• All Shortest Paths

• Questions from exercises and exams

All Shortest Paths

• The Problem: $G = (V, E, w)$ is a weighted directed graph. We want to find the shortest path between any pair of vertices in G.
• Example: find the distance between cities on a road map.
• Can you use already known algorithms?

All Shortest Paths

• From every vertex in the graph Run
 – Dijkstra: $O(|V||E|\log|V|) = O(|V|^2\log|V|)$
 – Run Bellman-Ford: $O(|V|^2|E|) = O(|V|^3)$

• Can we do better?
Dynamic Programming

• Dynamic Programming is a technique for solving problems “bottom-up”:
 • first, solve small problems, and then use the solutions to solve larger problems.
• What kind of problems can Dynamic Programming solve efficiently?

• Optimal substructure: The optimal solution contains optimal solutions to sub-problems.
• What other algorithms can suit this kind of problems?
 • Greedy algorithms
• Overlapping sub-problems: the number of different sub-problems is small, and a recursive algorithm might solve the same sub-problem a few times.

All Shortest Paths

• How can we define the size of sub-problems for the all shortest paths problem? (two way)
• Suggestion 1: according to the maximal number of edges participating in the shortest path (what algorithm uses this idea?)
• Suggestion 2: according to the set of vertices participating in the shortest paths (Floyd-Warshall)
All Shortest Paths - Suggestion 1

- The algorithm uses the $|V| \times |V|$ matrix representation of a graph.
- The result matrix - cell (j,k) contains the weight of the shortest path between vertex j and vertex k.
- Initialization: paths with 0 edges. What actual values are used?
 - $d_{i,k} = \infty$ for $i \neq k$, $d_{i,i} = 0$
- In iteration m, we find the shortest paths between all vertices with no more than m edges and keep them in the matrix $D^{(m)}$. How many iterations are needed?

All Shortest Paths - Suggestion 1

- No circles with negative weights - $|V| - 1$ iterations.
- In iteration m:
 - For every (v,u), find the minimum of:
 - The current shortest path $v \rightarrow u$ (maximum $m-1$ edges).
 - For every w in $\text{Adj}(u)$: The shortest path with maximum m edges through w, which is the shortest path $v \rightarrow w$ with maximum $m-1$ edges, plus the edge (w,u).

All Shortest Paths - Suggestion 1

- Time complexity:
 - $|V|$ iterations
 - In each iteration: going over $O(|V|^2)$ pairs of vertices in
 - For each pair (u,v): going over $O(|V|)$ possible neighbors
 - Total: $O(|V|^4)$
All Shortest Paths - Suggestion 1

- Improvement: If we know the shortest paths up to \(m \) edges long between every pair of vertices, we can find the shortest paths up to \(2m \) edges in one iteration:
- For \((v, u)\) - the minimal path through vertex \(w \) is \(v \rightarrow w \rightarrow u \), when \(v \rightarrow w \) and \(w \rightarrow u \) have at most \(m \) edges.
- Time complexity: \(O(|V|^3 \log |V|) \)

All Shortest Paths - Suggestion 1

- Can we use this method to solve single-source-shortest-paths?
- Yes - we can update only the row vector that matches the single source, by using the results of previous iterations and the weights matrix.
- Note that this version is similar to Bellman-Ford.

Floyd-Warshall Algorithm

- Intermediate vertices on path \(p = \langle v_p, \ldots, v_f \rangle \) are all the vertices on \(p \) except the source \(v_p \) and the destination \(v_f \).
- If we already know the all shortest paths whose intermediate vertices belong to the set \{1,\ldots,k-1\}, how can we find all shortest paths with intermediate vertices \{1,\ldots,k\}?
- Consider the shortest path \(p \) between \((i, j)\), whose intermediate vertices belong to \{1,\ldots,k\}
Floyd-Warshall Algorithm

• If k is not an intermediate vertex in p, then p is the path found in the previous iteration.
• If k is in p, then we can write p as i→k→j, where the intermediate vertices in i→k and k→j belong to \{1,...,k-1\}.
• The algorithm:
 – Initialize: \(D^{(0)} = W \)
 – For \(k = 1, ..., |V| \)
 • For \(i = 1, ..., |V| \)
 • For \(j = 1, ..., |V| \)
 \[d^{(k)}_{i,j} = \min(d^{(k-1)}_{i,j}, d^{(k-1)}_{i,k} + d^{(k-1)}_{k,j}) \]
• Time complexity: \(O(|V|^3) \)

Johnson’s Algorithm

• We already wrote, debugged and developed emotional attachment to the Dijkstra and Bellman-Ford algorithms. How can we use them to efficiently find all-shortest-paths?
• Step 1: What should we do to successfully run Dijkstra if we are sure that there are no circles with negative weights?
• Johnson’s Algorithm
 • We can find a mapping from the graph’s weights to non-negative weights.
 • The graph with the new weights must have the same shortest paths.
• Step 2: How can we be sure that there are no negative weighted circles?
 • Simply run Bellman-Ford
Johnson’s Algorithm

- The algorithm:
 - Add a dummy vertex, \(v \), and an edge with weight 0 from \(v \) to every vertex in the graph.
 - The modified graph has the same negative circles.

- Run Bellman-Ford from \(v \) to find negative circles, if any.
- Use the shortest paths from \(v \) to define non-negative weights:
 - \(w'(s, t) = w(s, t) + h(s) - h(t) \)
 - Is \(W' \) non-negative?
 - Yes, due to the fact that \(h(t) \leq w(s, t) + h(s) \)

- Do shortest paths remain shortest?
 - Let \(p \) be a shortest path between \(v_0 \) and \(v_l \), then \(w'(p) = \sum w'(v_i, v_{i+1}) = \sum [w(v_i, v_{i+1}) + h(v_{i+1}) - h(v_i)] = w(p) + h(v_0) - h(v_l) \)
 - The term \(h(v_0) - h(v_l) \) is common to all paths between \(v_0 \) and \(v_l \), so the minimal \(w'(p) \) matches the minimal \(w(p) \)
Johnson’s Algorithm

- So - now we can use \(W' \) to run Dijkstra from each vertex in \(G \).
- Time complexity: \(O(VE + |V|^2 \log |V|) \)
- Good for sparse graphs

Questions From Previous exams

a) Define Spanning Tree and Minimal Spanning Tree.

Spanning Tree: Given a graph \(G=(V,E) \), a spanning tree \(T \) of \(G \) is a connected graph \(T=(V,E') \) with no cycles (same vertices, a subset of the edges).

For example, this graph has three spanning trees:
\{ (a,b),(a,c) \}, \{ (a,b),(b,c) \}, \{ (a,c),(b,c) \}

Minimal Spanning Tree (MST): Given a weighted graph \(G=(V,E,w) \), define the weight of a spanning tree \(T \) as \(w(T) = \sum_{e \in E} w(e) \). Then a minimal spanning tree \(T \) is a spanning tree with minimal weight, i.e. \(T \) satisfies:

\[w(T) = \min \{ w(T') | T' \text{ is a spanning tree} \} \]

For example, this graph has two minimal spanning trees:
\{ (a,b),(b,c) \}, \{ (a,c),(b,c) \}
b) Either prove or disprove the following claim:

In a weighted (connected) graph, if every edge has a different weight then G has exactly one MST.

First notice that if the edge weights are not distinct, then the claim is incorrect, for example the previous graph.

- So, can we come up with a counter-example when weights are distinct? (no, but thinking about it for a few minutes sometimes helps...)

A useful feature of spanning trees

Claim: Suppose \(T_1 \) and \(T_2 \) are two spanning trees of \(G \). Then for any edge \(e_i \) in \(T_1 \setminus T_2 \), there exists an edge \(e_j \) in \(T_2 \setminus T_1 \) such that \(T \setminus \{ e_i \} \cup \{ e_j \} \) is also a spanning tree.

To see this, consider the following partition of \(G \):

```
\begin{align*}
&\text{G}_u \quad \text{e}_1 \\
&\text{v} \quad \text{u'} \\
&\text{G}_v \quad \text{e}_2 \\
&\text{v'} \quad \text{u} \\
\end{align*}
```

Proof: Suppose \(e_i = (v,u) \). Denote by \(G_v \) and \(G_u \) the two connected components of \(G \) when removing \(e_i \) from \(T_1 \).

Examine the path from \(v \) to \(u \) in \(T_1 \); there must be an edge \(e_j = (v',u') \) in \(T_1 \) such that \(v' \) is in \(G_v \) and \(u' \) is in \(G_u \).

Let \(T'' = T \setminus \{ e_i \} \cup \{ e_j \} \)

- \(T'' \) is connected and has no cycles, thus it is a spanning tree, as claimed.

Take two vertices \(x \) and \(y \) in \(G \). If both are in \(G_v \) or in \(G_u \), then there is exactly one path from \(x \) to \(y \) since \(G_v \) and \(G_u \) are connected with no cycles. If \(x \) is in \(G_v \) and \(y \) is in \(G_u \), then there is also exactly one path between them: from \(x \) to \(v' \), then to \(u' \), and then to \(y \).
Back to the Question

Claim: In a weighted (connected) graph, if every edge has a different weight, then G has exactly one MST.

Proof: Suppose by contradiction that there are two MSTs, \(T_1 \) and \(T_2 \). Suppose also that the largest edge in \(T_1 \setminus T_2 \) is larger than the largest edge in \(T_2 \setminus T_1 \) (notice they can’t be equal). Let \(e_1 \) be the largest edge in \(T_1 \setminus T_2 \). There is an edge \(e_2 \) in \(T_2 \setminus T_1 \) such that \(T' = T_1 \setminus \{e_1\} \cup \{e_2\} \) is a spanning tree with weight:

\[
w(T') = w(T_1) + [w(e_2) - w(e_1)] < w(T_1)
\]

so \(T_1 \) is not an MST -> Contradiction.

Wrong proof for this claim

• A common (but wrong) argument from exams: “The Generic-MST algorithm always has a unique safe edge to add, thus it can create only one MST.”

• Why this is wrong?
 – There might be other ways to find an MST besides the Generic-MST algorithm.
 – It is not true that there is always one unique safe edge (!) For example, Prim and Kruskal might choose a different edge at the first step, although they are both Generic-MST variants

Questions From Previous Exams

c) Write an algorithm that receives an undirected graph \(G=(V,E) \) and a sub-graph \(T=(V,E_T) \) and determines if \(T \) is a spanning tree of \(G \) (not necessarily minimal).

• What do we have to check?
 • Cycles - run DFS on \(T \) and look for back edges
 • Connectivity - if there are no cycles, it is enough to check that \(|E_T| = |V| - 1 \).
Question 2

a) Both in Dijkstra and in Prim we have a set of nodes S (that initially contains only s), and we add one additional node in each iteration. Prove or disprove that in both algorithms the nodes are added to S in the same order.

The claim is not correct.

A contradictory example:

- Prim takes s, a, b, c
- Dijkstra takes s, a, c, b

Question 2 - difficult

b) Consider a directed graph with positive weights. Give an algorithm that receives a node s and prints the shortest cycle that contains s.

- Suggestion 1: for every outgoing edge from s, (s, v), find the shortest path from v to s.
- Suggestion 2: Add a new node s', and for every edge (s, v) add an edge (s', v) with the same weight. Now find a shortest path from s' to s.

Question 3

- An in-order tree walk can be implemented by finding the minimum element and then making $n-1$ calls to TREE–SUCCESSOR
- How many times at most do we pass through each edge?
Question 3

TREE-SUCCESSOR(x)
if x.right==null going up (1)
y=x.parent
while y!=null &&
x=x.right going up (2)
y=y.parent
else
 y=x.right
 while y.left!=null
 y=y.left
return y

Question 3

• Right edges:
 - A right edge n→n.right is passed downwards only at (3), which happens when we call TREE-SUCCESSOR(n).
 - Since we call TREE-SUCCESSOR once for each node, we go down each right edge once, at most
• Left edges:
 - After we pass a left edge n→n.left (at (1) or (2)), TREE-SUCCESSOR returns n.
 - Since TREE-SUCCESSOR returns each node once, we go up each left edge once, at most
• Therefore, we pass each edge at most twice
• In-order walk takes O(n) steps

Question 4

• You are in a square maze of n×n cells and you’ve got loads of coins in your pocket. How do you get out?
• The maze is a graph where
 – Each cell is a node
 – Each passage between cells is an edge
• Solve the maze by running DFS until the exit is found
DFS - Reminder

<table>
<thead>
<tr>
<th>DFS(G)</th>
<th>DFS-VISIT(u)</th>
</tr>
</thead>
<tbody>
<tr>
<td>for each (u \in V[G])</td>
<td>u.color=gray</td>
</tr>
<tr>
<td>u.color=white</td>
<td>u.d=++time</td>
</tr>
<tr>
<td>u.prev=nil</td>
<td>for each (v \in \text{adj}[u])</td>
</tr>
<tr>
<td>time=0</td>
<td>if (v).color=white</td>
</tr>
<tr>
<td>for each (u \in V[G])</td>
<td>v.prev=u</td>
</tr>
<tr>
<td>if u.color=white</td>
<td>DFS-VISIT(v)</td>
</tr>
<tr>
<td>DFS-VISIT(u)</td>
<td>u.color=black</td>
</tr>
<tr>
<td>u.f=++time</td>
<td></td>
</tr>
</tbody>
</table>

Question 4

- What does each color represent in the maze?
 - White - a cell without any coins
 - Gray - a cell with a coin lying with its head side up
 - Black - a cell with a coin lying with its tail side up

- An edge connecting a node to its parent is marked by a coin.
- When visiting a cell, we color it gray.
- If it has a white cell adjacent to it – visit it.
- If there are no such cells,
 - Color the cell “black” by flipping the coin.
 - backtrack by going to the cell marked as parent.

Question 4

- Each node has one parent.
- When backtracking, the parent will be the only adjacent “gray” cell that has a coin leading to it.

- Can we solve it using BFS?
 - No! In DFS we go between adjacent cells; in BFS, the nodes are in a queue, so the next cell could be anywhere.