Tirgul 7

* Review of graphs
* Graph algorithms:
— BFS

Graph — a definition:

* A directed graph, G, is a couple (V,E) such that Vis a
finite set and E is a subset of ¥’xV. The set V is
denoted as the vertex set of G and the set E is denoted
as the edge set of G. Note that a directed graph may
contain self loops (an edge from a vertex to itself).

* In an undirected graph, the edges in E are not ordered,
in the sense of that an edge is a set {u,v} instead of an
ordered couple (u,v).

64
Some important graph definitions:

* Sub-graph: Let G(V,E) be a graph. We say that G’(E’,V”)
is a sub-graph of G if V’cV and E’cENV’xV’

» Path: Let u,v be vertices in the graph. A path of length k
between u and v is a sequence of vertices, v,,...,v,, such
that vy=v, v,=u, and for each ie {0..k-1}, (v;, v;;)eE. We
say that v, is the predecessor v,,, on the path

* If there is a path from v to u we say that v is an ancestor of
uand u is a descendant of v.

* Cycle: In a directed graph, a cycle is a path vj,..,v; such
that vj=v,. If the vertices v,...,v, are also pair wise
disjoint, the cycle is called simp}e.

* In an undirected graph, a (simple) cycle is a path v,,...,v,
such that vi=v,, k>3 and v,,...,v, are pair wise disjoint.

more important definitions...

» Connected graph: An undirected graph G is said to be
connected if for each two vertices u,v in the graph,
there is a path between u and v.

+ Strongly Connected graph: A directed graph G is
said to be strongly connected if for each two vertices
u,v in the graph, there is a path between u and v.

* Tree: A tree is an undirected, connected, a-cyclic
graph.

* Rooted Tree: A directed graph G is called a rooted
tree if there exists seV s.t. for each veV, there is
exactly one path between s and v.

» Forest: A forest (rooted forest) is a set of disjoint trees
(rooted trees).

4
Graph representations: adjacency lists

* One natural way to represent graphs is to use
adjacency lists.

» For each vertex v there is a linked list of his neighbors.

» This representation is good for sparse graphs, since we
use only |V lists and in a sparse graph, each list is short
(overall representation size is V+E).

Graph representations: adjacency matrix

» Another way to represent a graph in the computer is to
use an adjacency matrix. This is a matrix of size
[VIx|V], we will denote it by T. The vertices are
enumerated, ViV Now, T; J=1 & there is an edge
between the vertices v; and v; < (v,,v,)€E.

* Ifthe graph is undirected: T;71 <T; =1

* what is the meaning of T?, T>, etc. 22?

Review of graphs

* Graphs are a very useful tool in Computer Science.
Many problems can be reduced to problems on graphs,
and there exists many efficient algorithms that solves
graph problems.

* Today we will examine a few of these algorithms.

* We will focus on the shortest path problem (unweighted
graphs) which is a basic routine in many graph related
algorithm. We can define:

— Shortest path between s and ¢.
— Single source shortest path (shortest path between s and {V}).
— All pairs shortest path.

4
Breadth First Search (BFS)

» The Breadth First Search (BFS) is one of the simplest
and most useful graph algorithms.

The algorithm systematically explores the edges of G
to find all vertices that are reachable from s and
computes distances to those vertices.

+ It also produces a “breadth first tree”, with s being the
root.

It is called breadth first search since it expands the
frontier between visited and non visited vertices
uniformly across the breadth of the frontier.

Breadth First Search (cont.)

» To keep track of progress, BFS colors each vertex
according to their status.

* Vertices are initialized in white and are later
colored as they are discovered and being processed.

* It also produces a “breadth first tree”, with s being
the root.

« If (u,v) € E and u is black then v is non white.

» Gray vertices represent the frontier between
discovered and undiscovered vertices.

20) uézg

Breadth First Search (cont.)

The BFS algorithm constructs a BFS tree, initially
containing only the root s (the source vertex).

While scanning the neighbors of an already discovered
vertex u, whenever a white vertex v is discovered it is
added to the tree along with the edge (u,v).

u is the parent of v in the BFS tree.

If u is on the pass in the tree from s to v then u is
ancestor of v and v is a descendant of u.

The algorithm uses a queue (FIFO) to manage the set of
gray vertices.

BFS — pseudo code
BFS (G, s)
//initializing.
for each vertex ueV[G]\{s} {
color[u] = white;
dist[u] = «;
parent[u] = NULL;

}

color[s] = GRAY;
dist[s] = 0;
parent[s] = NULL;
Q <- {s};

BFS — pseudo code (cont.)

while (not Q.isEmpty()) {
u <- Q.head():;
foreach v € u.neighbors() {
if color[v] # WHITE ({
color[v] = GRAY;
dist[v] = dist[u]+1;
parent[v] = u;
Q.enqueue (V) ;
}
Q.dequeue() ;
color[u] = BLACK;
}

BFES, an example:

8%
050 0T 06O ©6e
Q [E]wlu]

v
El e [MI7] Q [T
r S t S t S t
uovoow VoW vooow
e [wIe]

u u
Q [Qe

BFS, properties:

+ What can we say about time complexity?
* Why does it works? (intuition):

— We can think as if we have a set of nodes S and for all the
nodes in S, the distance is correct (S begins with just s).

— At step ¢, S contains the 7 closest nodes to s.

— At each step, the algorithm adds to S the next closest node to
s by finding the closest node to s in S that has neighbors out
of S and adding these neighbors to S (greedy algorithm).

— The proof of correctness uses the fact that we have already
discovered closer nodes and assigned them the correct
distance when we discover a new node that is a neighbor of
one of them.

BFES, proof of correctness:

* Claim 1: Let G=(V,E) be a graph and let s€ V be an arbitrary
vertex. Then for any edge (u,v) €E: O(s,v) < 5(s,u)+1

» Proof 1: If u is reachable from s, so is v, otherwise J(s,u) =0

* Claim 2: Let G=(V,E) be a graph, and suppose we run BFS on G
from s. Upon termination, Vv eV, dist[v]> (s, V)

* Proof 2: The proof is by induction on the number of times a vertex
is placed in Q. The claim holds after placing s in Q (basis). For the
induction step, let’s look at a white vertex v discovered during the
search from u. By the hypothesis dist[#]> &(s,u). From claim 1
and the algorithm we get:dist[v] = dist[u]+1> 5(s,u)+12> 5(s,v)

BFES, proof of correctness (cont.):

Claim 3: Suppose that during the execution of BFS on graph G, the
queue QO contains the nodes <v,, ..., v,>. Then:
dist[v,] < dist[v,]+ 1 and dist[v,] < dist[v,,,] Vi e {L,...,r =1}

Proof 3: The proof is by induction on the number of queue
operations. The basis holds (only s is in the queue). When
dequeuing a vertex, dist[v,] < dist[v,]+1<dist[v,]+1 and the claim
holds. When enqueuing a node w, we have the node u at the head
of the queue => dist[v,,,]=dist[w] = dist[u]+1=dist[v,]+1
and we also have:

dist[v,] < dist[v,]+1 = dist[u]+1 = dist[w] = dist[v,,,]

BFS, proof of correctness (cont.):

Claim 4: Let G=(V,E) be a graph and we run BF'S from se ¥ on G.
Then the BF'S discovers every vertex ve V that is reachable from s,
and upon termination, Vv eV, dist[v]=(s,v)
Proof 4: If v is unreachable, we have dist[v]> &§(s,v) =0, but
since v hasn’t been discovered since it has been initialized, we get:
oo =dist[v] > d(s,v) =0 = dist[v] = (s, V)
For vertices that are reachable from s, we define V, ={v eV :5(s,v) =k}
For each v €V, we show by induction that during the execution of
the BFS, there is at most one point at which:

— wvis grayed.

— dist[v] is set to k.

— if v#s then parent[v] is set to u for some u €V/_,.

— vis inserted into the queue Q.

BFS, proof of correctness (cont.):

Proof 4 (cont.): For k=0, the inductive hypothesis holds (basis).
For the inductive step, we first note that Q is never empty during
the algorithm execution and that once a vertex v is entered O,
dist[v] and parent[v] never changes. Let us consider an arbitrary
vertex v €V, (k> 1). From claim 3 (monotonicity),claim 2 (dist[v]
2k) and the inductive hypothesis we get that v must be discovered
after all vertices in V)_; are enqueued (if discovered at all).

Since O(s,V) =k, there is a path of length & from s to v => There
is a vertex u €V)_; such that (u,v) €E. Let u be the first such
vertex grayed. u will appear as the head of O, at that time, its
neighbors will be scanned and v will be discovered

=>d[v] = d[u]+1 = k and parent[v] = u.

