Data Structures— LECTURE 10

Huffman coding

Motivation

Uniquely decipherable codes
¢ Prefix codes

¢ Huffman code construction

« Extensions and applications

Chapter 16.3 pp 385—392 in textbook

Data Structures, Spring 2004 © L. Joskowicz

Motivation

 Suppose we want to store and transmit very large
files (messages) consisting of strings (words)
constructed over an alphabet of characters (letters).

* Representing each character with a fixed-length
code will not result in the shortest possible file!

« Example: 8-bit ASCII code for characters
— some characters are much more frequent than others

— using shorter codes for frequent characters and longer
ones for infrequent ones will result in a shorter file

Data Structures, Spring 2004 © L. Joskowicz

Example

z a b c d e | f
Frequency (%) | 45 13 12 | 16 9 5
Fixed-length | 000 | 001 | 010 | 011 | 100 | 101

Variable-length| 0 101 | 100 | 111 | 1101|1100

Message: abadef - 000001000011100101
0101011111011100
A file of 100,000 characters takes:
« 3x100,000 = 300,000 hits with fixed-length code
o (.45x1 + .13x3 +.12x3+ .16x3 + .09%x4 + .05x4) x100,000 =
224,000 bits on average with variable-length code (25% less)

DataSructures, Spring 20046 L. Joskowicz 3

Coding: problem definition

Represent the characters from an input aphabet £

using a variable-length code alphabet C, taking into

account the occurrence frequency of the characters.

* Desired properties:

—The code must be uniquely decipherable: every
message can be decoded in only one way.

—The code must be optimal with respect to the
input probability distribution.

—The code must be efficiently decipherable >
prefix code: no string is a prefix of another.

Data Structures, Spring 2004 © L. Joskowicz

Uniquely decipherable codes (1)

* Definition: The code alphabet C = {c,, C,, ..., C;}
over the original alphabet X is uniquely decipherable
iff every message constructed from code-words of C
can be broken down into code-words of Cin only
one way.

* Question: how can wetest if Cisuniquely
decipherable?

« Lemma: acode C is uniquely decipherable iff no tail
isacode-word.

DetaSirctures, Sping 2004 L. Joskonicz 5

Terminology

* Letw, p, and s be words over the alphabet C.

For w = ps, pisthe prefix and sis the suffix of w.
* Lett beanon-empty word. tiscalled atail iff
there exist two messages c,C,...c,and ¢’ ,C',...C’,
such that:
—¢ and ¢'; arecode-wordsand ¢, #C; (1i<n, 1<j<m)
—tisasuffix of ¢',,
—C4C,...Ct=C'C5...C,
The length of aword wis|l(w). w is non-empty
when I(w) > 0. | is the maximum length of a
code-word in C.

DataSructures, Spring 20046 L. Joskowicz 6

Uniquely decipherable codes (2)

Proof: acode C isuniquely decipherable (UD) iff notail isa
code-word.

¢ If acode-word cis atail then by definition there exist two
messages C,C,...C,and ¢'4C',...C' ,which satisfy

€,C,...C,C=C'4C,...C'yWhilec, #C',

Thus there are two ways to interpret the message.

¢ If Cisnot UD, there exist messages which can be interpreted
in more than one way. Let p be the shortest such an
ambiguous message. Then U = ¢,C,...C = C'4C,...C' that is,
al ¢’sand¢’s are code-words and ¢, #¢'; Thus, without loss
of generality, ¢ isasuffix of ¢, ¢ isatail.

Data Structures, Spring 2004 © L. Joskowicz

Test for unique decipherability

1. For every two code-words, ¢;and¢, (i # J) do:
- Ifg= G then halt: Cisnot UD.
— If for some word seither ¢s = ¢ or ¢s = ¢ then put sin
theset of tails T
2. Foreverytail tin T and every code-word ¢; in C do:
— If t=gthen halt: Cisnot UD.

— If for some word seither ts= ¢; or ¢s = tthen put sin the
set of tails T.

3. Halt: CisUD.

Time complexity: O(n??)

Data Srucures, Spring 20046 L. Joskowicz 3

Example 1
« C={00,10,11,100,110}
1. Tails: 10.0=100>t=0
11.0=110>t=0
2.Tails 00=00 >t=0 CisUD

DataSructures, Spring 20046 L. Joskowicz 9

Example 2

* C={1,00,101,010}
1. Tals: 1.01=101>t=01
2. Talls 01.0=010>t=0
0.10=010>1t=10
10.1=101>t=1
lisacode-word! Cisnot UD
Counter-example: 10100101 has two meanings:
1.010.010.1
101.00.101

DetaStructures, Spring 200416 L. Joskowicz 10

Prefix codes

» We consider only prefix codes: no code-word isa
prefix of another code-word. Prefix codes are
uniquely decipherable by definition.

* A binary prefix code can be represented as a
binary tree:

— leaves are a code-words and their frequency (%)
— internal nodes are binary decision points. “0” means

go to theleft, “1” means go to theright of a character.
They include the sum of frequencies of their children.

— The path from the root to the code-word is the binary
representation of the code-word.

DetaStructures, Spring 200416 L. Joskowicz 1

Example: fixed-length prefix code (1)

000 001 010 011 100 101

sansme smgaonoLosone M1€5S80ES 000.001.000.011.100.101 -> abadef,

Example: fixed-length prefix code (2)

la45|[b:13]c12 |16 e o] [f:5 |

Frequency (%)

DetaStructures, Spring 200416 L. Joskowicz 13

Example: variable-length prefix code (1)

0
0
100
Message: 0.101.0.111.1101.1100
2.2bedef | 1100 1101 5

Example: variable-length prefix code (2)

Frequency (%)

DetaStructures, Spring 200416 L. Joskowicz 15

Optimal coding (1)
» Anoptimal codeisrepresented asafull binary tree
* For acode alphabet C ={c,, ¢,, ..., ¢,} with |C| code-
words, al with positive frequenciesf (c) > 0, the tree
for an optimal prefix code has exactly |C| leaves and
|C] -1 internal nodes.

« Definition: The cost of a prefix treeis defined as
number of bits B(T) required to encode all code-words

B(T)=2. f(c)d;(c)

ceC

where d(c) isthedepthin T (length) of code-word c.

DetaStructures, Spring 200416 L. Joskowicz 16

Optimal coding (2)
» Example
— Fixed-length code:
(.45%3 +.13x3 + .12x3+ .16x3 + .09x3 + .05%3) = 3
— Variable-length code:
(.45x1 + .13%3 + .12x3+ .16%3 + .09x4 + .05x4) = 2.24
« Optimal code: the code with the lowest cost:
B(T)= minz f(c)d, (c)

ceC
» Theorem: Optimal coding is achievable with a
prefix code.

DetaSirctures, Sping 2004 L. Joskonicz 17

Huffman code: decoding

* Huffman invented in 1952 a greedy algorithm for
constructing an optimal prefix code, called a
Huffman code.

» Decoding:

Start at the root of the coding tree T, read input bits.

After reading “0" go left

After reading “1” goright

If aleaf node has been reached, output the character

stored in the leaf, and return to the root of the tree.

Complexity: O(n), where n is the message length.

> wNpE

DetaStructures, Spring 200416 L. Joskowicz 18

Huffman code; construction

* ldea: build the tree bottom-up, starting with the
code-words as leafs of the tree and creating
intermediate nodes by merging the two |least-
frequent objects, up to the root.

» Toefficiently find the two |east-frequent objects,
use a minimum priority queue.

» The result of the merger of two objectsisanew
object whose frequency is the sum of the
frequencies of the merged objects.

DetaStructures, Spring 200416 L. Joskowicz 19

Example: Huffman code construction (1)

Sart: |5 | |e9 ||c12]|b:13]|d: 16] |2 45]

Step 1 (a9
0 <1

DetaStructures, Spring 200416 L. Joskowicz 20

Example: Huffman code construction (2)

a 45

DetaStructures, Spring 200416 L. Joskowicz 21

Example: Huffman code construction (3)

Step 4:

DetaStructures, Spring 200416 L. Joskowicz 2

Example: Huffman code construction (3)

Step 5:

DetaStructures, Spring 200416 L. Joskowicz 1100 1101 23

Huffman code construction agorithm

Huffman(C)

n < |C|

Q¢«cC

fori € 1ton-1

do allocate a new node z

left[7] € x € Extract-Min(Q)
right{[Z] € y € Extract-Min(Q)
f@EfX+(y)
Insert(Q, 2)

return Extract-Min(Q)

Data Structures, Spring 2004 © L. Joskowicz

Complexity: O(n Ig)

Optimality proof (1)

Lemma1: Let C be acode alphabet and X, y two code-
wordsin C with the lowest frequencies. Then there
exists an optimal prefix code treein which x and y
are sibling leaves.

Proof: take atree T of an arbitrary optimal prefix code
where x and y are not siblings and modify it so that
x and y become siblings of maximum depth and the
tree remains optimal. This can be done with two
transformations.

DetaStructures, Spring 200416 L. Joskowicz 25

Optimality proof (2)
O T

second
transformation

DetaStructures, Spring 200416 L. Joskowicz 26

Optimality proof (3)

 Letaand b two code-words that are sibling
leaves at maximum depth in T. Assume that
f(a) <f(b)andf (x) <f(y). Sincef(x) and f(y)
are the two lowest frequencies, f (x) < f (a) and
f(y) <f(b).

« First transformation: exchange the positions of a
and xin T to produce anew tree T".

 Second transformation: exchange the positions of
bandyin T toproduceanew tree T".

» Show that the cost of the trees remains the same.

DetaStructures, Spring 200416 L. Joskowicz 27

Optimality proof (4)

First transformation:

B(T)-B(T) =

2. f(©di(©) -2 f(e)dr(0)
[f(X)d: () + f (@)d: (@] [f (dr.(x) + f (2)dr-(a)]
[F(¥dr () + f(@)dr (@)] [f (x)dr (a) + f (a)d (X)]

(f(@)-f(x)) @ (a)—dr(x))

0
because 0 < f (a) —f (x) and 0 < (d(a) — dr(X))
Since T isoptimal, B(T) = B(T")

vV ol

DetaStructures, Spring 200416 L. Joskowicz 28

Optimality proof (5)
Second transformation:

B(T)-B(T") = 2. f(©dr(9-D f(0)dr(0)
= [f(y)d.(y)+ fO)d-(D]-[f(y)dr-(¥) + f (D)dr.(b)]
[f(y)dr.(Y)+ f(B)dr.(0)]-[f (y)d.(b) + f (B)dr. ()]
(f(b)- f(y)(dr(B)—dr(y))
0
because 0 < f (b) —f (y) and 0 < (dr.(b) — dr-(y))
Since T isoptimal, B(T') = B(T")

DetaStructures, Spring 200416 L. Joskowicz 29

vV ol

Conclusion from Lemma 1

« Building up an optimal tree by mergers can begin
with the greedy choice of merging together the
two code-words with the lowest frequencies.

» Thisisagreedy choice since the cost of asingle
merger isthe sum of the lowest frequencies,
which isthe least expensive merge.

DtaSnctres, Sping 20040 L. Joskowicz 30

Optimality proof: lemma2 (1)

Lemma2: Let T be an optimal prefix code tree for
code alphabet C. Consider any two sibling code-
wordsx andy in C and let z be their parent in T.
Then, considering z as a character with frequency
f(@=f(X) +f(y),thetreeT =T -{xy}
represents an optimal prefix code for the code
alphabet C =C—-{x,y} U {Z.

Proof: we first express the cost B(T) of tree T asa
function of the cost B(T") of tree T".

DetaStructures, Spring 200416 L. Joskowicz 31

Optimality proof: lemma 2 (2)

» Fordl cin C—{x,\y}, d;(c) = d(c) and thus
£(0) d(©) = (©) dr (0.
* Since dr(X) = di(y) = dr-(2) + 1, we get:
f(x) dr(x) + £ (y) de(y) = [f (%) +f (W](dr (2 + 1)
=@ dr(@ +[F () +f(y)]
* Therefore, B(T) = B(T') + [f (X) + f ()]
B(T") =B(T) — [f () +f(¥)]

DetaStructures, Spring 200416 L. Joskowicz 32

Optimality proof: lemma 2 (3)

We prove the lemma by contradiction:

e Supposethat T does not represent an optimal prefix code
for C. Then there exist atree T* whose cost is better than
that of T: B(T") < B(T).

e ByLemmal, T" hastwo siblings, xandy. Let """ bethe
tree with the common parent of x and y replaced by leaf z
with frequency f (2) = (X) + f (y). Then:

B(T") =B(T") = [f () +f ()]
<B(M - [f(x) +f Y]
=B(T)
yielding a contradiction to T' being an optimal code for C'.

DtaSnctres, Sping 20040 L. Joskowicz 3

Optimality proof: Huffman algorithm (1)

Theorem: Huffman’s algorithm produces an
optimal prefix code.

Proof: By induction on the size of the code al phabet
C, using Lemmas 1 and 2.

 For |C|=2itistrivial, since the tree has two
leaves, assigned to “0” and “1”, both of length 1.

DetaStructures, Spring 200416 L. Joskowicz 34

The induction step (1)

« Suppose the Huffman algorithm generates an optimal code
for acode of sizen, let us provethisfor C with [C|=n + 1.

¢ Let T bethetree generated for C by the Huffman agorithm,
Let x and y be two nodes with minimal frequencies that the
Huffman agorithm picks first. Suppose in contradiction that
Sisatreefor |Cl=n+1, which is strictly better than T: B(S<
B(T). By Lemma 1, we can assumethat Shasx, y as siblings.

« Definethenode Z to betheir parent, S to be the sub-tree of S
without x and y, T' to be the sub-tree of T without X, y.

¢ T isthe Huffman code generated for C —{x,y} U {Z} with
f(2 =f(X) +f(y). S describes aprefix code for
C—{xy} U{Z} withf(Z) =f(x) +f(y).

DataSructures, Sping 20046 L. Joskowicz 35

The induction step (2)
Comparenow S and T':

B(S) =B(9 - [f (ds(x) + f (y)ds(y)] +f(Z)dy(Z)
Since dg(x) = d4{ly) =d{Z') + 1, we get:

B(S) =B(9 —f (x) —f (y) and similarly,

B(T") =B(M -f(X)—f(y)

DtaSnctres, Sping 20040 L. Joskowicz 36

The induction step (3)

But now if B(S) < B(T) we have that B(S) < B(T’).

Since [S| = [T’| = n, this contradicts the induction
assumption that T', the Huffman code for
C—{xy} U{Z} isoptimal!

Data Structures, Spring 2004 © L. Joskowicz

Extensions and applications

 d-ary codes: we merge the d objects with the |east
frequency at each step, creating a new object.
whose frequency is the sum of the frequencies

« Many more coding techniques!

Data Structures, Spring 2004 © L. Joskowicz

