Concurrency Control

Transactions

- A transaction is a list of actions.

* The actions are reads (written R;(O)) and
writes (written W.(O)) of database objects.

Example:

Ty R(V), R(Y), W(V), W(C)

Schedules

* A schedule is a list of actions from a set of
transactions and the order in which 2 actions
of atransaction T appear in a schedule must
be the same as the order in which they
appear in T.

Example: T;: R(V) W(V) T, R(Y) W(Y)

St Rpy(V) Rep(Y) Wrp(Y) Wry(V) € VYes
Szt Wri(V) Rra(Y) Wra(Y)Rpy(V) - € No

Complete Schedules

+ For a schedule to be complete, each transaction
must either commit or abort

+ In this lecture we will assume that all
transactions commit

Example:
Ti:R(V) w W<
T, RY)W(Y) c

Serializable Schedules

+ A schedule is serial if the actions of the
different transactions are not interleaved; they
are executed one after another

+ A schedule is serializable if its effect is the
same as that of some serial schedule

* We usually only want to allow serializable
schedules o be performed. Why?

WR Conflicts and Dirty Reads

+ A WR conflict occurs when a transaction writes
an object which is subsequently read by another
transaction

+ A dirty read occurs when a transaction reads an
object that was written by a transaction that
has not yet committed. Why is this a problem?

Example:
TR(V) W(V) R(Y) W(Y) C
T, R(V) W(V) R(Y) W(Y) C

Which reads were dirty? 6

RW Conflicts and Unrepeatable Reads

+ A RW conflict occurs when a transaction reads
an object which is subsequently written by
another transaction

+ Suppose that T, reads an object A. Then,
before T, commits, T, writes A. The read that
T, did on A is unrepeatable. Why is this a
problem?

WW Conflicts and Overwriting
Uncommitted Data

- A WW conflict occurs when a transaction writes
an object which is subsequently written by
another transaction

* There can be a problem if T, overwrites the
value of the object X which has already been
changed by T,, before T, commits. Why?

Example: Example:

TR(V) W(V) RY)C TAWY) W) ¢

T, R(V) W(V) R(Y) W(Y) c T, W) W) c

Which reads were unrepeatable? 7 8

Conflict Serializable Schedules

+ Two schedules are conflict equivalent if

- they involve the same set of actions of the same
transactions and

- they order every pair of conflicting actions of two
committed transactions in the same way.
* A schedule is conflict serializable if it is
conflict equivalent to some serializable
schedule.

- Conflict serializable schedules are also
serializable.

Precedence Graph

* Given a schedule we can create a precedence
graph

* The graph has a node for each transaction

* There is an edge from T, to T, if there is a
conflict between T, and T, in which T, occurs
first

* The schedule is conflict serializable if and only
if there is no cycle in the precedence graphl!

Example

Which of the schedules are conflict serializable?

TEWE) WV) ¢
T, RY) c

TER(YV) W) C
T, RY) c

T w(y) ¢
T, R(V) R(Y) W@Z) €
T WWC

Serializable vs. Conflict
Serializable

Is the following schedule conflict serializable?

T, R(V) W(V) €
T, WV)C
T wW(v) €

Note that it is serializable! The writes of T, and
T; are called blind writes

View Serializable

+ Two schedules S; and S, are view equivalent if

- they involve the same set of actions of the same
transactions and

Example

Which of schedules are view serializable?

. - , , T R(V) W(v)C
- if T, reads the initial value of X in S, then it must also
read the initial value of X in S, and Ty W(v) <
- if T, reads the value of X written by T, in S, then it T3 W(V) C
must also read the value of X written by T in S, and
- For each data ob ject X, the transaction (if any) that]
performs the final write on X in S, must also perform T R(V) wv) ¢
the final write on X in S, T, W(V)C
* A schedule is view serializable if it is view Ts: R(V)C
equivalent to some serializable schedule. " “
Serializable vs. View Locks

Serializable

Is the following schedule view serializable?

T.: R(V)
T, W(VYW(Y)C

R(Y)C

Note that it is serializablel

We allow transactions to lock objects. Why?

A shared lock is acquired on X before reading
X. Many transactions can hold a shared lock on
X.

An exclusive lock is acquired on X before
writing X. A transaction can hold a shared lock
on X only if no other transaction holds any kind
of lock on X.

Ensuring Serializable Schedules

The following protocol ensures that only
serializable schedules are allowed:
2 Phase Locking (2PL):

1. Each transaction must get an S-lock (shared
lock) on an object before reading it

2. Each transaction must get an X-lock (exclusive
lock) on an object before writing it

3. Once a transaction releases a lock it cant
acquire any new locks

2PL implies Conflict
Serialibility
+ Every 2PL schedule is conflict serializable.

* Which of the following conform to the 2PL
protocol?

T X(Y) W(Y)
T, S(V) R(V) uV)

uy) ¢
XYYywMuy) ¢

Ty X(Y) W(Y) UQY) €

T, S(V) R(V) XY)yuwywymyuy) ¢

Unrecoverable Schedules

Consider the following schedule, which follows
2PL:

TuX(V)S(R(V) W(VIU(V) RMU(Y)
Te X(VIR(V) W(V)U(V)

What happens if T, fails and is aborted?
What if T, commits and then T, fails?

Recoverable Schedules

* A schedule is recoverable if every transaction
commits only after all the other transactions
whose values it read have already committed.

+ Strict 2PL: Same as 2PL, but a transaction
releases its locks only after it has committed

==> Strict 2PL schedules are recoverablel

Phantom Reads

* A transaction re-executes a query and finds
that another committed transaction has
inserted additional rows that satisfy the
condition

- If the rows have been modified or deleted, it is
called an unrepeatable read

+ Example:

- T, executes select * from Sailors where age < 25
- T, executes insert into Sailors values(12,'Jim', 23, 7)
- T, commits

- T,executes select * from Sailors where age < 25 u

Levels of Isolation

+ The SQL standard defines 4 levels of Isolation. Higher
levels ensure greater "serializability", lower levels
ensure greater concurrency

Level Dirty |NonRepeatable |Phantom
Read |Read Read
Read Uncommited Yes Yes Yes
Read Commited No Yes Yes
Repeatable Read No No Yes
Serializable No No No

Yes means possible, No means not possible

Levels of Isolation in Oracle

* Oracle implements only 2 levels of Isolation
- read committed (default)
- serializable

* Oracle allows as much concurrency as it can,
- readers don't wait for writers

- writers don't wait for readers (i.e., Oracle assumes
that if someone performs a select on a table, then he
is only reading it and will not write it later on)

Example

* Suppose the database contains a table:

- create table movie(seats number check(seats»=0));

- movie has a single row with value 1

* Suppose we open two prompts on SQLPLUS, in two

different windows. Now we do the following:
- Prompt 1: select * from movie: (what happens?)
- Prompt 2: update movie set seats = seats - 1: (what is
the result?)
- Prompt 2: commit;
- Prompt 1: update movie set seats = seats- 1; (what is
the result?)

Problem

* The movie seat seller of prompt 1 wanted
to sell a seat, but by the time he tried to
sell it, it disappeared. He actually needed
a write lock on movie

+ Solution: use select ... for update

Example Revisited

* Suppose we open two prompts on SQLPLUS, in two

different windows. Now we do the following:
- Prompt 1: select * from movie for update; (what
happens?)
- Prompt 2: update movie set seats = seats - 1: (what is
the result?)
- Prompt 1: update movie set seats = seats- 1; (what is
the result?)

- Prompt 1: commit; (what is the result?)

