
1

10-1

LECTURE 10:
Methodologies

An Introduction to MultiAgent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas

10-2

Pitfalls of Agent Development
Lots of (single and multi-) agent projects…but agent-
oriented development received little attention
We now consider pragmatics of AO software
projects
Identifies key pitfalls
Seven categories:

political
management
conceptual
analysis and design
micro (agent) level
macro (society) level
implementation

10-3

You Oversell Agents
Agents are not magic!
If you can’t do it with ordinary software, you probably
can’t do it with agents
No evidence that any system developed using agent
technology could not have been built just as easily
using non-agent techniques
Agents may make it easier to solve certain classes of
problems…but they do not make the impossible
possible
Agents are not AI by a back door
Don’t equate agents and AI

10-4

You Get Religious
Agents have been used in a wide range of
applications, but they are not a universal solution
For many applications, conventional software
paradigms (e.g., OO) are more appropriate
Given a problem for which an agent and a non-
agent approach appear equally good, prefer non-
agent solution!

In summary: danger of believing that agents are the
right solution to every problem
Other form of dogma: believing in your agent
definition

10-5

Don’t Know Why You Want Agents
Agents = new technology = lots of hype!
“Agents will generate US$2.6 billion in revenue by the
year 2000”
Managerial reaction:
“We can get 10% of that”
Managers often propose agent projects without having
clear idea about what “having agents” will buy them
No business plan for the project:

pure research?

technology vendor?
solutions vendor?
…

10-6

Don’t Know Why You Want Agents

Often, projects appear to be going well. (“We
have agents!”) But no vision about where to
go with them.

The lesson: understand your reasons for
attempting an agent development project,
and what you expect to gain from it.

2

10-7

Don’t Know What Agents Are Good For
Having developed some agent technology,
you search for an application to use them
Putting the cart before the horse!

Leads to mismatches/dissatisfaction

The lesson: be sure you understand how and
where your new technology may be most
usefully applied.
Do not attempt to apply it to arbitrary
problems & resist temptation to apply it to
every problem.

10-8

Generic Solutions to 1-Off Problems
The “yet another agent testbed” syndrome
Devising an architecture or testbed that
supposedly enables a range agent systems to be
built, when you really need a one-off system
Re-use is difficult to attain unless development is
undertaken for a close knit range of problems
with similar characteristics
General solutions are more difficult and more
costly to develop, often need tailoring to different
applications.

10-9

Confuse Prototypes with Systems

Prototypes are easy (particularly with nice
GUI builders!)

Field tested production systems are hard
Process of scaling up from single-machine
multi-threaded Java app to multi-user
system much harder than it appears

10-10

Believe Agents = Silver Bullet
Holy grail of software engineering is a “silver bullet”:
an order of magnitude improvement in software
development
Technologies promoted as the silver bullet:

COBOL :-)
automatic programming
expert systems
graphical programming
formal methods (!)

Agent technology is not a silver bullet
Good reasons to believe that agents are useful way
of tackling some problems
But these arguments largely untested in practice

10-11

Believe Agents = Silver Bullet

Useful developments in software engineering:
abstractions

Agents are another abstraction

10-12

Confuse Buzzwords & Concepts
The idea of an agent is extremely intuitive
Encourages developers to believe that they
understand concepts when they do not
(The AI & party syndrome: everyone has an opinion.
However uninformed.)
Good example: the belief-desire-intention (BDI) model

theory of human practical reasoning (Bratman et al.)
agent architectures (PRS, dMARS, . . .)

serious applications (NASA, . . .)
logic of practical reasoning (Rao & Georgeff)

Label “BDI” now been applied to WWW pages/perl
scripts

3

10-13

Confuse Buzzwords & Concepts

“Our system is a BDI system”…implication
that this is like being a computer with 64MB
memory: a quantifiable property, with
measurable associated benefits.

10-14

Forget it’s Software
Developing any agent system is essentially
experimentation. No tried and trusted techniques
This encourages developers to forget they are
developing software!
Project plans focus on the agenty bits
Mundane software engineering (requirements
analysis, specification, design, verification, testing) is
forgotten
Result a foregone conclusion: project flounders, not
because agent problems, but because basic software
engineering ignored
Frequent justification: software engineering for agent
systems is non-existent

10-15

Forget it’s Software

But almost any principled software
development technique is better than none.

10-16

Forget it’s distributed
Distributed systems = one of the most
complex classes of computer system to
design and implement
Multi-agent systems tend to be distributed!

Problems of distribution do not go away, just
because a system is agent-based

Typical multi-agent system will be more
complex than a typical distributed system

Recognize distributed systems problems
Make use of DS expertise

10-17

Don’t Exploit Related Technology
In any agent system, percentage of the system that
is agent-specific is comparatively small
The raisin bread model of Winston
Therefore important that conventional technologies
and techniques are exploited wherever possible
Don’t reinvent the wheel. (Yet another
communication framework.)
Exploitation of related technology:

speeds up development
avoids re-inventing wheel
focusses effort on agent component

Example: CORBA
10-18

Don’t exploit concurrency
Many ways of cutting up any problem.
Examples: decompose along functional,
organizational, physical, or resource related lines.
One of the most obvious features of a poor multi-
agent design is that the amount of concurrent
problem solving is comparatively small or even in
extreme cases non-existent
Serial processing in distributed system!
Only ever a single thread of control: concurrency,
one of the most important potential advantages of
multi-agent solutions not exploited
If you don’t exploit concurrency, why have an agent
solution?

4

10-19

Want Your Own Architecture
Agent architectures: designs for building agents
Many agent architectures have been proposed over
the years
Great temptation to imagine you need your own
Driving forces behind this belief:

“not designed here” mindset
intellectual property

Problems:
architecture development takes years
no clear payback

Recommendation: buy one, take one off the shelf, or
do without

10-20

Think Your Architecture is Generic
If you do develop an architecture, resist temptation
to believe it is generic
Leads one to apply an architecture to problem for
which it is patently unsuited
Different architectures good for different problems
Any architecture that is truly generic is by definition
not an architecture…
If you have developed an architecture that has
successfully been applied to some particular
problem, understand why it succeeded with that
particular problem
Only apply the architecture to problems with similar
characteristics

10-21

Use Too Much AI
Temptation to focus on the agent-specific aspects of
the application
Result: an agent framework too overburdened with
experimental AI techniques to be usable
Fuelled by “feature envy”, where one reads about
agents that have the ability to learn, plan, talk, sing,
dance…
Resist the temptation to believe such features are
essential in your agent system
The lesson: build agents with a minimum of AI; as
success is obtained with such systems,
progressively evolve them into richer systems
What Etzioni calls “useful first” strategy

10-22

Not Enough AI
Don’t call your on-off switch an agent!
Be realistic: it is becoming common to find everyday
distributed systems referred to as multi-agent
systems
Another common example: referring to WWW pages
that have any behind the scenes processing as
“agents”

Problems:
lead to the term “agent” losing any meaning
raises expectations of software recipients
leads to cynicism on the part of software developers

10-23

See agents everywhere

“Pure” A-O system = everything is an agent!
Agents for addition, subtraction,…

Naively viewing everything as an agent is
inappropriate

Choose the right grain size
More than 10 agents = big system

10-24

Too Many Agents
Agents don’t have to be complex to generate
complex behavior

Large number of agents:
emergent functionality
chaotic behavior

Lessons:
keep interactions to a minimum
keep protocols simple

5

10-25

Too few agents

Some designers imagine a separate agent for
every possible task

Others don’t recognize value of a multi-agent
approach at all

One “all powerful” agent
Result is like OO program with 1 class

Fails software engineering test of coherence

10-26

Implementing infrastructure

There are no widely-used software platforms
for developing agent systems

Such platforms would provide all the basic
infrastructure required to create a multi-agent
system
The result: everyone builds there own

By the time this is developed, project
resources gone!

No effort devoted to agent-specifics

10-27

System is anarchic
Cannot simply bundle a group of agents
together

Most agent systems require system-level
engineering

For large systems, or for systems in which
the society is supposed to act with some
commonality of purpose, this is particularly
true

Organization structure (even in the form of
formal communication channels) is essential

10-28

Confuse simulated with real parallelism
Every multi-agent system starts life on a single computer.
Agents are often implemented as UNIX processes,
lightweight processes in C, or JAVA threads
A tendency to assume that results obtained with
simulated distribution will immediately scale up to real
distribution
A dangerous fallacy: distributed systems are an order of
magnitude more difficult to design, implement, test,
debug, and manage
Many practical problems in building distributed systems,
from mundane to research level
With simulated distribution, there is the possibility of
centralized control; in truly distributed systems, such
centralized control is not possible

10-29

The tabula rasa
When building systems using new technology, often
an assumption that it is necessary to start from a
“blank slate”
Often, most important components of a software
system will be legacy:
functionally essential, but technologically obsolete
software components, which cannot readily be
rebuilt
Such systems often mission critical
When proposing a new software solution, essential
to work with such components
They can be incorporated into an agent system by
wrapping them with an agent layer

10-30

Ignore de facto standards
There are no established agent standards

Developers often believe they have no choice
but to design and build all agent-specific
components from scratch

But here are some de facto standards

Examples:
CORBA
HTML
KQML
FIPA

6

10-31

Mobile Agents
Remote procedure calls (a) versus mobile agents (b):

10-32

Mobile Agents
Why mobile agents?

low-bandwidth networks (hand-held PDAs, such
as NEWTON)
efficient use of network resources

There are many issues that need to be
addressed when building software tools that
can support mobile agents…

security for hosts and agents
heterogeneity of hosts
dynamic linking

10-33

Security for Hosts
We do not want to execute foreign programs on our

machine, as this would present enormous security risks:
If the agent programming language supports pointers,
then there is the danger of agents corrupting the
address space of the host ⇒ many agent languages
don’t have pointers!
UNIX-like access rights on host
Safe libraries for access to filestore, process space, etc.
Some actions (e.g., sending mail) are harmless in some
circumstances, but dangerous in others — how to tell?

10-34

Security for Hosts
Some agent languages (e.g., TELESCRIPT) provide
limits on the amount of e.g., memory & processor
time that an agent can access
Secure co-processors are a solution — have a
physically separate processor on which the agent is
run, such that the processor is in ‘quarantine’
(‘padded cell’)

Some agent languages allow security properties of an
agent to be verified on receipt.

Hosts must handle crashed programs cleanly — what
do you tell an owner when their agent crashes?

Trusted agents?

10-35

Security for Agents
Agents have a right to privacy!
We often do not want to send out our programs, as
to do so: might enable the recipient to determine its
purpose, and hence our intent
The agent might be modified (sabotaged!) in some
way, without its owners knowledge or approval
An agent can be protected in transit by using
conventional encryption techniques (e.g., PGP)
In order to ensure that an agent is not tampered
with, it is possible to use digital watermarks —
rather like check digits

10-36

Heterogeneity of Hosts
Unless we are happy for our agents to be executed
on just one type of machine (Mac, PC, SPARC, …),
then we must provide facilities for executing the
same agent on many different types of machine

This implies:
interpreted language:
compiled languages imply reduction to machine
code, which is clearly system dependent —
reduced efficiency; (perhaps use virtual machine
technology)
dynamic linking:
libraries that access local resources must provide
a common interface to different environments

7

10-37

A Typology for Mobile Agents

We can divide mobile agents into at least
three types:

autonomous
on-demand
‘active mail’-type

10-38

Autonomous Mobile Agents
By autonomous mobile, we mean agents
that are able to decide for themselves
where to go, when, and what to do when
they get there (subject to certain resource
constraints, e.g., how much ‘emoney’ they
can spend)
Such agents are generally programmed in
a special language that provides a go
instruction… best known example is
TELESCRIPT

10-39

On-Demand Mobility
The idea here is that a host is only required to execute
an agent when it explicitly demands the agent
The best known example of such functionality is that
provided by the JAVA language, as embedded within
html
A user with a JAVA-compatible browser can request
html pages that contain applets – small programs
implemented in the JAVA language
These applets are downloaded along with all other
images, text, forms, etc., on the page, and, once
downloaded, are executed on the user’s machine
JAVA itself is a general purpose, C/C++ like
programming language, (that does not have pointers!)

10-40

‘Active-Mail’ Agents

The idea here is to ‘piggy-back’ agent
programs onto mail

The best-known example of this work is the
mime extension to email, allowing Safe-Tcl
scripts to be sent

When email is received, the ‘agent’ is
unpacked, and the script executed… hence
the email is no longer passive, but active

10-41

Telescript
TELESCRIPT was a language-based environment
for constructing mobile agent systems
TELESCRIPT technology is the name given by
General Magic to a family of concepts and
techniques they have developed to underpin their
products
There are two key concepts in TELESCRIPT
technology:

places
agents

Places are virtual locations occupied by agents. A
place may correspond to a single machine, or a
family of machines

10-42

Telescript
Agents are the providers and consumers of goods in
the electronic marketplace applications that
TELESCRIPT was developed to support
Agents are interpreted programs, rather like TCL
Agents are mobile — they are able to move from one
place to another, in which case their program and
state are encoded and transmitted across a network
to another place, where execution recommences

In order to travel across the network, an agent uses a
ticket, which specifies the parameters of its journey:

destination
completion time

8

10-43

Telescript

Agents can communicate with one-another:
if they occupy different places, then they can
connect across a network
if they occupy the same location, then they can
meet one another

10-44

Telescript
TELESCRIPT agents have an associated permit,
which specifies:

what the agent can do (e.g., limitations on travel)
what resources the agent can use

The most important resources are:
‘money’, measured in ‘teleclicks’ (which correspond to real
money)
lifetime (measured in seconds)
size (measured in bytes)

Agents and places are executed by an engine
An engine is a kind of agent operating system —
agents correspond to operating system processes.

10-45

Telescript

Just as operating systems can limit the
access provided to a process (e.g., in UNIX,
via access rights), so an engine limits the
way an agent can access its environment

This is the so-called concept of “managed
code” (e.g., Java, Visual Basic, Microsoft’s
.Net)

10-46

Telescript
Engines continually monitor agent’s resource
consumption, and kill agents that exceed their limit
Engines provide (C/C++) links to other applications
via application program interfaces (APIs)
Agents and places are programmed using the
TELESCRIPT language:

pure object oriented language — everything is an object —
apparently based on SMALLTALK
interpreted
two levels — high (the ‘visible’ language), and low (a semi-
compiled language for efficient execution)
a ‘process’ class, of which ‘agent’ and ‘place’ are sub-
classes
persistent

10-47

Telescript

General Magic claimed that the sophisticated
built in communications services make
TELESCRIPT ideal for agent applications!

10-48

Telescript
Summary:

a rich set of primitives for building distributed
applications, with a fairly powerful notion of
agency
agents are ultimately interpreted programs
no notion of strong agency!
once thought likely to have a significant impact
(was supported by Apple, AT&T, Motorola,
Philips, Sony…) – but now company is extinct
actual impact more likely to be in the realm of
ideas, rather than in this particular instantiation

9

10-49

TCL/TK and Scripting Languages
The (free) Tool Control Language (TCL — pronounced
‘tickle’) and its companion TK, are now often mentioned
in connection with agent-based systems
TCL was primarily intended as a standard command
language — lots of applications provide such languages,
(databases, spreadsheets,…), but every time a new
application is developed, a new command language
must be as well. TCL provides the facilities to easily
implement your own command language
TK is an X window based widget toolkit — it provides
facilities for making GUI features such as buttons,
labels, text and graphic windows (much like other X
widget sets).
TK also provides powerful facilities for interprocess
communication, via the exchange of TCL scripts

10-50

TCL/TK and Scripting Languages
TCL/TK combined, make an attractive and
simple to use GUI development tool;
however, they have features that make them
much more interesting:

TCL it is an interpreted language
TCL is extendable — it provides a core set of
primitives, implemented in C/C++, and allows the
user to build on these as required
TCL/TK can be embedded — the interpreter itself
is available as C++ code, which can be embedded
in an application, and can itself be extended

10-51

TCL/TK and Scripting Languages
TCL programs are called scripts
TCL scripts have many of the properties that
UNIX shell scripts have:

they are plain text programs, that contain control
structures (iteration, sequence, selection) and data
structures (e.g., variables, lists, and arrays) just like
a normal programming language
they can be executed by a shell program (tclsh or
wish)
they can call up various other programs and obtain
results from these programs (cf. procedure calls)

10-52

TCL/TK and Scripting Languages
As TCL programs are interpreted, they are very
much easier to prototype and debug than compiled
languages like C/C++ — they also provide more
powerful control constructs…

… but this power comes at the expense of speed

Also, the structuring constructs provided by TCL
leave something to be desired
So where does the idea of an agent come in?
It is easy to build applications where TCL scripts are
exchanged across a network, and executed on
remote machines.
Thus TCL scripts become sort of agents

10-53

TCL/TK and Scripting Languages
A key issue is safety. You don’t want to provide
someone elses script with the full access to your
computer that an ordinary scripting language (e.g.,
csh) provides.
This led to Safe TCL, which provides mechanisms
for limiting the access provided to a script.
Example: Safe TCL control the access that a script
has to the UI, by placing limits on the number of
times a window can be modified by a script.
But the safety issue has not yet been fully resolved
in TCL. This limits its attractiveness as an agent
programming environment

10-54

TCL/TK and Scripting Languages

Summary:
TCL/TK provide a rich environment for building
language-based applications, particularly GUI-
based ones
But they are not/were not intended as agent
programming environments
The core primitives may be used for building
agent programming environments — the source
code is free, stable, well-designed, and easily
modified

