Data Structures— LECTURE 10

Huffman coding

Motivation

Uniquely decipherable codes
¢ Prefix codes

¢ Huffman code construction

« Extensions and applications

Chapter 16.3 pp 385—392 in textbook
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Motivation

 Suppose we want to store and transmit very large
files (messages) consisting of strings (words)
constructed over an alphabet of characters (letters).

* Representing each character with a fixed-length
code will not result in the shortest possible file!

« Example: 8-bit ASCII code for characters
— some characters are much more frequent than others

— using shorter codes for frequent characters and longer
ones for infrequent ones will result in a shorter file
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Example

z a b c d e | f
Frequency (%) | 45 13 12 | 16 9 5
Fixed-length | 000 | 001 | 010 | 011 | 100 | 101

Variable-length| 0 101 | 100 | 111 | 1101|1100

Message: abadef - 000001000011100101
0101011111011100
A file of 100,000 characters takes:
« 3x100,000 = 300,000 hits with fixed-length code
o (.45x1 + .13x3 +.12x3+ .16x3 + .09%x4 + .05x4) x100,000 =
224,000 bits on average with variable-length code (25% less)
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Coding: problem definition

Represent the characters from an input aphabet £

using a variable-length code alphabet C, taking into

account the occurrence frequency of the characters.

* Desired properties:

—The code must be uniquely decipherable: every
message can be decoded in only one way.

—The code must be optimal with respect to the
input probability distribution.

—The code must be efficiently decipherable >
prefix code: no string is a prefix of another.

Data Structures, Spring 2004 © L. Joskowicz

Uniquely decipherable codes (1)

* Definition: The code alphabet C = {c,, C,, ..., C;}
over the original alphabet X is uniquely decipherable
iff every message constructed from code-words of C
can be broken down into code-words of Cin only
one way.

* Question: how can wetest if Cisuniquely
decipherable?

« Lemma: acode C is uniquely decipherable iff no tail
isacode-word.
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Terminology

* Letw, p, and s be words over the alphabet C.

For w = ps, pisthe prefix and sis the suffix of w.
* Lett beanon-empty word. tiscalled atail iff
there exist two messages c,C,...c,and ¢’ ,C',...C’,
such that:
—¢ and ¢'; arecode-wordsand ¢, #C; (1i<n, 1<j<m)
—tisasuffix of ¢',,
—C4C,...Ct=C'C5...C,
The length of aword wis|l(w). w is non-empty
when I(w) > 0. | is the maximum length of a
code-word in C.
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Uniquely decipherable codes (2)

Proof: acode C isuniquely decipherable (UD) iff notail isa
code-word.

¢ If acode-word cis atail then by definition there exist two
messages C,C,...C,and ¢'4C',...C' ,which satisfy

€,C,...C,C=C'4C,...C'yWhilec, #C',

Thus there are two ways to interpret the message.

¢ If Cisnot UD, there exist messages which can be interpreted
in more than one way. Let p be the shortest such an
ambiguous message. Then U = ¢,C,...C = C'4C,...C'  that is,
al ¢’sand¢’s are code-words and ¢, #¢'; Thus, without loss
of generality, ¢ isasuffix of ¢, ¢ isatail.
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Test for unique decipherability

1. For every two code-words, ¢;and¢, (i # J) do:
- Ifg= G then halt: Cisnot UD.
— If for some word seither ¢s = ¢ or ¢s = ¢ then put sin
theset of tails T
2. Foreverytail tin T and every code-word ¢; in C do:
— If t=gthen halt: Cisnot UD.

— If for some word seither ts= ¢; or ¢s = tthen put sin the
set of tails T.

3. Halt: CisUD.

Time complexity: O(n??)
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Example 1
« C={00,10,11,100,110}
1. Tails: 10.0=100>t=0
11.0=110>t=0
2.Tails 00=00 >t=0 CisUD
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Example 2

* C={1,00,101,010}
1. Tals: 1.01=101>t=01
2. Talls 01.0=010>t=0
0.10=010>1t=10
10.1=101>t=1
lisacode-word! Cisnot UD
Counter-example: 10100101 has two meanings:
1.010.010.1
101.00.101
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Prefix codes

» We consider only prefix codes: no code-word isa
prefix of another code-word. Prefix codes are
uniquely decipherable by definition.

* A binary prefix code can be represented as a
binary tree:

— leaves are a code-words and their frequency (%)
— internal nodes are binary decision points. “0” means

go to theleft, “1” means go to theright of a character.
They include the sum of frequencies of their children.

— The path from the root to the code-word is the binary
representation of the code-word.
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Example: fixed-length prefix code (1)

000 001 010 011 100 101

sansme smgaonoLosone M1€5S80ES 000.001.000.011.100.101 -> abadef,




Example: fixed-length prefix code (2)

la45|[b:13]c12 |16 e o] [f:5 |

Frequency (%)
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Example: variable-length prefix code (1)

0
0
100
Message: 0.101.0.111.1101.1100
2.2bedef | 1100 1101 5

Example: variable-length prefix code (2)

Frequency (%)
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Optimal coding (1)
» Anoptimal codeisrepresented asafull binary tree
* For acode alphabet C ={c,, ¢,, ..., ¢,} with |C| code-
words, al with positive frequenciesf (c) > 0, the tree
for an optimal prefix code has exactly |C| leaves and
|C] -1 internal nodes.

« Definition: The cost of a prefix treeis defined as
number of bits B(T) required to encode all code-words

B(T)=2. f(c)d;(c)

ceC

where d(c) isthedepthin T (length) of code-word c.
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Optimal coding (2)
» Example
— Fixed-length code:
(.45%3 +.13x3 + .12x3+ .16x3 + .09x3 + .05%3) = 3
— Variable-length code:
(.45x1 + .13%3 + .12x3+ .16%3 + .09x4 + .05x4) = 2.24
« Optimal code: the code with the lowest cost:
B(T)= minz f(c)d, (c)

ceC
» Theorem: Optimal coding is achievable with a
prefix code.
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Huffman code: decoding

* Huffman invented in 1952 a greedy algorithm for
constructing an optimal prefix code, called a
Huffman code.

» Decoding:

Start at the root of the coding tree T, read input bits.

After reading “0" go left

After reading “1” goright

If aleaf node has been reached, output the character

stored in the leaf, and return to the root of the tree.

Complexity: O(n), where n is the message length.

> wNpE
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Huffman code; construction

* ldea: build the tree bottom-up, starting with the
code-words as leafs of the tree and creating
intermediate nodes by merging the two |least-
frequent objects, up to the root.

» Toefficiently find the two |east-frequent objects,
use a minimum priority queue.

» The result of the merger of two objectsisanew
object whose frequency is the sum of the
frequencies of the merged objects.
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Example: Huffman code construction (1)

Sart: |5 | |e9 ||c12]|b:13]|d: 16] |2 45]

Step 1 (a9
0 <1
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Example: Huffman code construction (2)

a 45
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Example: Huffman code construction (3)

Step 4:
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Example: Huffman code construction (3)

Step 5:
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Huffman code construction agorithm

Huffman(C)

n < |C|

Q¢«cC

fori € 1ton-1

do allocate a new node z

left[7] € x € Extract-Min(Q)
right{[Z] € y € Extract-Min(Q)
f@EfX+(y)
Insert(Q, 2)

return Extract-Min(Q)
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Complexity: O(n Ig )




Optimality proof (1)

Lemma1: Let C be acode alphabet and X, y two code-
wordsin C with the lowest frequencies. Then there
exists an optimal prefix code treein which x and y
are sibling leaves.

Proof: take atree T of an arbitrary optimal prefix code
where x and y are not siblings and modify it so that
x and y become siblings of maximum depth and the
tree remains optimal. This can be done with two
transformations.
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Optimality proof (2)
O T

second
transformation
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Optimality proof (3)

 Letaand b two code-words that are sibling
leaves at maximum depth in T. Assume that
f(a) <f(b)andf (x) <f(y). Sincef(x) and f(y)
are the two lowest frequencies, f (x) < f (a) and
f(y) <f(b).

« First transformation: exchange the positions of a
and xin T to produce anew tree T".

 Second transformation: exchange the positions of
bandyin T toproduceanew tree T".

» Show that the cost of the trees remains the same.
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Optimality proof (4)

First transformation:

B(T)-B(T) =

2. f(©di(©) -2 f(e)dr(0)
[f(X)d: () + f (@)d: (@] [ f (dr.(x) + f (2)dr-(a)]
[F(¥dr () + f(@)dr (@)] [ f (x)dr (a) + f (a)d (X)]

(f(@)-f(x)) @ (a)—dr(x))

0
because 0 < f (a) —f (x) and 0 < (d(a) — dr(X))
Since T isoptimal, B(T) = B(T")

vV ol
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Optimality proof (5)
Second transformation:

B(T)-B(T") = 2. f(©dr(9-D f(0)dr(0)
= [f(y)d.(y)+ fO)d-(D]-[f(y)dr-(¥) + f (D)dr.(b)]
[f(y)dr.(Y)+ f(B)dr.(0)]-[ f (y)d.(b) + f (B)dr. ()]
(f(b)- f(y)(dr(B)—dr(y))
0
because 0 < f (b) —f (y) and 0 < (dr.(b) — dr-(y))
Since T isoptimal, B(T') = B(T")
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Conclusion from Lemma 1

« Building up an optimal tree by mergers can begin
with the greedy choice of merging together the
two code-words with the lowest frequencies.

» Thisisagreedy choice since the cost of asingle
merger isthe sum of the lowest frequencies,
which isthe least expensive merge.
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Optimality proof: lemma2 (1)

Lemma2: Let T be an optimal prefix code tree for
code alphabet C. Consider any two sibling code-
wordsx andy in C and let z be their parent in T.
Then, considering z as a character with frequency
f(@=f(X) +f(y),thetreeT =T -{xy}
represents an optimal prefix code for the code
alphabet C =C—-{x,y} U {Z.

Proof: we first express the cost B(T) of tree T asa
function of the cost B(T") of tree T".
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Optimality proof: lemma 2 (2)

» Fordl cin C—{x,\y}, d;(c) = d(c) and thus
£(0) d(©) = (©) dr (0.
* Since dr(X) = di(y) = dr-(2) + 1, we get:
f(x) dr(x) + £ (y) de(y) = [f (%) +f (W](dr (2 + 1)
=@ dr(@ +[F () +f(y)]
* Therefore, B(T) = B(T') + [f (X) + f ()]
B(T") =B(T) — [f () +f(¥)]
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Optimality proof: lemma 2 (3)

We prove the lemma by contradiction:

e Supposethat T does not represent an optimal prefix code
for C. Then there exist atree T* whose cost is better than
that of T: B(T") < B(T).

e ByLemmal, T" hastwo siblings, xandy. Let """ bethe
tree with the common parent of x and y replaced by leaf z
with frequency f (2) = (X) + f (y). Then:

B(T") =B(T") = [f () +f ()]
<B(M - [f(x) +f Y]
=B(T)
yielding a contradiction to T' being an optimal code for C'.
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Optimality proof: Huffman algorithm (1)

Theorem: Huffman’s algorithm produces an
optimal prefix code.

Proof: By induction on the size of the code al phabet
C, using Lemmas 1 and 2.

 For |C|=2itistrivial, since the tree has two
leaves, assigned to “0” and “1”, both of length 1.
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The induction step (1)

« Suppose the Huffman algorithm generates an optimal code
for acode of sizen, let us provethisfor C with [C|=n + 1.

¢ Let T bethetree generated for C by the Huffman agorithm,
Let x and y be two nodes with minimal frequencies that the
Huffman agorithm picks first. Suppose in contradiction that
Sisatreefor |Cl=n+1, which is strictly better than T: B(S<
B(T). By Lemma 1, we can assumethat Shasx, y as siblings.

« Definethenode Z to betheir parent, S to be the sub-tree of S
without x and y, T' to be the sub-tree of T without X, y.

¢ T isthe Huffman code generated for C —{x,y} U {Z} with
f(2 =f(X) +f(y). S describes aprefix code for
C—{xy} U{Z} withf(Z) =f(x) +f(y).
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The induction step (2)
Comparenow S and T':

B(S) =B(9 - [f (ds(x) + f (y)ds(y)] +f(Z)dy(Z)
Since dg(x) = d4{ly) =d{Z') + 1, we get:

B(S) =B(9 —f (x) —f (y) and similarly,

B(T") =B(M -f(X)—f(y)
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The induction step (3)

But now if B(S) < B(T) we have that B(S) < B(T’).

Since [S| = [T’| = n, this contradicts the induction
assumption that T', the Huffman code for
C—{xy} U{Z} isoptimal!
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Extensions and applications

 d-ary codes: we merge the d objects with the |east
frequency at each step, creating a new object.
whose frequency is the sum of the frequencies

« Many more coding techniques!
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