
1

5-1

LECTURE 5: 
REACTIVE AND HYBRID
ARCHITECTURES

An Introduction to MultiAgent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas

5-2

Reactive Architectures
� There are many unsolved (some would say 
insoluble) problems associated with symbolic AI

� These problems have led some researchers to 
question the viability of the whole paradigm, and to 
the development of reactive architectures

� Although united by a belief that the assumptions 
underpinning mainstream AI are in some sense 
wrong, reactive agent researchers use many 
different techniques

� In this presentation, we start by reviewing the work 
of one of the most vocal critics of mainstream AI: 
Rodney Brooks

5-3

Brooks – behavior languages
� Brooks has put forward three theses:

1. Intelligent behavior can be generated without 
explicit representations of the kind that symbolic 
AI proposes

2. Intelligent behavior can be generated without 
explicit abstract reasoning of the kind that 
symbolic AI proposes

3. Intelligence is an emergent property of certain 
complex systems

5-4

Brooks – behavior languages
� He identifies two key ideas that have 

informed his research:
1. Situatedness and embodiment: ‘Real’

intelligence is situated in the world, not in 
disembodied systems such as theorem provers
or expert systems

2. Intelligence and emergence: ‘Intelligent’ behavior 
arises as a result of an agent’s interaction with its 
environment. Also, intelligence is ‘in the eye of 
the beholder’; it is not an innate, isolated 
property

5-5

Brooks – behavior languages
� To illustrate his ideas, Brooks built some based on his subsumption architecture
� A subsumption architecture is a hierarchy of task-accomplishing behaviors
� Each behavior is a rather simple rule-like structure
� Each behavior ‘competes’ with others to exercise control over the agent
� Lower layers represent more primitive kinds of behavior (such as avoiding obstacles), and have precedence over layers further up the hierarchy
� The resulting systems are, in terms of the amount of computation they do, extremely simple
� Some of the robots do tasks that would be impressive if they were accomplished by symbolic AI systems

5-6

A Traditional Decomposition of a Mobile 
Robot Control System into Functional 
Modules

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985



2

5-7

A Decomposition of a Mobile Robot 
Control System Based on Task Achieving 
Behaviors

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985
5-8

Layered Control in the Subsumption
Architecture

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

5-9

Example of a Module – Avoid

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985
5-10

Schematic of a Module

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985

5-11

Levels 0, 1, and 2 Control Systems

From Brooks, “A Robust Layered Control System for a Mobile Robot”, 1985 5-12

Steels’ Mars Explorer
� Steels’ Mars explorer system, using the 
subsumption architecture, achieves near-
optimal cooperative performance in simulated 
‘rock gathering on Mars’ domain:The objective is to explore a distant planet, and in particular, to collect sample of a precious rock. The location of the samples is not known in advance, but it is known that they tend to be clustered.



3

5-13

Steels’ Mars Explorer Rules
� For individual (non-cooperative) agents, the lowest-level 
behavior, (and hence the behavior with the highest 
“priority”) is obstacle avoidance:

if detect an obstacle then change direction (1)
� Any samples carried by agents are dropped back at the 
mother-ship:

if carrying samples and at the base
then drop samples (2)

� Agents carrying samples will return to the mother-ship:
if carrying samples and not at the base

then travel up gradient (3)

5-14

Steels’ Mars Explorer Rules
� Agents will collect samples they find:

if detect a sample then pick sample up (4)
� An agent with “nothing better to do” will explore 
randomly:

if true then move randomly (5)

5-15

Situated Automata
� A sophisticated approach is that of Rosenschein 
and Kaelbling

� In their situated automata paradigm, an agent is 
specified in a rule-like (declarative) language, and 
this specification is then compiled down to a digital 
machine, which satisfies the declarative 
specification

� This digital machine can operate in a provable 
time bound

� Reasoning is done off line, at compile time, rather 
than online at run time

5-16

Situated Automata
� The logic used to specify an agent is 
essentially a modal logic of knowledge

� The technique depends upon the possibility 
of giving the worlds in possible worlds 
semantics a concrete interpretation in terms 
of the states of an automaton

� “[An agent]…x is said to carry the information 
that P in world state s, written s╞ K(x,P), if for 
all world states in which x has the same value 
as it does in s, the proposition P is true.”

[Kaelbling and Rosenschein, 1990]

5-17

Situated Automata
� An agent is specified in terms of two 
components: perception and action

� Two programs are then used to synthesize 
agents
� RULER is used to specify the perception 
component of an agent

� GAPPS is used to specify the action component

5-18

Circuit Model of a Finite-State Machine

From Rosenschein and Kaelbling,
“A Situated View of Representation and Control”, 1994

f = state update function
s = internal state
g = output function



4

5-19

RULER – Situated Automata
� RULER takes as its input three components
� “[A] specification of the semantics of the [agent's] 
inputs (‘whenever bit 1 is on, it is raining’); a set of 
static facts (‘whenever it is raining, the ground is 
wet’); and a specification of the state transitions of 
the world (‘if the ground is wet, it stays wet until the 
sun comes out’). The programmer then specifies the 
desired semantics for the output (‘if this bit is on, the 
ground is wet’), and the compiler ... [synthesizes] a 
circuit whose output will have the correct semantics. 
... All that declarative ‘knowledge’ has been reduced 
to a very simple circuit.” [Kaelbling, 1991]

5-20

GAPPS – Situated Automata
� The GAPPS program takes as its input

� A set of goal reduction rules, (essentially rules that 
encode information about how goals can be 
achieved), and

� a top level goal
� Then it generates a program that can be 
translated into a digital circuit in order to 
realize the goal

� The generated circuit does not represent or 
manipulate symbolic expressions; all symbolic 
manipulation is done at compile time 

5-21

Circuit Model of a Finite-State Machine

From Rosenschein and Kaelbling,
“A Situated View of Representation and Control”, 1994

“The key lies in understanding how a process can 
naturally mirror in its states subtle conditions in its 
environment and how these mirroring states ripple 
out to overt actions that eventually achieve goals.”

RULER GAPPS

5-22

Situated Automata
� The theoretical limitations of the approach 
are not well understood

� Compilation (with propositional specifications) 
is equivalent to an NP-complete problem

� The more expressive the agent specification 
language, the harder it is to compile it

� (There are some deep theoretical results 
which say that after a certain expressiveness, 
the compilation simply can’t be done.)

5-23

Advantages of Reactive Agents
� Simplicity
� Economy
� Computational tractability
� Robustness against failure
� Elegance

5-24

Limitations of Reactive Agents
� Agents without environment models must have 
sufficient information available from local environment

� If decisions are based on local environment, how does 
it take into account non-local information (i.e., it has a 
“short-term” view)

� Difficult to make reactive agents that learn
� Since behavior emerges from component interactions 
plus environment, it is hard to see how to engineer
specific agents (no principled methodology exists)

� It is hard to engineer agents with large numbers of 
behaviors (dynamics of interactions become too 
complex to understand)



5

5-25

Hybrid Architectures
� Many researchers have argued that neither a 
completely deliberative nor completely reactive 
approach is suitable for building agents

� They have suggested using hybrid systems, which 
attempt to marry classical and alternative approaches

� An obvious approach is to build an agent out of two 
(or more) subsystems:
� a deliberative one, containing a symbolic world model, which 

develops plans and makes decisions in the way proposed by 
symbolic AI

� a reactive one, which is capable of reacting to events without 
complex reasoning

5-26

Hybrid Architectures
� Often, the reactive component is given some 
kind of precedence over the deliberative one

� This kind of structuring leads naturally to the 
idea of a layered architecture, of which 
TOURINGMACHINES and INTERRAP are 
examples

� In such an architecture, an agent’s control 
subsystems are arranged into a hierarchy, 
with higher layers dealing with information at 
increasing levels of abstraction

5-27

Hybrid Architectures
� A key problem in such architectures is what kind of 
control framework to embed the agent’s subsystems 
in, to manage the interactions between the various 
layers

� Horizontal layering
Layers are each directly connected to the sensory 
input and action output.
In effect, each layer itself acts like an agent, 
producing suggestions as to what action to perform.

� Vertical layering
Sensory input and action output are each dealt with 
by at most one layer each

5-28

Hybrid Architectures
m possible actions suggested by each layer, n layers

mn interactions m2(n-1) interactions
Introduces bottleneck

in central control system
Not fault tolerant to 

layer failure

5-29

Ferguson – TOURINGMACHINES
� The TOURINGMACHINES architecture 
consists of perception and action
subsystems, which interface directly with the 
agent’s environment, and three control layers, embedded in a control framework, 
which mediates between the layers

5-30

Ferguson – TOURINGMACHINES



6

5-31

Ferguson – TOURINGMACHINES
� The reactive layer is implemented as a set of 
situation-action rules, a la subsumption architecture
Example:
rule-1: kerb-avoidance
if

is-in-front(Kerb, Observer) and
speed(Observer) > 0 and
separation(Kerb, Observer) < KerbThreshHold

then
change-orientation(KerbAvoidanceAngle)

� The planning layer constructs plans and selects 
actions to execute in order to achieve the agent’s 
goals

5-32

Ferguson – TOURINGMACHINES
� The modeling layer contains symbolic representations of 
the ‘cognitive state’ of other entities in the agent’s 
environment

� The three layers communicate with each other and are 
embedded in a control framework, which use control rules
Example:
censor-rule-1:
if

entity(obstacle-6) in perception-buffer
then

remove-sensory-record(layer-R, entity(obstacle-6))

5-33

Müller –InteRRaP
� Vertically layered, two-pass architecture

cooperation layer

plan layer

behavior layer

social knowledge

planning knowledge

world model

world interface

perceptual input action output


