LECTURE 3: DEDUCTIVE REASONING AGENTS

An Introduction to Multiagent Systems

http:/ /www.cs c.liv. ac.uk/ "mjw/pu bs/ima s/

Lecture 3 An Introduction to Multiagent Systems

1 Agent Architectures

¢ Introduce the idea of an agent as a computer system capable of
flexible autonomous action.

e Briefly discuss the issues one needs to address in order to build
agent-based systems.

¢ Three types of agent architecture:

— symbolic/logical;
— reactive;
— hybrid.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 1

¢ We want to build agents, that enjoy the properties of autonomy,
reactiveness, pro-activeness, and social ability that we talked
about earlier.

* This is the area of agent architectures.

* Maes defines an agent architecture as:

‘[A] particular methodology for building [agents]. It specifies how ... the agent can be decomposed
into the construction of a set of component modules and how these modules should be made to
interact. The total set of modules and their interactions has to provide an answer to the question of
how the sensor data and the current internal state of the agent determine the actions ... and future
internal state of the agent. An architecture encompasses techniques and algorithms that support this
methodology.

e Kaelbling considers an agent architecture to be:

‘[A] specific collection of software (or hardware) modules, typically designated by boxes with arrows
indicating the data and control flow among the modules. A more abstract view of an architecture is as
a general methodology for designing particular modular decompositions for particular tasks.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 2

Lecture 3 An Introduction to Multiagent Systems

e Originally (1956-1985), pretty much all agents designed within Al
were symbolic reasoning agents.

Its purest expression proposes that agents use explicit logical
reasoning in order to decide what to do.

¢ Problems with symbolic reasoning led to a reaction against this
— the so-called reactive agents movement, 1985—present.

® From 1990-present, a number of alternatives proposed: hybrid
architectures, which attempt to combine the best of reasoning
and reactive architectures.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 3

2 Symbolic Reasoning Agents

¢ The classical approach to building agents is to view them as a
particular type of knowledge-based system, and bring all the
associated (discredited?!) methodologies of such systems to
bear.

¢ This paradigm is known as symbolic Al.

¢ We define a deliberative agent or agent architecture to be one
that:

— contains an explicitly represented, symbolic model of the
world;

— makes decisions (for example about what actions to perform)
via symbolic reasoning.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 4

Lecture 3 An Introduction to Multiagent Systems

e |[f we aim to build an agent in this way, there two key problems to
be solved:

1. The transduction problem:

that of translating the real world into an accurate, adequate
symbolic description, in time for that description to be useful.

. vision, speech understanding, learning.
2. The representation/reasoning problem:

that of how to symbolically represent information about
complex real-world entities and processes, and how to get
agents to reason with this information in time for the results
to be useful.

... knowledge representation, automated reasoning,
automatic planning.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 5

® Most researchers accept that neither problem is anywhere near
solved.

e Underlying problem lies with the complexity of symbol
manipulation algorithms in general: many (most) search-based
symbol manipulation algorithms of interest are highly intractable.

e Because of these problems, some researchers have looked to
alternative techniques for building agents; we look at these later.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 6

Lecture 3 An Introduction to Multiagent Systems

2.1 Deductive Reasoning Agents

® How can an agent decide what to do using theorem proving?

¢ Basic idea is to use logic to encode a theory stating the best
action to perform in any given situation.

® | et:

— p be this theory (typically a set of rules);

— A be a logical database that describes the current state of the
world;

— Ac be the set of actions the agent can perform;
— A, ¢ mean that ¢ can be proved from A using p.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 7

[* try to find an action explicitly prescribed */
for each a € Acdo
if A+, Do(a) then
return a
end-if
end-for
[* try to find an action not excluded */
for each a € Acdo
if A/, -Do(a) then
return a
end-if
end-for
return null /* no action found */

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 8

Lecture 3 An Introduction to Multiagent Systems

e An example: The Vacuum World.
Goal is for the robot to clear up all dirt.

#o 1 #- 1
C) J
o sF o &
O A @)
©n. o a@an. @D
(0,0 1,9 (2,0

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 9

® Use 3 domain predicates in this exercise:

In(x,y) agentis at (X,y)
Dirt(x,y) there is dirt at (x,y)
Facing(d) the agent is facing direction d

® Possible actions:
Ac = {turn, forward, suck}

NB: turn means “turn right”.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 10

Lecture 3 An Introduction to Multiagent Systems

¢ Rules p for determining what to do:

In(0, 0) A Facing(north) A =Dirt(0,0) — Do(forward)

In(0, 1) A Facing(north) A =Dirt(0,1) — Do(forward)

In(0,2) A Facing(north) A =Dirt(0,2) — Do(turn)
In(0,2) A Facing(east) — Do(forward)

e .. and soon!

e Using these rules (+ other obvious ones), starting at (0,0) the
robot will clear up dirt.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 11

® Problems:

—how to convert video camera input to Dirt(0, 1)?

— decision making assumes a static environment: calculative
rationality.

— decision making using first-order logic is undecidable!

¢ Even where we use propositional logic, decision making in the
worst case means solving co-NP-complete problems.

(NB: co-NP-complete = bad news!)
¢ Typical solutions:

—weaken the logic;
— use symbolic, non-logical representations;
— shift the emphasis of reasoning from run time to design time.

¢ \We now look at some examples of these approaches.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 12

Lecture 3 An Introduction to Multiagent Systems

2.2 AGENTO and PLACA

e Much of the interest in agents from the Al community has arisen
from Shoham’s notion of agent oriented programming (AOP).

e AOP a ‘new programming paradigm, based on a societal view of
computation’.

e The key idea that informs AOP is that of directly programming
agents in terms of intentional notions like belief, commitment,
and intention.

e The motivation behind such a proposal is that, as we humans
use the intentional stance as an abstraction mechanism for
representing the properties of complex systems.

In the same way that we use the intentional stance to describe
humans, it might be useful to use the intentional stance to
program machines.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 13

e Shoham suggested that a complete AOP system will have 3
components:

— a logic for specifying agents and describing their mental
states;

— an interpreted programming language for programming
agents;

— an ‘agentification’ process, for converting ‘neutral applications’
(e.g., databases) into agents.

Results only reported on first two components.

Relationship between logic and programming language is
semantics.

e We will skip over the logic(!), and consider the first AOP
language, AGENTO.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 14

Lecture 3 An Introduction to Multiagent Systems

® AGENTO is implemented as an extension to LISP.
Each agent in AGENTO has 4 components:

— a set of capabilities (things the agent can do);

— a set of initial beliefs;

— a set of initial commitments (things the agent will do); and
— a set of commitment rules.

® The key component, which determines how the agent acts, is the
commitment rule set.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 15

e Each commitment rule contains

— a message condition;
— a mental condition; and
— an action.

® On each ‘agent cycle’ ...

The message condition is matched against the messages the
agent has received,;

The mental condition is matched against the beliefs of the agent.

If the rule fires, then the agent becomes committed to the action
(the action gets added to the agents commitment set).

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 16

Lecture 3 An Introduction to Multiagent Systems

e Actions may be

— private:

an internally executed computation, or
— communicative:

sending messages.

® Messages are constrained to be one of three types:

— “requests” to commit to action;
—“unrequests” to refrain from actions;
— “informs” which pass on information.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 17

]

|
|
|
[\ 1
|
|

beliefs e b

commitments [—|-

abilities - -

— ™~
| —’v
update _,—”l’
beliefs |
|
| _ =
A==
update ==
commitments 1----
S —
[EXECUTE |
< S~
N ~<
N ~<_
N -~
N \\

;/

iNnternal actions

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/

messages out

18

Lecture 3

e A commitment rule:

COMMIT(
(agent, REQUEST, DO(time, action)
), & msg condition
(B,
[now, Friend agent] AND
CAN(self, action) AND
NOT [time, CMT(self, anyaction)]
), :; mental condition
self,
DO(time, action)

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/

An Introduction to Multiagent Systems

19

¢ This rule may be paraphrased as follows:

if | receive a message from agent which requests me to do action
at time, and | believe that:

—agent is currently a friend,;
— | can do the action;
— at time, | am not committed to doing any other action,

then commit to doing action at time.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 20

Lecture 3 An Introduction to Multiagent Systems

® AGENTO provides support for multiple agents to cooperate and
communicate, and provides basic provision for debugging. ..

e ... itis, however, a prototype, that was designed to illustrate
some principles, rather than be a production language.

e A more refined implementation was developed by Thomas, for
her 1993 doctoral thesis.

¢ Her Planning Communicating Agents (PLACA) language was
intended to address one severe drawback to AGENTO: the
inability of agents to plan, and communicate requests for action
via high-level goals.

e Agents in PLACA are programmed in much the same way as in
AGENTO, in terms of mental change rules.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 21

e An example mental change rule:

(((sel f 7agent REQUES® (?t (xero xed ?x)))
(AND (CAN-ACHIEVE (?t xerox ed ?x)))

(NOT (BEL (*now * shelv ing)))

(NOT (BEL (*now * (vip ?agent))))
((ADOPT (INT END (5pm (xerox ed 7?x)))))
((?ag ent self INFORM

(*now* (INTEND (5pm (xero xed ?x)))))))

® Paraphrased:

if someone asks you to xerox something, and you can, and you
don't believe that they're a VIP, or that you're supposed to be
shelving books, then

— adopt the intention to xerox it by 5pm, and
— inform them of your newly adopted intention.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 22

Lecture 3 An Introduction to Multiagent Systems

2.3 Concurrent METATEM

e Concurrent METATEM is a multi-agent language in which each
agent is programmed by giving it a temporal logic specification of
the behaviour it should exhibit.

® These specifications are executed directly in order to generate
the behaviour of the agent.

e Temporal logic is classical logic augmented by modal operators
for describing how the truth of propositions changes over time.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 23

e For example. ..
[limportant(agents)

means “it is now, and will always be true that agents are
important”
oimportant(ConcurrentMetateM)

means “sometime in the future, ConcurrentMetateM will be
important”
¢ important(Prolog)

means “sometime in the past it was true that Prolog was
important”
(—friends(us)) U apologise(you)

means “we are not friends until you apologise”
(Oapologise(you)
means “tomorrow (in the next state), you apologise”.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 24

Lecture 3 An Introduction to Multiagent Systems

* MetateM is a framework for directly executing temporal logic
specifications.

® The root of the MetateM concept is Gabbay’s separation
theorem:

Any arbitrary temporal logic formula can be rewritten in a
logically equivalent past = future form.

¢ This past = future form can be used as execution rules.
e A MetateM program is a set of such rules.

e Execution proceeds by a process of continually matching rules
against a “history”, and firing those rules whose antecedents are
satisfied.

¢ The instantiated future-time consequents become commitments
which must subsequently be satisfied.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 25

e Execution is thus is process of iteratively generating a model for
the formula made up of the program rules.

¢ The future-time parts of instantiated rules represent constraints
on this model.

e An example MetateM program: the resource controller. . .
V X ask(x) = ¢ give(x)
V X,y give(x) A give(y) = (x=y)
¢ First rule ensure that an ‘ask’ is eventually followed by a ‘give’.

e Second rule ensures that only one ‘give’ is ever performed at any
one time.

® There are algorithms for executing MetateM programs that
appear to give reasonable performance.

® There is also separated normal form.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 26

Lecture 3 An Introduction to Multiagent Systems

e ConcurrentMetateM provides an operational framework through
which societies of MetateM processes can operate and
communicate.

e |t is based on a new model for concurrency in executable logics:
the notion of executing a logical specification to generate
individual agent behaviour.

e A ConcurrentMetateM system contains a number of agents
(objects), each object has 3 attributes:

—a name;
— an interface;
— a MetateM program.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 27

® An object’s interface contains two sets:

— environment predicates — these correspond to messages the
object will accept;

— component predicates — correspond to messages the object
may send.

¢ For example, a ‘stack’ object’s interface:
stack(pop, push)[popped, stackfull]
{pop, push} = environment preds
{popped, stackfull} = component preds

e |[f an agent receives a message headed by an environment
predicate, it accepts it.

e |[f an object satisfies a commitment corresponding to a
component predicate, it broadcasts it.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 28

Lecture 3 An Introduction to Multiagent Systems

¢ To illustrate the language Concurrent MetateM in more detail,
here are some example programs. ..

e Snow White has some sweets (resources), which she will give to
the Dwarves (resource consumers).

e She will only give to one dwarf at a time.
e She will always eventually give to a dwarf that asks.

e Here is Snow White, written in Concurrent MetateM:
Snow-White(ask)[give]:
ask(x) = ¢ give(x)
give(x) A give(y) = (X=Y)

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 29

¢ The dwarf ‘eager’ asks for a sweet initially, and then whenever he
has just received one, asks again.

eager(give)[ask]:
start = ask(eager)
give(eager) = ask(eager)

e Some dwarves are even less polite: ‘greedy’ just asks every time.

greedy(give)[ask]:
start = [] ask(greedy)

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 30

Lecture 3 An Introduction to Multiagent Systems

¢ Fortunately, some have better manners; ‘courteous’ only asks
when ‘eager’ and ‘greedy’ have eaten.

courteous(give)[ask]:

((— ask(courteous) S give(eager)) A

(— ask(courteous) S give(greedy))) =
ask(courteous)

e And finally, ‘shy’ will only ask for a sweet when no-one else has
just asked.

shy(give)[askK]:
start = ¢ ask(shy)
ask(x) = - ask(shy)
give(shy) = ¢ ask(shy)

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 31

® Summary:

— an(other) experimental language;
— very nice underlying theory. ..

— ... but unfortunately, lacks many desirable features — could
not be used in current state to implement ‘full’ system.

— currently prototype only, full version on the way!

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 32

Lecture 3 An Introduction to Multiagent Systems

2.4 Planning agents

¢ Since the early 1970s, the Al planning community has been
closely concerned with the design of artificial agents.

¢ Planning is essentially automatic programming: the design of a
course of action that will achieve some desired goal.

¢ Within the symbolic Al community, it has long been assumed that
some form of Al planning system will be a central component of
any artificial agent.

¢ Building largely on the early work of Fikes & Nilsson, many
planning algorithms have been proposed, and the theory of
planning has been well-developed.

e But in the mid 1980s, Chapman established some theoretical
results which indicate that Al planners will ultimately turn out to
be unusable in any time-constrained system.

http:// www.csc.l iv.ac.uk/ "mjw/pubs /imas/ 33

