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LECTURE 4: 
PRACTICAL REASONING

An Introduction to MultiAgent Systems
http://www.csc.liv.ac.uk/~mjw/pubs/imas
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Practical Reasoning
� Practical reasoning is reasoning directed towards 

actions — the process of figuring out what to do:
� “Practical reasoning is a matter of weighing conflicting 
considerations for and against competing options, 
where the relevant considerations are provided by 
what the agent desires/values/cares about and what 
the agent believes.” (Bratman)

� Practical reasoning is distinguished from 
theoretical reasoning – theoretical reasoning is 
directed towards beliefs
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Practical Reasoning
� Human practical reasoning consists of two 

activities:
� deliberation
deciding what state of affairs we want to achieve

� means-ends reasoning
deciding how to achieve these states of affairs

� The outputs of deliberation are intentions
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Intentions in Practical Reasoning
1. Intentions pose problems for agents, who need to determine 

ways of achieving them.
If I have an intention to φ, you would expect me to devote 
resources to deciding how to bring about φ.

2. Intentions provide a “filter” for adopting other intentions, 
which must not conflict.
If I have an intention to φ, you would not expect me to adopt 
an intention ψ such that φ and ψ are mutually exclusive.

3. Agents track the success of their intentions, and are inclined 
to try again if their attempts fail.
If an agent’s first attempt to achieve φ fails, then all other 
things being equal, it will try an alternative plan to achieve φ.
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Intentions in Practical Reasoning
4. Agents believe their intentions are possible.

That is, they believe there is at least some way that the 
intentions could be brought about.

5. Agents do not believe they will not bring about their 
intentions.
It would not be rational of me to adopt an intention to φ if 
I believed φ was not possible.

6. Under certain circumstances, agents believe they will 
bring about their intentions.
It would not normally be rational of me to believe that I 
would bring my intentions about; intentions can fail. 
Moreover, it does not make sense that if I believe φ is 
inevitable that I would adopt it as an intention.
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Intentions in Practical Reasoning
7. Agents need not intend all the expected side effects of 

their intentions.
If I believe φ→ψ and I intend that φ, I do not 
necessarily intend ψ also. (Intentions are not closed 
under implication.)

This last problem is known as the side effect or 
package deal problem. I may believe that going to the 
dentist involves pain, and I may also intend to go to 
the dentist — but this does not imply that I intend to 
suffer pain!
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Intentions in Practical Reasoning
� Notice that intentions are much stronger than 

mere desires:
“My desire to play basketball this afternoon is merely 
a potential influencer of my conduct this 
afternoon. It must vie with my other relevant 
desires [. . . ] before it is settled what I will do. In 
contrast, once I intend to play basketball this 
afternoon, the matter is settled: I normally need 
not continue to weigh the pros and cons. When 
the afternoon arrives, I will normally just proceed 
to execute my intentions.” (Bratman, 1990)
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Planning Agents
� Since the early 1970s, the AI planning community 
has been closely concerned with the design of 
artificial agents

� Planning is essentially automatic programming: the 
design of a course of action that will achieve some 
desired goal

� Within the symbolic AI community, it has long been 
assumed that some form of AI planning system will 
be a central component of any artificial agent

� Building largely on the early work of Fikes & Nilsson, 
many planning algorithms have been proposed, and 
the theory of planning has been well-developed
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What is Means-End Reasoning?
� Basic idea is to give an agent:

� representation of goal/intention to achieve
� representation actions it can perform
� representation of the environment

and have it generate a plan to achieve the goal
� Essentially, this is

automatic programming
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Planning
� Question: How do we represent. . .

� goal to be achieved
� state of environment
� actions available to agent
� plan itself
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The Blocks World

� We’ll illustrate the techniques with reference 
to the blocks world (like last week)

� Contains a robot arm, 3 blocks (A, B, and C) 
of equal size, and a table-top

A

B C
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The Blocks World Ontology
� To represent this environment, need an 

ontology
On(x, y) obj x on top of obj y
OnTable(x) obj x is on the table
Clear(x) nothing is on top of obj x
Holding(x) arm is holding x

4-14

The Blocks World
� Here is a representation of the blocks world 

described above:
Clear(A)
On(A, B)
OnTable(B)
OnTable(C)

� Use the closed world assumption: anything 
not stated is assumed to be false

A

B C
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The Blocks World
� A goal is represented as a set of formulae
� Here is a goal:

OnTable(A) ∧ OnTable(B) ∧ OnTable(C)

AB C
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The Blocks World
� Actions are represented using a technique that was 
developed in the STRIPS planner

� Each action has:
� a name

which may have arguments
� a pre-condition list

list of facts which must be true for action to be executed
� a delete list

list of facts that are no longer true after action is performed
� an add list

list of facts made true by executing the action
Each of these may contain variables
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The Blocks World Operators

� Example 1:
The stack action occurs when the robot arm places the 
object x it is holding is placed on top of object y.

Stack(x, y)
pre Clear(y) ∧ Holding(x)
del Clear(y) ∧ Holding(x)
add ArmEmpty ∧ On(x, y)

A

B
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The Blocks World Operators
� Example 2:

The unstack action occurs when the robot arm picks an 
object x up from on top of another object y.

UnStack(x, y)
pre On(x, y) ∧ Clear(x) ∧ ArmEmpty
del On(x, y) ∧ ArmEmpty
add Holding(x) ∧ Clear(y)

Stack and UnStack are inverses of one-another.

A

B
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The Blocks World Operators
� Example 3:
The pickup action occurs when the arm picks up an 
object x from the table.

Pickup(x)
pre Clear(x) ∧ OnTable(x) ∧ ArmEmpty
del OnTable(x) ∧ ArmEmpty
add Holding(x)

� Example 4:
The putdown action occurs when the arm places the 
object x onto the table.

Putdown(x)
pre Holding(x)
del Holding(x) 
add Clear(x) ∧ OnTable(x) ∧ ArmEmpty
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A Plan

� What is a plan?
A sequence (list) of actions, with variables 
replaced by constants.

I G
a1

a17

a142
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The STRIPS approach
� The original STRIPS system used a goal 

stack to control its search
� The system has a database and  a goal 

stack, and it focuses attention on solving the 
top goal (which may involve solving subgoals, 
which are then pushed onto the stack, etc.)
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The Basic STRIPS Idea
� Place goal on goal stack:

� Considering top Goal1, place onto it its 
subgoals:

� Then try to solve subgoal GoalS1-2, and 
continue…

Goal1

Goal1

GoalS1-2
GoalS1-1
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Stack Manipulation Rules, STRIPS
If on top of goal stack: Then do:
Compound or single goal Remove it
matching the current state description
Compound goal not matching 1. Keep original compound goal on stack 
the current state description 2. List the unsatisfied component goals on 

the stack in some new order 
Single-literal goal not matching the Find rule whose instantiated
current state description add-list includes the goal, and

1. Replace the goal with the
instantiated rule;
2. Place the rule’s instantiated
precondition formula on top of stack

Rule 1. Remove rule from stack;
2. Update database using rule;
3. Keep track of rule (for solution)

Nothing Stop

“Underspecified” – there are decision branches here within the search tree… 4-24

Implementing Practical Reasoning Agents

� A first pass at an implementation of a practical 
reasoning agent:

� (We will not be concerned with stages (2) or (3))

Agent Control Loop Version 1
1. while true
2. observe the world;
3. update internal world model;
4. deliberate about what intention to achieve next;
5. use means-ends reasoning to get a plan for the intention;
6. execute the plan
7. end while
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Implementing Practical Reasoning Agents
� Problem: deliberation and means-ends 

reasoning processes are not instantaneous.
They have a time cost.

� Suppose the agent starts deliberating at t0, begins means-ends reasoning at t1, and 
begins executing the plan at time t2. Time to 
deliberate is

tdeliberate = t1 – t0
� and time for means-ends reasoning is

tme = t2 – t1
4-26

Implementing Practical Reasoning Agents
� Further suppose that deliberation is optimal in that if it 
selects some intention to achieve, then this is the best 
thing for the agent. (Maximizes expected utility.)

� So at time t1, the agent has selected an intention to achieve that would have been optimal if it had been 
achieved at t0.But unless tdeliberate is vanishingly small, then the agent runs the risk that the intention selected is no longer 
optimal by the time the agent has fixed upon it.

� This is calculative rationality.
� Deliberation is only half of the problem: the agent still 
has to determine how to achieve the intention.
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Implementing Practical Reasoning Agents
� So, this agent will have overall optimal behavior in the following circumstances:
1. When deliberation and means-ends reasoning take a vanishingly small amount of time; or
2. When the world is guaranteed to remain static while the agent is deliberating and performing means-ends reasoning, so that the assumptions upon which the choice of intention to achieve and plan to achieve the intention remain valid until the agent has completed deliberation and means-ends reasoning; or
3. When an intention that is optimal when achieved at time t0 (the time at which the world is observed) is guaranteed to remain optimal until time t2 (the time at which the agent has found a course of action to achieve the intention).
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Implementing Practical Reasoning Agents

� Let’s make the algorithm more formal:
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Deliberation
� How does an agent deliberate?

� begin by trying to understand what the options
available to you are

� choose between them, and commit to some
� Chosen options are then intentions
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Deliberation
� The deliberate function can be decomposed into 
two distinct functional components:
� option generation
in which the agent generates a set of possible 
alternatives;
Represent option generation via a function, options, 
which takes the agent’s current beliefs and current 
intentions, and from them determines a set of options 
(= desires)

� filtering
in which the agent chooses between competing 
alternatives, and commits to achieving them.
In order to select between competing options, an agent 
uses a filter function.
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Deliberation
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Commitment Strategies
“Some time in the not-so-distant future, you are having trouble with your new 

household robot. You say “Willie, bring me a beer.” The robot replies “OK boss.” Twenty minutes later, you screech “Willie, why didn’t you bring me 
that beer?” It answers “Well, I intended to get you the beer, but I decided to 
do something else.” Miffed, you send the wise guy back to the manufacturer, complaining about a lack of commitment. After retrofitting, Willie is returned, 
marked “Model C: The Committed Assistant.” Again, you ask Willie to bring you a beer. Again, it accedes, replying “Sure thing.” Then you ask: “What 
kind of beer did you buy?” It answers: “Genessee.” You say “Never mind.”
One minute later, Willie trundles over with a Genessee in its gripper. This time, you angrily return Willie for overcommitment. After still more tinkering, 
the manufacturer sends Willie back, promising no more problems with its commitments. So, being a somewhat trusting customer, you accept the 
rascal back into your household, but as a test, you ask it to bring you your 
last beer. Willie again accedes, saying “Yes, Sir.” (Its attitude problem seems to have been fixed.) The robot gets the beer and starts towards you. As it 
approaches, it lifts its arm, wheels around, deliberately smashes the bottle, and trundles off. Back at the plant, when interrogated by customer service as 
to why it had abandoned its commitments, the robot replies that according to 
its specifications, it kept its commitments as long as required —commitments must be dropped when fulfilled or impossible to achieve. By 
smashing the bottle, the commitment became unachievable.”
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Commitment Strategies
� The following commitment strategies are commonly 
discussed in the literature of rational agents:
� Blind commitment
A blindly committed agent will continue to maintain an 
intention until it believes the intention has actually been 
achieved. Blind commitment is also sometimes referred to 
as fanatical commitment.

� Single-minded commitment
A single-minded agent will continue to maintain an intention 
until it believes that either the intention has been achieved, 
or else that it is no longer possible to achieve the intention.

� Open-minded commitment
An open-minded agent will maintain an intention as long as it 
is still believed possible.
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Commitment Strategies
� An agent has commitment both to ends (i.e.,

the wishes to bring about), and means (i.e., 
the mechanism via which the agent wishes to 
achieve the state of affairs)

� Currently, our agent control loop is 
overcommitted, both to means and ends
Modification: replan if ever a plan goes wrong

4-35 4-36

Commitment Strategies
� Still overcommitted to intentions: Never stops 

to consider whether or not its intentions are 
appropriate

� Modification: stop to determine whether 
intentions have succeeded or whether they 
are impossible:
(Single-minded commitment)
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Intention Reconsideration
� Our agent gets to reconsider its intentions once 

every time around the outer control loop, i.e., 
when:
� it has completely executed a plan to achieve its 
current intentions; or

� it believes it has achieved its current intentions; or
� it believes its current intentions are no longer 
possible.

� This is limited in the way that it permits an agent 
to reconsider its intentions

� Modification: Reconsider intentions after 
executing every action

4-39 4-40

Intention Reconsideration
� But intention reconsideration is costly!
A dilemma:
� an agent that does not stop to reconsider its intentions 
sufficiently often will continue attempting to achieve its 
intentions even after it is clear that they cannot be 
achieved, or that there is no longer any reason for 
achieving them

� an agent that constantly reconsiders its attentions may 
spend insufficient time actually working to achieve them, 
and hence runs the risk of never actually achieving them

� Solution: incorporate an explicit meta-level control
component, that decides whether or not to 
reconsider

4-41 4-42

Possible Interactions
� The possible interactions between meta-level 

control and deliberation are:
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Intention Reconsideration
� In situation (1), the agent did not choose to deliberate, and as

consequence, did not choose to change intentions. Moreover, if it 
had chosen to deliberate, it would not have changed intentions. In 
this situation, the reconsider(…) function is behaving optimally.

� In situation (2), the agent did not choose to deliberate, but if it had 
done so, it would have changed intentions. In this situation, the 
reconsider(…) function is not behaving optimally.

� In situation (3), the agent chose to deliberate, but did not change 
intentions. In this situation, the reconsider(…) function is not 
behaving optimally.

� In situation (4), the agent chose to deliberate, and did change 
intentions. In this situation, the reconsider(…) function is behaving 
optimally.

� An important assumption: cost of reconsider(…) is much less than 
the cost of the deliberation process itself.
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Optimal Intention Reconsideration
� Kinny and Georgeff’s experimentally 

investigated effectiveness of intention 
reconsideration strategies

� Two different types of reconsideration 
strategy were used:
� bold agents
never pause to reconsider intentions, and

� cautious agents
stop to reconsider after every action

� Dynamism in the environment is represented 
by the rate of world change, γ

4-45

Optimal Intention Reconsideration
� Results (not surprising):

� If γ is low (i.e., the environment does not change 
quickly), then bold agents do well compared to 
cautious ones. This is because cautious ones 
waste time reconsidering their commitments while 
bold agents are busy working towards — and 
achieving — their intentions.

� If γ is high (i.e., the environment changes 
frequently), then cautious agents tend to 
outperform bold agents. This is because they are 
able to recognize when intentions are doomed, 
and also to take advantage of serendipitous 
situations and new opportunities when they arise.
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BDI Theory and Practice
� We now consider the semantics of BDI 
architectures: to what extent does a BDI agent 
satisfy a theory of agency

� In order to give a semantics to BDI architectures, 
Rao & Georgeff have developed BDI logics: non-
classical logics with modal connectives for 
representing beliefs, desires, and intentions

� The ‘basic BDI logic’ of Rao and Georgeff is a 
quantified extension of the expressive branching 
time logic CTL*

� Underlying semantic structure is a labeled branching 
time framework
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BDI Logic
� From classical logic: ∧, �, ¬, …
� The CTL* path quantifiers:

� Aφ ‘on all paths, φ’
� Eφ ‘on some paths, φ’

� The BDI connectives:
� (Bel i φ)  i believes φ
� (Des i φ)  i desires φ
� (Int i φ)  i intends φ

4-48

BDI Logic
� Semantics of BDI components are given via 

accessibility relations over ‘worlds’, where 
each world is itself a branching time structure

� Properties required of accessibility relations 
ensure belief logic KD45, desire logic KD, 
intention logic KD
(Plus interrelationships. . . )
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Axioms of KD45
� (1) Bel(p→ q) → (Bel p → Bel q) (K) 
If you believe that p implies q then if you believe p then 
you believe q

� (2) Bel p → ¬Bel ¬p (D) 
This is the consistency axiom, stating that if you 
believe p then you do not believe that p is false

� (3) Bel p → Bel Bel p (4) 
If you believe p then you believe that you believe p
� (4) ¬Bel p → Bel ¬Bel p (5) 
If you do not believe p then you believe that you do not 
believe that p is true
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Axioms of KD45
It also entails the two inference rules of modus ponens
and necessitation: 

� (5) if p, and p → q,  then q (MP) 
� (6) if p is a theorem of KD45 then so is Bel p  

(Nec) 
This last rule just states that you believe all theorems 
implied by the logic
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CTL Temporal Logic
(from David Garlan’s slides, CMU)
� Branching time logic views a computation as 

a (possibly infinite) tree or DAG of states 
connected by atomic events

� At each state the outgoing arcs represent the 
actions leading to the possible next states in 
some execution

� Example:
P = (a → P) ∏ (b → P)

a b

a a bb
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CTL* Notation
� Variant of branching time logic that we look at 

is called CTL*, for Computational Tree Logic 
(star)

� In this logic
� A = "for every path“
� E = "there exists a path“
� G = “globally” (similar to �)
� F = “future” (similar to ◊)
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Paths versus States
� A and E refer to paths

� A requires that all paths have some property
� E requires that at least some path has the 
property

� G and F refer to states on a path
� G requires that all states on the given path have 
some property

� F requires that at least one state on the path has 
the property
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CTL* Examples
� AG p

� For every computation (i.e., path from the root), in 
every state, p is true

� Hence, means the same as �p
� EG p

� There exists a computation (path) for which p is 
always true
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CTL* Examples continued
� AF p

� For every path, eventually state p is true
� Hence, means the same as ◊p
� Therefore, p is inevitable

� EF p
� There is some path for which p is eventually true
� I.e., p is “reachable”
� Therefore, p will hold potentially

4-56

Some Useful CTL* Equalities
� From linear temporal logic:

�P ≡ ~ ◊ ~P
◊P ≡ ~ � ~P

� In CTL* we can say:
AG p ≡ ~ EF ~p
EG p ≡ ~ AF ~p

� We can rewrite AG p ≡ ~ EF ~p as
EF p ≡ ~AG ~p
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BDI Logic
� Let us now look at some possible axioms of 

BDI logic, and see to what extent the BDI 
architecture could be said to satisfy these 
axioms

� In what follows, let
� α be an O-formula, i.e., one which contains no 
positive occurrences of A

� φ be an arbitrary formula
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BDI Logic
� Belief goal compatibility:

(Des α) → (Bel α)
States that if the agent has a goal to optionally 
achieve something, this thing must be an option.
This axiom is operationalized in the function 
options: an option should not be produced if it is 
not believed possible.

� Goal-intention compatibility:
(Int α) → (Des α)

States that having an intention to optionally 
achieve something implies having it as a goal (i.e., 
there are no intentions that are not goals).
Operationalized in the deliberate function.
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BDI Logic
� Volitional commitment:

(Int does(a)) → does(a)
If you intend to perform some action a next, then 
you do a next.
Operationalized in the execute function.

� Awareness of goals & intentions:
(Des φ) → (Bel (Des φ))
(Int φ) → (Bel (Int φ))

Requires that new intentions and goals be posted 
as events.
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BDI Logic
� No unconscious actions:

done(a) → Bel(done(a))
If an agent does some action, then it is aware that 
it has done the action.
Operationalized in the execute function.
A stronger requirement would be for the success 
or failure of the action to be posted.

� No infinite deferral:
(Int φ) → A◊(¬(Int φ))

An agent will eventually either act for an intention, 
or else drop it.
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Implemented BDI Agents: IRMA
� IRMA – Intelligent Resource-bounded Machine 
Architecture – Bratman, Israel, Pollack

� IRMA has four key symbolic data structures:
� a plan library
� explicit representations of

� beliefs: information available to the agent — may be 
represented symbolically, but may be simple variables

� desires: those things the agent would like to make true 
— think of desires as tasks that the agent has been 
allocated; in humans, not necessarily logically 
consistent, but our agents will be! (goals)

� intentions: desires that the agent has chosen and 
committed to
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IRMA
� Additionally, the architecture has:

� a reasoner for reasoning about the world; an 
inference engine

� a means-ends analyzer determines which plans 
might be used to achieve intentions

� an opportunity analyzer monitors the environment, 
and as a result of changes, generates new 
options

� a filtering process determines which options are 
compatible with current intentions

� a deliberation process responsible for deciding 
upon the ‘best’ intentions to adopt

4-63

IRMA

4-64

Implemented BDI Agents: PRS
� Another BDI-based agent architecture: the PRS –
Procedural Reasoning System (Georgeff, Lansky)

� In the PRS, each agent is equipped with a plan 
library, representing that agent’s procedural 
knowledge: knowledge about the mechanisms that 
can be used by the agent in order to realize its 
intentions

� The options available to an agent are directly 
determined by the plans an agent has: an agent with 
no plans has no options

� In addition, PRS agents have explicit representations 
of beliefs, desires, and intentions, as above
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PRS

4-66

HOMER – An agent that plans
� Vere & Bickmore developed HOMER: a simulated 
robot submarine, in a two-dimensional ‘Seaworld’

� HOMER takes instructions from a user in a subset of 
English with about an 800 word vocabulary

� HOMER can plan how to achieve its instructions, 
(which usually relate to collecting and moving items 
around the Seaworld), and can then execute its plans, 
modifying them as required during execution

� HOMER has a limited episodic memory, and using 
this, is able to answer questions about its past 
experiences
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Homer

4-68

Dialogues with HOMER

4-69

Dialogues with Homer

4-70

Comparison with SHRDLU
� The dialog that was used as a SHRDLU demo:

Person: PICK UP A BIG RED BLOCK. 
Computer: OK. (does it) 
Person: GRASP THE PYRAMID. 
Computer: I DON'T UNDERSTAND WHICH PYRAMID YOU MEAN. 
Person: FIND A BLOCK WHICH IS TALLER THAN THE ONE YOU ARE HOLDING AND PUT IT 

INTO THE BOX. 
Computer: BY "IT", I ASSUME YOU MEAN THE BLOCK WHICH IS TALLER THAN THE ONE I AM 

HOLDING. 
Computer: OK. (does it) 
Person: WHAT DOES THE BOX CONTAIN? 
Computer: THE BLUE PYRAMID AND THE BLUE BLOCK. 
Person: WHAT IS THE PYRAMID SUPPORTED BY? 
Computer: THE BOX. 
Person: HOW MANY BLOCKS ARE NOT IN THE BOX? 
Computer: FOUR OF THEM. 
Person: IS AT LEAST ONE OF THEM NARROWER THAN THE ONE WHICH I TOLD YOU TO PICK 

UP? 
Computer: YES, THE RED CUBE. 
Person: IS IT SUPPORTED? 
Computer: YES, BY THE TABLE. 
Person: CAN THE TABLE PICK UP BLOCKS? 
Computer: NO. 
Person: CAN A PYRAMID BE SUPPORTED BY A BLOCK? 
Computer: YES. 
Person: CAN A PYRAMID SUPPORT A PYRAMID? 
Computer: I DON'T KNOW.
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SHRDLU Dialog
Person: STACK UP TWO PYRAMIDS. 
Computer: I CAN'T. 
Person: WILL YOU PLEASE STACK UP BOTH OF THE RED BLOCKS AND EITHER A GREEN CUBE OR A PYRAMID? 
Computer: OK. (does it) 
Person: WHICH CUBE IS SITTING ON THE TABLE? 
Computer: THE LARGE GREEN ONE WHICH SUPPORTS THE RED PYRAMID. 
Person: IS THERE A LARGE BLOCK BEHIND A PYRAMID? 
Computer: YES, THREE OF THEM: A LARGE RED ONE, A LARGE GREEN CUBE, AND THE BLUE ONE. 
Person: PUT A SMALL ONE ONTO THE GREEN CUBE WHICH SUPPORTS A PYRAMID. 
Computer: OK. (does it) 
Person: PUT THE LITTLEST PYRAMID ON TOP OF IT. 
Computer: OK. (does it) 
Person: DOES THE SHORTEST THING THE TALLEST PYRAMID'S SUPPORT SUPPORTS SUPPORT ANYTHING 

GREEN? 
Computer: YES, THE GREEN PYRAMID. 
Person: WHAT COLOR IS IT? 
Computer: BY "IT", I ASSUME YOU MEAN THE SHORTEST THING THE TALLEST PYRAMID'S SUPPORT SUPPORTS. 
Computer: RED 
Person: HOW MANY THINGS ARE ON TOP OF GREEN CUBES? 
Computer: I'M NOT SURE WHAT YOU MEAN BY "ON TOP OF "IN THE PHRASE "ON TOP OF GREEN CUBES " . 
DO YOU MEAN: 

1 - DIRECTLY ON THE SURFACE 
2 - ANWHERE ON TOP OF ? 

Person: 2 
Computer: THREE OF THEM. 
Person: HAD YOU TOUCHED ANY PYRAMID BEFORE YOU PUT THE GREEN ONE ON THE LITTLE CUBE? 
Computer: YES, THE GREEN ONE. 
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SHRDLU Dialog
Person: WHEN DID YOU PICK IT UP? 
Computer: WHILE I WAS STACKING UP THE RED CUBE, A LARGE RED BLOCK AND A LARGE GREEN CUBE. 
Person: WHY? 
Computer: TO GET RID OF IT. 
Person: WHY DID YOU DO THAT? 
Computer: TO CLEAN OFF THE RED CUBE. 
Person: WHY DID YOU CLEAR OFF THAT CUBE? 
Computer: TO PUT IT ON A LARGE GREEN CUBE. 
Person: WHY DID YOU DO THAT? 
Computer: TO STACK UP THE RED CUBE , A LARGE RED BLOCK AND A LARGE GREEN CUBE. 
Person: WHY DID YOU DO THAT? 
Computer: BECAUSE YOU ASKED ME TO. 
Person: HOW DID YOU DO IT? 
Computer: BY PUTTING A LARGE RED BLOCK ON THE TABLE ; THEN LETTING GO OF IT ; THEN PUTTING A LARGE 

GREEN CUBE ON IT ; THEN LETTING GO OF THAT CUBE ; THEN PUTTING THE RED CUBE ON THAT CUBE; 
THEN LETTING GO OF THAT CUBE. 

Person: HOW MANY OBJECTS DID YOU TOUCH WHILE YOU WERE DOING IT? 
Computer: FOUR OF THEM. 
Person: WHAT DID THE RED CUBE SUPPORT BEFORE YOU STARTED TO CLEAN IT OFF? 
Computer: THE GREEN PYRAMID. 
Person: THERE WERE FIVE BLOCKS TO THE LEFT OF THE BOX THEN. 
Computer: NO, ONLY FOUR OF THEM: THE RED CUBE, TWO LARGE GREEN CUBES AND A LARGE RED BLOCK. 
Person: PUT THE BLUE PYRAMID ON THE BLOCK IN THE BOX. 
Computer: OK. (does it) 
Person: IS THERE ANYTHING WHICH IS BIGGER THAN EVERY PYRAMID BUT IS NOT AS WIDE AS THE THING THAT SUPPORTS IT? 
Computer: YES, THE BLUE BLOCK. 
Person: DOES A STEEPLE 
Computer interrupting: SORRY, I DON'T KNOW THE WORD "STEEPLE". 
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Person: A "STEEPLE" IS A STACK WHICH CONTAINS TWO GREEN CUBES 

AND A PYRAMID. 
Computer: I UNDERSTAND. 
Person: ARE THERE ANY STEEPLES NOW? 
Computer: NO. 
Person: BUILD ONE. 
Computer: OK. (does it) 
Person: CALL THE BIGGEST BLOCK "SUPERBLOCK". 
Computer: OK. 
Person: HAVE YOU PICKED SUPERBLOCK UP SINCE WE BEGAN? 
Computer: YES. 
Person: WHY DID YOU DROP IT? 
Computer: BY "IT", I ASSUME YOU MEAN THE SUPERBLOCK. 
I CAN'T EXPLAIN A NON-EXISTENT EVENT. 
Person: IS THERE ANYTHING TO THE RIGHT OF THE RED PYRAMID? 
Computer: YES, FOUR THINGS: THE BOX , THE RED CUBE, THE BLUE 

PYRAMID AND THE BLOCK NAMED SUPERBLOCK 
Person: THANK YOU. 
Computer: YOU'RE WELCOME!


