Programming in Oracle
with PL/SQL

Why/When PL/SQL

+ PL/SQL allows SQL to be combined with

programming language constructs (e.g., if/else,
loops, function declarations)

* This is generally "lighter-weight" than

connecting with JDBC, since it is run within the
database

+ PL/SQL functions can even be called from a

queryll

PL/SQL Blocks

* There are two types of block structures for
PL/SQL.

* Anonymous blocks: have no name

- can be written and executed immediately in SQLPLUS
- can be used in a trigger

+ Named PL/SQL blocks:

- functions

- procedures

+ Important: Always put a new line with only a/ at
the end of a block, so that Oracle will compile it. ,

Block Structure for Anonymous
PL75QL Blocks

DECLARE (optional)
Declare PL/SQL ob jects to be used
within this block

BEGIN (mandatory)

Define the executable statements

EXCEPTION (optional)

Define the actions that take place if
an error arises

END: (mandatory)
/

Declaring PL/SQL Variables

Syntax

identifier [CONSTANT] datatype [NOT NULL]
[=] DEFAULT expr];

Examples

Decla re
bir thday DATE
age NUMNBER(2) NO T NUWL: = 27;
name VARCHAR2(13): = 'L evi}
magi ¢ CONSENT NUMBR :=77;
val id BOOLEN NOT NULL : = TRUE;

Declaring Variables with the

E Attribute
Examples
sname Sailo rs. snameXdYPE;
fav _boat VARCHR2(30);

my_fa v_boat fav _boat%TYPE : = 'Pint a';

<Course name> <Lesson number>-

Creating a PL/SQL Record

Declare variables to store the name, id, age
and rating of a new sailor.

Example

TYPE sailor_ record_t ypel S RECORD

(sname VARCHAR2(10,
sid VARCHAR2(9),
age NUMBE(3),
rat ing N UMBERQ3));

sai lor_record sailo r_re cord_ type;

The %ROWTYPE Attribute

Declare a variable to store the same
information about a reservation as it is
stored in the Reserves table.

reserves_record reservesYRONYPE;

SELECT Statements in PL/SQL

DECLARE
v_sname VARCHAR2(10);
v_rating NUVBER(3);
BEG N
SELECT snane, rating
INTO v_snane, v_rating
FROM Sailors
WHERE sid = '112';

iEND;

+ INTO clause is required.
+ Query must return exactly one row.

+ Otherwise,a NO_DATA_FOUND or
TOO_MANY_ROWS exception is thrown

Suppose we have the following
table:

create tabl e nyl og(
who var char 2(30),
| ogon_num nunber

+ Want to keep track of how many times
someone logged on

* When running, increment logon_num, if
user is already in table. Otherwise,
insert user into table

Solution

decl are
cnt NUMBER;
begi n
sel ect count (*)
into cnt
fromnyl og
where who = user;

if cnt > 0 then

updat e nmyl og

set |l ogon_num = | ogon_num + 1
where who = user;

el se

insert into nylog val ues(user, 1);
end if;
commit;
end;
/

Some Notes
We used commit at the end, since the actions
taken should form a "single unit"

Can also use rollback if we encounter an
exception

PL/SQL does not commit by default

Note syntax of IF:

- IF condition THEN MISQILKJS(,;TABI\EJEE!!!
- ELSIF ...

- ELSE ...

- ENDIF

<Course name> <Lesson number>-

IF-THEN-ELSIF Statements

IF rating > 7 THEN

v_message := 'You are great';
ELSIF rating >= 5 THEN
v_nessage := 'Not bad';
ELSE
v_nessage := 'Pretty bad';

END I F;

SQL Cursor Attributes

Using SQL cursor attributes, you can test
the outcome of your SQL statements.

SQLYROWCOUNT Number of rows affected by the
most recent SQL statement (an
integer value).

SQL%FOUND Boolean attribute that evaluates to
TRUE if the most recent SQL

statement affects one or more rows.

SQLYNOTFOUND Boolean attribute that evaluates to
TRUE if the most recent SQL

statement does not affect any rows.

SQL%SOPEN Always evaluates to FALSE because
PL/SQL closes implicit cursors

immediately after they are executed.

Solution (2)

begi n

updat e nyl og
set logon_num = | ogon_num + 1
where who = user;

if SQLY&ROWCOUNT = O then
insert into nylog val ues(user, 1);
end if;

Simple Loop (Similar to While Until)

create tabl e nunber_tabl e(
num NUVBER(10)
)

DECLARE
i nunber _t abl e. numaYPE : = 1;
BEG N
LOOP
I NSERT | NTO nunber _t abl e
VALUES(i);
i =0+ 1;
EXIT WHEN i > 10;
END LOOP;
END;

commt;
end;
/
15
FOR Loop
DECLARE
i nunber _t abl e. nun? YPE;
BEG N

FORi IN1..10 LOOP
I NSERT | NTO nunber _t abl e
VALUES(i);
END LOOP;
END;

WHILE Loo

ACCEPT hi gh PROWPT ' Enter a nunber: '

DECLARE
i nunber _t abl e. nun?aYPE: =1;
BEG N
WHI LE i <= &high LOOP
I NSERT | NTO nunber _t abl e
VALUES(i) ;
=0+ 1
END LOOP;
END;

<Course name> <Lesson number>-

8 Telnet - pita (= (0]

Lonnect Edit Teminal Help

With the Partitioning option

Jserver Release 8.1.6.8.8 - Production
SOL> @input

Enter a number: 7

old h: WHILE i <= Bhigh LOOP

new 4: WHILE i <= 7 LOOP

PL/SQL procedure successfully completed.

SOL> select = from number_table;

7 rous selected.

soL> i

Looping over results of a query
using an Explicit Cursor

Explicit Cursor Attributes

Obtain status information about a
cursor.

Attribute Type Description

%ISOPEN Boolean [Evaluates to TRUE if the cursor

is open.

%NOTFOUND | Boolean | Evaluates to TRUE if the most
recent fetch does not return arow.

%FOUND Boolean [Evaluates to TRUE if the most
recent fetch returns a row;

complement of %NOTFOUND

%ROWCOUNT | Number | Evaluates to the total number of
rows returned so far.

21

Printing Output

* You need to use a function in the
DBMS_OUTPUT package in order to print to
the output

* The output is actually buffered

+ If you want to see the output on the screen, you
must type the following (before starting):

- set serveroutput on format wrapped size 1000000

+ Then print using
- dbms_output. put_line(your_string):

- dbms_output.put(your_string).

23

Yes
No
DECLARE M OPEN [FETCH =>| CLOSE
Create a Open the Load the Test for Close the
cursor cursor current existing cursor
for a row into rows
query variables Return to
FETCH if
rows
found
20
Example
DECLARE
num nunber _t abl e. nun?a YPE;
cursor c is
sel ect * from nunber _tabl e;
BEG N
open c;
fetch ¢ into num
| oop
dbms_out put . put _| i ne(c%RONCOUNT | |
"-th Value: ' ||
num ;
fetch ¢ into num
exit when c%NOTFOUND;
end | oop;
close c;
end;
p2
Cursor Looping
DECLARE

numrow nunber _t abl e¥ROMYPE;
cursor ¢ is select * from nunber_table;

BEG N
for numrowin c loop -- opens and fetches

dbms_out put . put _| i ne(c%RONCOUNT | |
"-th Value: ' ||
num r ow. num ;
end | oop; -- closes
end;
/

24

<Course name> <Lesson number>-

Trapping Oracle Server Errors

* Reference the standard name in the
exception-handling routine.

+ Sample predefined exceptions:
- NO_DATA_FOUND
- TOO_MANY_ROWS
- ZERO_DIVIDE

* When handling an exception, consider
performing a rollback

25

DECLARE
numrow nunber _t abl e¥ROMYPE;
BEG N
select *
into numrow
from nunber _t abl e;
dbrs_out put . put _I i ne(1/ num_r ow. nunj ;

EXCEPTI ON
WHEN NO DATA FOUND THEN
dbrs_out put . put _line(' No data!');
WHEN TOO_MANY_ROAS THEN
dbrs_out put . put _l i ne(' Too nany!"');
WHEN OTHERS THEN
dbrs_out put . put _Il i ne(SQLERRM) ;
end;

26

User-Defined Exception

DECLARE
e_nunber1l EXCEPTI ON
cnt NUVBER;
BEG N
sel ect count (*)
into cnt
from nunber _t abl e;

IF cnt = 1 THEN RAI SE e_nunber1;
ELSE dbms_out put. put _l i ne(cnt);
END | F;

EXCEPTI ON
VWHEN e_nunber1 THEN
dbrs_out put . put _l i ne(' Count = 1');
end;

27

Functions and Procedures

+ Up until now, our code was in an
anonymous block

+ It was run immediately

+ Useful to put code in a function or
procedure so it can be called several
times

28

Creating Procedures

CREATE [OR REPLACE] PROCEDURE
procedur e_nane
[(paraneterl [npdel] datatypel,
paraneter2 [node2] datatype2,

I S| AS
PL/ SQL Bl ock;

29

Modes

* Modes:
- IN: procedure must be called with a value for the
parameter. Value cannot be changed

- OUT: procedure must be called with a variable for
the parameter. Changes to the parameter are seen by
the user (i.e., call by reference)

- IN OUT: value can be sent, and changes to the
parameter are seen by the user

- Default Mode is: IN

30

<Course name> <Lesson number>-

Example

create or replace procedure
num | ogged
(person I N nmyl og. who% YPE DEFAULT USER,
num QUT nyl og. | ogon_nunmd YPE)
IS
BEG N
sel ect | ogon_num
into num
from nyl og
where who = person;
nul | ;
END;
/

31

Errors in a Procedure

+ If there are errors in the procedure definition,
they will not be shown

To see the errors of a procedure called proc,
type

- SHOW ERRORS PROCEDURE proc

in the SQLPLUS prompt

For functions, type

- SHOW ERRORS FUNCTION fun_name

32

Calling a Procedure

decl are
howmany myl og. | ogon_nun?a YPE;
begi n
-- paraneters supplied by position
num | ogged(' SAM , howrany) ;
dbms_out put . put _I i ne(howrany) ;

-- paraneters supplied by nane

num | ogged(num => howrany) ;

dbms_out put . put _I i ne(howrany) ;
end;

/

33

Creating a Function

Almost exactly like creating a procedure,
but you supply a return type

CREATE [OR REPLACE] FUNCTI ON
function_nanme
[(paraneterl [npdel] datatypel,
paraneter2 [node2] datatype2,
0]
RETURN dat at ype
I S| AS
PL/ SQL Bl ock;

34

Calling a Function

You can call a function similarly to calling
a procedure, in a PL/SQL block

A function can also be called from a query,
if it only has IN parameters, and the
function does not execute
insert/delete/update statements

35

A Function

create or replace function
rati ng_nessage(rating | N NUMBER)

;\gt urn VARCHAR? NOTE THAT YOU
DON'T SPECIFY THE
BEG N SIZE

IF rating > 7 THEN
return 'You are great';
ELSIF rating >= 5 THEN
return 'Not bad';
ELSE
return 'Pretty bad';
END | F;
END;
/

36

<Course name> <Lesson number>-

8 Telnet - pita [=E]=]
Cornect Edi Teminal Help
SQL> select sname, rating from sailors;
SNAME RATING
Jim 10
John I3
Jack 2
SOL> select sname, rating, rating_message(rating) from sailors;
SHAHE RATING
RATING_HESSAGE(RATING)
Jim 10
You are great
John 6
Hot bad
Jack 2
Pretty bad
soL> i
37

Packages

Functions, Procedures, Variables can be put
together in a package

In a package, you can allow some of the
members to be "public" and some to be "private"

There are also many predefined Oracle
packages

Won't discuss packages in this course

38

<Course name> <Lesson number>-

