://www.csc.liv.ac.uk/~mjw/pubs/imas/ 2	 Trivial (non-interesting) agents: thermostat; UNIX daemon (e.g., biff). An intelligent agent is a computer system capable of flexible autonomous action in some environment. By flexible, we mean: reactive; pro-active; social. 	An Introduction to Multiagent Systems	LECTURE 2: INTELLIGENT AGENTS An Introduction to Multiagent Systems http://www.csc.liv.ac.uk/~mjw/pubs/imas/
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 3	 1.1 Reactivity If a program's environment is guaranteed to be fixed, the program need never worry about its own success or failure — program just executes blindly. Example of fixed environment: compiler. The real world is not like that: things change, information is incomplete. Many (most?) interesting environments are <i>dynamic</i>. Software is hard to build for dynamic domains: program must take into account possibility of failure — ask itself whether it is worth executing! A reactive system is one that maintains an ongoing interaction with its environment, and responds to changes that occur in it (in time for the response to be useful). 	An Introduction to Multiagent Systems	 I What is an Agent? The main point about agents is they are <i>autonomous</i>: capable of acting independently, exhibiting control over their internal state. Thus: an agent is a computer system capable of autonomous action in some environment.

Lecture 2

An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/	://www.csc.liv.ac.uk/~mjw/pubs/imas/
 Are agents just objects by a Object: encapsulates some state communicates via mess has methods, correspon performed on this state. 	 <i>veracity:</i> an agent will not knowingly communicate false information; <i>benevolence:</i> agents do not have conflicting goals, and that every agent will therefore always try to do what is asked of it; <i>rationality:</i> agent will act in order to achieve its goals, and will not act in such a way as to prevent its goals being achieved — at least insofar as its beliefs permit; <i>learning/adaption:</i> agents improve performance over time.
2.1 Agent	 2 Other Properties Other properties, sometimes discussed in the context of agency: <i>mobility</i>: the ability of an agent to move around an electronic network;
Lecture 2	An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 4
 Some goals can only be ac Similarly for many compute INTERNET. Social ability in agents is th (and possibly humans) via : language, and perhaps coc 	 But we generally want agents to <i>do things for us</i>. Hence <i>goal directed behaviour</i>. Pro-activeness = generating and attempting to achieve goals; not driven solely by events; taking the initiative. Recognising opportunities.
• The real world is a <i>multi-</i> ag around attempting to achiev account.	 1.2 Proactiveness Reacting to an environment is easy (e.g., stimulus → response rules).
Lecture 2	re 2 An Introduction to Multiagent Systems

σı

7	http://www.csc.liv.ac.uk/~mjw/pubs/imas/
nay be	 - encapsulates some state; - communicates via message passing; - has methods, corresponding to operations that m performed on this state.
	 Are agents just objects by another name? Object:
	2.1 Agents and Objects
n to Multiagent Systems	Lecture 2 An Introduction

 Social ability in agents is the ability to interact with other agents (and possibly humans) via some kind of agent-communication language, and perhaps cooperate with others.
 Similarly for many computer environments: witness the INTERNET.
 Some goals can only be achieved with the cooperation of others.
 The real world is a <i>multi</i>-agent environment: we cannot go around attempting to achieve goals without taking others into account.
1.3 Social Ability
Lecture 2 An Introduction to Multiagent Systems

www.csc.liv.ac.uk/~mjw/pubs/imas/ 10	2.2 Agents and Expert Systems ren't agents just expert systems by another name? xpert systems typically disembodied 'expertise' about some abstract) domain of discourse (e.g., blood diseases). xample: MYCIN knows about blood diseases in humans. has a wealth of knowledge about blood diseases, in the form of lles. doctor can obtain expert advice about blood diseases by giving YCIN facts, answering questions, and posing queries.	An Introduction to Multiagent Systems	 fain differences: agents are autonomous: agents embody stronger notion of autonomy than objects, and in particular, they decide for themselves whether or not to perform an action on request from another agent; agents are smart: capable of flexible (reactive, pro-active, social) behavior, and the standard object model has nothing to say about such types of behavior; agents are active: a multi-agent system is inherently multi-threaded, in that each agent is assumed to have at least one thread of active control. 	An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 11	 Main differences: agents <i>situated in an environment</i>: MYCIN is not aware of the world — only information obtained is by asking the user questions. agents <i>act</i>: MYCIN does not operate on patients. Some <i>real-time</i> (typically process control) expert systems <i>are</i> agents. 	Lecture 2 An Introduction to Multiagent Systems	Objects do it for free • agents do it because they want to; • agents do it for money. http://www.csc.liv.ac.uk/"mjw/pubs/imas/	Lecture 2 An Introduction to Multiagent Systems

://www.csc.liv.ac.uk/~njw/pubs/imas/ 14	3 Environments Accessible vs inaccessible. An accessible environment is one in which the agent can obtain complete, accurate, up-to-date information about the environment's state. Most moderately complex environments (including, for example, the everyday physical world and the Internet) are inaccessible. The more accessible an environment is, the simpler it is to build agents to operate in it.	re 2 An Introduction to Multiagent Systems	 2.3 Intelligent Agents and Al Aren't agents just the Al project? Isn't building an agent what Al is all about? Al aims to build systems that can (ultimately) understand natural language, recognise and understand scenes, use common sense, think creatively, etc — all of which are very hard. So, don't we need to solve all of Al to build an agent ? 	re 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 15	 Deterministic vs non-deterministic. As we have already mentioned, a deterministic environment is one in which any action has a single guaranteed effect — there is no uncertainty about the state that will result from performing an action. The physical world can to all intents and purposes be regarded as non-deterministic. Non-deterministic environments present greater problems for the agent designer. 	An Introduction to Multiagent Systems	 When building an agent, we simply want a system that can choose the right action to perform, typically in a limited domain. We <i>do not</i> have to solve <i>all</i> the problems of AI to build a useful agent: <i>a little intelligence goes a long way!</i> Oren Etzioni, speaking about the commercial experience of NETBOT, Inc: We made our agents dumber and dumber and dumber until finally they made money. 	An Introduction to Multiagent Systems

 Discrete vs continuous. An environment is discrete if there are a fixed, finite number of actions and percepts in it. Russell and Norvig give a chess game as an example of a discrete environment, and taxi driving as an example of a continuous one. 	re 2 An Introduction to Multiagent Systems	 Episodic vs non-episodic. In an episodic environment, the performance of an agent is dependent on a number of discrete episodes, with no link between the performance of an agent in different scenarios. Episodic environments are simpler from the agent developer's perspective because the agent can decide what action to perform based only on the current episode — it need not reason about the interactions between this and future episodes. 	re 2 An Introduction to Multiagent Systems
 When explaining human activity, it is often useful to make statements such as the following: Janine took her umbrella because she believed it was going to rain. Michael worked hard because he wanted to possess a PhD. These statements make use of a <i>folk psychology</i>, by which human behaviour is predicted and explained through the attribution of <i>attitudes</i>, such as believing and wanting (as in the above examples), hoping, fearing, and so on. The attitudes employed in such folk psychological descriptions are called the <i>intentional</i> notions. 	Lecture 2 An Introduction to Multiagent Systems	 Static vs dynamic. A static environment is one that can be assumed to remain unchanged except by the performance of actions by the agent. A dynamic environment is one that has other processes operating on it, and which hence changes in ways beyond the agent's control. The physical world is a highly dynamic environment. 	An Introduction to Multiagent Systems

://www.csc.liv.ac.uk/~mjw/pubs/imas/

18

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

/ / man and lin an ul/ mutu/ hubb/ imae/
But most adults would find such a description absurd! Why is this?
'It is perfectly coherent to treat a light switch as a (very cooperative) agent with the capability of transmitting current at will, who invariably transmits current when it believes that we want it transmitted and not otherwise; flicking the switch is simply our way of communicating our desires'. (Yoav Shoham)
What objects can be described by the intentional stance? As it turns out, more or less anything can consider a light switch:
e 2 An Introduction to Multiagent Systems
//www.csc.liv.ac.uk/~mjw/pubs/imas/ 20
Is it legitimate or useful to attribute beliefs, desires, and so on, to computer systems?
A second-order intentional system is more sophisticated; it has beliefs and desires (and no doubt other intentional states) about beliefs and desires (and other intentional states) — both those of others and its own'.
Dennett identifies different 'grades' of intentional system: 'A <i>first-order</i> intentional system has beliefs and desires (etc.) but no beliefs and desires <i>about</i> beliefs and desires.
The philosopher Daniel Dennett coined the term <i>intentional</i> system to describe entities 'whose behaviour can be predicted by the method of attributing belief, desires and rational acumen'.

http://www.csc.liv.ac.uk/~mjw/pubs/imas.

21

most useful when applied to entities whose structure is incompletely known'. known structure such as thermostats and computer operating systems, but is to humans. Ascription of mental qualities is most straightforward for machines of constructed for machines in a simpler setting than for humans, and later applied qualities isomorphic to them. Theories of belief, knowledge and wanting can be the state of the machine in a particular situation may require mental qualities or even for humans, but expressing reasonably briefly what is actually known about behaviour, or how to repair or improve it. It is perhaps never logically required ascription helps us understand the structure of the machine, its past or future about the machine that it expresses about a person. It is useful when the machine is legitimate when such an ascription expresses the same information To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a Lecture 2

An Introduction to Multiagent Systems

McCarthy argued that there are occasions when the intentional

stance is appropriate:

 description is consistent, it does not <i>buy us anything</i>, since we essentially understand the mechanism sufficiently to have a simpler, mechanistic description of its behaviour. (Yoav Shoham) Put crudely, the more we know about a system, the less we nee to rely on animistic, intentional explanations of its behaviour. But with very complex systems, a mechanistic, explanation of its behaviour may not be practicable. As computer systems become ever more complex, we need more powerful abstractions and metaphors to explain their operation — low level explanations become impractical. The intentional stance is such an abstraction. 	An Introduction to Multiagent Syster	
--	--------------------------------------	--

http://www.csc.liv.ac.uk/~mjw/pubs/imas/

 It gives us the potential to specify systems that <i>include</i> representations of other systems. It is widely accepted that such nested representations are essential for agents that must cooperate with other agents. 	 It provides us with a familiar, non-technical way of understanding & explaing agents. Nested Representations 	Other 3 points in favour of this idea: Characterising Agents	re 2 An Introduction to Multiagent Systems	 The intentional notions are thus <i>abstraction tools</i>, which provide us with a convenient and familiar way of describing, explaining, and predicting the behaviour of complex systems. Remember: most important developments in computing are based on new <i>abstractions</i>: procedural abstraction; abstract data types; objects. Agents, and agents as intentional systems, represent a further, and increasingly powerful abstraction. So agent theorists start from the (strong) view of agents as intentional systems: one whose simplest consistent description requires the intentional stance. 	An Introduction to Multiagent Systems
 with agents, we give a very abstract specification of the system, and let the control mechanism figure out what to do, knowing that it will act in accordance with some built-in theor of agency (e.g., the well-known Cohen-Levesque model of intention). 	 should do; in declarative programming, we state something that we wan to achieve, give the system general info about the relationships between objects, and let a built-in control mechanism (e.g., goal-directed theorem proving) figure out what to do; 	 Post-Declarative Systems This view of agents leads to a kind of post-declarative programming: in procedural programming, we say exactly what a system 	An Introduction to Multiagent Syste	 This <i>intentional stance</i> is an <i>abstraction tool</i> — a convenient wa of talking about complex systems, which allows us to predict an explain their behaviour without having to understand how the mechanism actually works. Now, much of computer science is concerned with looking for abstraction mechanisms (witness procedural abstraction, ADTs objects,) So why not use the intentional stance as an abstraction tool in computing — to explain, understand, and, crucially, program computer systems? This is an important argument in favour of agents. 	An Introduction to Multiagent Syste

25

://www.csc.liv.ac.uk/~mjw/pubs/imas/ 30	 - <i>R</i> be the set of all such possible finite sequences (over <i>E</i> and <i>Ac</i>); - <i>R^{Ac}</i> be the subset of these that end with an action; and - <i>R^E</i> be the subset of these that end with an environment state. 	re 2 An Introduction to Multiagent Systems	 An aside An aside We find that researchers from a more mainstream computing discipline have adopted a similar set of ideas In distributed systems theory, <i>logics of knowledge</i> are used in the development of <i>knowledge based protocols</i>. The rationale is that when constructing protocols, one often encounters reasoning such as the following: IF process <i>i</i> knows process <i>j</i> has received message <i>m</i>₁. THEN process <i>i</i> should send process <i>j</i> has received message <i>m</i>₂. In DS theory, knowledge is <i>grounded</i> — given a precise interpretation in terms of the states of a process; return to this later we'll examine this point in detail later. 	na 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 31	$\tau: \mathcal{R}^{Ac} \to \wp(E)$ • Note that environments are <i>history dependent.</i> - <i>non-deterministic.</i> • If $\tau(r) = \emptyset$, then there are no possible successor states to <i>r</i> . In this case, we say that the system has <i>ended</i> its run. • Formally, we say an environment <i>Env</i> is a triple <i>Env</i> = $\langle E, e_0, \tau \rangle$ where: <i>E</i> is a set of environment states, $e_0 \in E$ is the initial state; and τ is a state transformer function.	Lecture 2 An Introduction to Multiagent Systems State Transformer Functions • A state transformer function represents behaviour of the environment:	5 Abstract Architectures for Agents • Assume the environment may be in any of a finite set <i>E</i> of discrete, instantaneous states: $E = \{e, e',\}$. • Agents are assumed to have a repertoire of possible actions available to them, which transform the state of the environment. $Ac = \{\alpha, \alpha',\}$ • A <i>run</i> , <i>r</i> , of an agent in an environment is a sequence of interleaved environment states and actions: $r : e_0 \xrightarrow{\alpha_0} e_1 \xrightarrow{\alpha_1} e_2 \xrightarrow{\alpha_2} e_3 \xrightarrow{\alpha_3} \cdots \xrightarrow{\alpha_{u-1}} e_u$	An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 34
$action : E \to Ac$ • A thermostat is a purely reactive agent. $action(e) = \begin{cases} \text{off if } e = \text{temperature OK} \\ \text{on otherwise.} \end{cases}$	2. $\alpha_0 = Ag(e_0)$, and 3. for $u > 0$, $e_u \in \tau((e_0, \alpha_0, \dots, \alpha_{u-1}))$ where $\alpha_u = Ag((e_0, \alpha_0, \dots, e_u))$
 Some agents decide what to do without reference to their history — they base their decision making entirely on the present, with no reference at all to the past. We call such agents <i>purely reactive</i>: 	$(e_0, \alpha_0, e_1, \alpha_1, e_2,)$ represents a run of an agent Ag in environment $Env = \langle E, e_0, \tau \rangle$ if: 1. e_0 is the initial state of Env 2. $e_0 = A_0(a_1)$, and
Lecture 2 An Introduction to Multiagent Systems 6 Purely Reactive Agents	e 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 33	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 32
 A system is a pair containing an agent and an environment. Any system will have associated with it a set of possible runs; we denote the set of runs of agent Ag in environment Env by R(Ag, Env). (We assume R(Ag, Env) contains only terminated runs.) 	Agent is a function which maps runs to actions: $Ag: \mathcal{R}^E \to Ac$ An agent makes a decision about what action to perform based on the history of the system that it has witnessed to date. Let \mathcal{AG} be the set of all agents.
Systems	Agents
Lecture 2 An Introduction to Multiagent Systems	re 2 An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 42
 But what is the value of a <i>run</i> minimum utility of state on run? maximum utility of states on run? sum of utilities of states on run? average? Disadvantage: difficult to specify a <i>long term</i> view when assigning utilities to individual states. (One possibility: a <i>discount</i> for states later on.) 	9.1 Utilities Functions over States One possibility: associate <i>utilities</i> with individual states — the task of the agent is then to bring about states that maximise utility. A task specification is a function $u: E \to \mathbb{R}$ which associated a real number with every environment state.
Lecture 2 An Introduction to Multiagent Systems	re 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 41	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 40
 We build agents in order to carry out <i>tasks</i> for us. The task must be <i>specified</i> by us But we want to tell agents what to do <i>without</i> telling them how to do it. 	 see(e). Internal state of the agent is then updated via <i>next</i> function, becoming <i>next</i>(i₀, see(e)). The action selected by the agent is <i>action</i>(<i>next</i>(i₀, see(e))). This action is then performed. Goto (2).
9 Tasks for Agents	 8.1 Agent control loop Agent starts in some initial internal state i₀. Observes its environment state e, and generates a percept
An Introduction to Multiagent Systems	re 2 An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 46
$Ag_{opt} = rg_{Ag\in\mathcal{A}g\in\mathcal{A}}$	$Ag_{opt} = \arg \max_{Ag \in \mathcal{A}g} \sum_{r \in \mathcal{R}(Ag, Em)} u(r) P(r \mid Ag, Env). $ (1)
 We can replace equation (bounded optimal agent Ag 	• Then optimal agent Ag_{opt} in an environment Env is the one that maximizes expected utility:
$\mathcal{AG}_m = \{Ag \mid Ag \in \mathcal{AG}\}$	$\sum\limits_{r\in\mathcal{R}(Ag,Env)}P(r Ag,Env)=1.$
(A function $A_g : \mathcal{R}^E \to A_c$ r to implement.) • Write \mathcal{AG}_m to denote the a machine (computer) <i>m</i> :	• Write $P(r \mid Ag, Env)$ to denote probability that run <i>r</i> occurs when agent Ag is placed in environment Env . Note:
Some agents cannot be in	9.3 Expected Utility & Optimal Agents
Lecture 2	re 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 44
$u(r) \stackrel{\scriptscriptstyle \leftarrow}{=} \frac{1}{number}$	 hard to formulate tasks in these terms.
Utility function defined as numbers	 where do the numbers come from? we don't think in terms of utilities!
disappearance of holes.	 Difficulties with utility-based approaches:
many holes as possible.	 Other variations: incorporate probabilities of different states emerging.
 Holes have to be filled up scores points by filling hole 	 Such an approach takes an inherently long term view.
if it is located next to a tile	$u:\mathcal{R} o I\!\!R$
 An agent can move in four 	Another possibility: assigns a utility not to individual states, but to runs themselves:
Simulated two dimensions	9.2 Utilities over Runs
Lecture 2	An Introduction to Multiagent Systems

47	http://www.csc.liv.ac.uk/~mjw/pubs/imas/
Env). (2)	$Ag_{opt} = \arg\max_{Ag \in \mathcal{AG}_m} \sum_{r \in \mathcal{R}(Ag, Em)} u(r) P(r \mid Ag)$
hich defines the	• We can replace equation (1) with the following, w <i>bounded optimal</i> agent A_{gopt} :
nted on <i>m</i> }.	$\mathcal{AG}_m=\{Ag\mid Ag\in\mathcal{AG} ext{ and }Ag ext{ can be implement}$
emented on	 Write Ag_m to denote the agents that can be imple machine (computer) m:
ailable memory	(A function $A_g: \mathcal{R}^E \to A_c$ may need more than av to implement.)
omputers	 Some agents cannot be implemented on some c
ction to Multiagent Systems	Lecture 2 An Introdu

$u(r) \stackrel{.}{=} rac{number of holes filled in r}{number of holes that appeared in r}$
Utility function defined as follows:
TILEWORLD changes with the random appearance and disappearance of holes.
Holes have to be filled up with tiles by the agent. An agent scores points by filling holes with tiles, with the aim being to fill as many holes as possible.
An agent can move in four directions, up, down, left, or right, and if it is located next to a tile, it can push it.
Simulated two dimensional grid environment on which there are agents, tiles, obstacles, and holes.
Utility in the Tileworld
e 2 An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 51	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 50
 Let P(r Ag, Env) denote probability that run r occurs if agent Ag is placed in environment Env. Then the probability P(Ψ Ag, Env) that Ψ is satisfied by Ag in Env would then simply be: P(Ψ Ag, Env) = ∑_{r ∈ RΨ}(Ag, Env) 	$\mathcal{R}_{\Psi}(Ag, Em) = \{r \mid r \in \mathcal{R}(Ag, Em) \text{ and } \Psi(r) = 1\}.$ • We then say that an agent Ag succeeds in task environment $\langle Emv, \Psi \rangle$ if $\mathcal{R}_{\Psi}(Ag, Emv) = \mathcal{R}(Ag, Env)$
The Probability of Success	• Write $\mathcal{R}_{\Psi}(Ag, Env)$ to denote set of all runs of the agent Ag in environment Env that satisfy Ψ :
Lecture 2 An Introduction to Multiagent Systems	re 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 49	://www.csc.liv.ac.uk/~mjw/pubs/imas/ 48
9.6 Task Environments • A task environment is a pair $\langle Env, \Psi \rangle$, where Env is an environment, and $\Psi : \mathcal{R} \rightarrow \{0, 1\}$ is a predicate over runs. Let \mathcal{TE} be the set of all task environments. • A task environment specifies: - the properties of the system the agent will inhabit; - the criteria by which an agent will be judged to have either failed or succeeded.	 9.5 Predicate Task Specifications 9.5 Predicate Task Specifications A special case of assigning utilities to histories is to assign 0 (false) or 1 (true) to a run. If a run is assigned 1, then the agent succeeds on that run, otherwise it fails. Call these <i>predicate task specifications</i>. Call these <i>predicate task specification</i> by Ψ. Denote predicate task specification by Ψ. Thus Ψ : R → {0, 1}.
Lecture 2 An Introduction to Multiagent Systems	An Introduction to Multiagent Systems

http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 55	//www.csc.liv.ac.uk/~mjw/pubs/imas/
$\exists Ag \in \mathcal{AG} \text{ s.t. } \mathcal{R}(Ag, Env) = \mathcal{R}_{\Psi}(Ag, Env) \text{ implies } syn(\langle Env, \Psi \rangle) \neq \bot.$	 <i>sound</i> if, whenever it returns an agent, then this agent succeeds in the task environment that is passed as input; and <i>complete</i> if it is guaranteed to return an agent whenever there exists an agent that will succeed in the task environment given as input.
• Synthesis algorithm syn is sound if it satisfies the following condition: $syn(\langle Env, \Psi \rangle) = Ag$ implies $\mathcal{R}(Ag, Env) = \mathcal{R}_{\Psi}(Ag, Env)$. and complete if:	this environment: $syn: \mathcal{TE} \to (\mathcal{AG} \cup \{\bot\}).$ (Think of \bot as being like null in JAVA. Synthesis algorithm is:
	10 Agent Synthesis Agent synthesis is automatic programming: goal is to have a program that will take a task environment, and from this task environment automatically generate an agent that succeeds in
An Introduction to Multiagent Systems	e 2 An Introduction to Multiagent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas/ 53	//www.csc.liv.ac.uk/~mjw/pubs/imas/ 52
The agent succeeds in a particular environment if it manages to avoid all states in B — if it never performs actions which result in any state in B occurring.	 Achievement tasks Are those of the form "achieve state of affairs φ". Maintenance tasks Are those of the form "maintain state of affairs ψ".
The agent succeeds if it is guaranteed to bring about at least one of these states (we do not care which one — they are all considered equally good). • A maintenance coal is specified by a set <i>R</i> of "bad" states: $R \subset F$	Two most common types of tasks are <i>achievement tasks</i> and <i>maintenance tasks</i> :
• An achievement task is specified by a set G of "good" or "goal" states: $G \subseteq E$.	Achievement & Maintenance Tasks
Lecture 2 An Introduction to Multiagent Systems	e 2 An Introduction to Multiagent Systems