ldots, x_n .

Algorithm: In a loop until there are no more equations: Pick the equation with the smallest number of variables. Let's call these variables y_1, \ldots, y_k . Let e_1, \ldots, e_ℓ be all the equations in the system that include exactly the variables y_1, \ldots, y_k . Find an assignment to y_1, \ldots, y_k that satisfies at least half of the equations e_1, \ldots, e_ℓ (show why such an assignment exist, and how it can be found efficiently). Now remove the equations e_1, \ldots, e_ℓ from the system, and remove all the appearances of variables from y_1, \ldots, y_k by giving them the assignments that we found. Note that now you get a new system of linear equations with less equations and less variables.

Prove that the algorithm is a 2-approximation. Analyze its running time as a function of m and n.

- 2. Let $f(X,Y) = \sum_{x \in X, y \in Y} f(x,y)$. Show
 - (a) If $X, Y \subseteq V$ then f(X, Y) = -f(Y, X)
 - (b) If $X \subseteq V$ then f(X,X)=0
 - (c) If $X, Y, Z \subseteq V$ with $X \cap Y = \emptyset$ then

$$f(X \cup Y, Z) = f(X, Z) + f(Y, Z)$$
 and $f(Z, X \cup Y) = f(Z, X) + f(Z, Y)$

3. (a) Prove that flows in a network form a convex set. That is, show that for any two flows f_1, f_2 and $0 \le t \le 1$ the function $g: E \to \mathbb{R}$ given by

$$g(e) = (1 - t)f_1(e) + tf_2(e)$$
 for $e \in E$

is a flow.

- (b) State the maximum-flow problem as a linear-programming problem.
- 4. Show that a maximum flow in a network G = (V, E) can always be found by a sequence of at most |E| augmenting paths.
- 5. Prove that if the capacity function c takes only integral values, then the maximum flow f produced by the Ford-Fulkerson method has the property that |f| is integer-valued. Moreover, for all vertices u and v, the value of f(u, v) is an integer.

6. A perfect matching in a graph is a matching in which every vertex is matched. Let G = (L, R, E) be an undirected bipartite graph with |L| = |R|. For any $A \subseteq L \cup R$ we define N(A) to be the set of neighbors of vertices from A. More formally,

$$N(A) = \{ u \in L \cup R : \exists v \in A \text{ such that } (u, v) \in E \}$$

Prove Hall's Matching Theorem using flow networks:

There exists a prefect matching in G if and only if for every $A\subseteq L,\, |A|\leq |N(A)|.$