
Data Structures, Spring 2004 © L. Joskowicz
�

Data Structures – LECTURE 10

Huffman coding

• Motivation
• Uniquely decipherable codes
• Prefix codes
• Huffman code construction
• Extensions and applications

Chapter 16.3 pp 385—392 in textbook

Data Structures, Spring 2004 © L. Joskowicz �

Motivation

• Suppose we want to store and transmit very large
files (messages) consisting of strings (words)
constructed over an alphabet of characters (letters).

• Representing each character with a fixed-length
code will not result in the shortest possible file!

• Example: 8-bit ASCII code for characters
– some characters are much more frequent than others

– using shorter codes for frequent characters and longer
ones for infrequent ones will result in a shorter file

Data Structures, Spring 2004 © L. Joskowicz �

Example

A file of 100,000 characters takes:

• 3×100,000 = 300,000 bits with fixed-length code
• (.45×1 + .13×3 + .12×3+ .16×3 + .09×4 + .05×4) ×100,000 =

224,000 bits on average with variable-length code (25% less)

110011011111001010Variable-length

101100011010001000Fixed-length

5916121345Frequency (%)

fedcba����

Message: abadef
�

000001000011100101

0101011111011100

Data Structures, Spring 2004 © L. Joskowicz �

Coding: problem definition
• Represent the characters from an input alphabet ����

using a variable-length code alphabet C, taking into
account the occurrence frequency of the characters.

• Desired properties:
– The code must be uniquely decipherable: every

message can be decoded in only one way.
– The code must be optimal with respect to the

input probability distribution.
– The code must be efficiently decipherable �

prefix code: no string is a prefix of another.

Data Structures, Spring 2004 © L. Joskowicz �

Uniquely decipherable codes
• Definition: The code alphabet C = { c1, c2, …, cn}

over the original alphabet � is uniquely decipherable
iff every message constructed from code-words of C
can be broken down into code-words of C in only
one way.

• Question: how can we test if C is uniquely
decipherable?

• Lemma: a code C is uniquely decipherable iff no tail
is a code-word.

Data Structures, Spring 2004 © L. Joskowicz �

Terminology
• Let w, p, and sbe words over the alphabet C.

For w = ps, p is the prefix and s is the suffix of w.
• Let t be a non-empty word. t is called a tail iff

there exist two messages c1c2…cm and c’ 1c’ 2…c’ n
such that:
– ci and c’ j are code-words and c1 � c’ 1 (1	 i 	 n, 1	 j 	 m)

– t is a suffix of c’n

– c1c2…cmt = c’1c’2…c’n

• The length of a word w is l(w). w is non-empty
when l(w) > 0. l is the maximum length of a
code-word in C.

Data Structures, Spring 2004 © L. Joskowicz �

Uniquely decipherable codes
Proof: a code C is uniquely decipherable (UD) iff no tail is a

code-word.

• If a code-word c is a tail then by definition there exist two
messages c1c2…cm and c’1c’2…c’n which satisfy

c1c2…cmc = c’1c’2…c’n while c1 � c’ 1

Thus there are two ways to interpret the message.

• If C is not UD, there exist messages which can be interpreted
in more than one way. Let µ be the shortest such an
ambiguous message. Then µ = c1c2…ck = c’1c’2…c’n that is,
all ci’sandcj’s are code-words and c1 � c’1. Thus, without loss
of generality, ck is a suffix of c’n

�
ck is a tail.

Data Structures, Spring 2004 © L. Joskowicz �

Test for unique decipherability
1. For every two code-words, ci andcj (i

�
j) do:

– If ci = cj then halt: C is not UD.

– If for some word s either cis = cj or cjs = ci then put sin
the set of tails T

2. For every tail t in T and every code-word ci in C do:
– If t = cj then halt: C is not UD.

– If for some word s either ts = cj or cjs = t then put sin the
set of tails T.

3. Halt: C is UD.

Time complexity: O(n2l2)

Data Structures, Spring 2004 © L. Joskowicz �

Example 1
• C = { 00,10,11,100,110}

1. Tails: 10.0 = 100 � t = 0

11.0 = 110 � t = 0

2. Tails 0.0 = 00 � t = 0 C is UD

Data Structures, Spring 2004 © L. Joskowicz
� �

Example 2
• C = { 1,00,101,010}

1. Tails: 1.01 = 101 � t = 01

2. Tails 01.0 = 010 � t = 0

0.10 = 010 � t = 10

10.1 = 101 � t = 1

1 is a code-word! C is not UD

Counter-example: 10100101 has two meanings:

1.010.010.1

101.00.101

Data Structures, Spring 2004 © L. Joskowicz
� �

Prefix codes
• We consider only prefix codes: no code-word is a

prefix of another code-word. Prefix codes are
uniquely decipherable by definition.

• A binary prefix code can be represented as a
binary tree:
– leaves are a code-words and their frequency (%)
– internal nodes are binary decision points: “0” means

go to the left, “1” means go to the right of a character.
They include the sum of frequencies of their children.

– The path from the root to the code-word is the binary
representation of the code-word.

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: fixed-length prefix code (1)

a b c d fe

0

1

1

1

1

1

0 0

000

000 001 010 011 100 101

Message: 000.001.000.011.100.101
�

abadef

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: fixed-length prefix code (2)

a� 45 b: 13 c� 12 d� 16 f � 5e� 9

0

1

1

1

1

1

0 0

000

100

86 14

58 28 14

Frequency (%)
Data Structures, Spring 2004 © L. Joskowicz

� �

Example: variable-length prefix code (1)

a

bc d

f e

0

1

11

1

0

0

0

0

1

100

0

101 111

1100 1101
Message: 0.101.0.111.1101.1100�

abadef

Data Structures, Spring 2004 © L. Joskowicz
� �

Example: variable-length prefix code (2)

a� 45

b: 13c� 12 d� 16

f � 5 e� 9

0

1

11

1

0

0

0

0

100

30

55

14

25

1

Frequency (%)
Data Structures, Spring 2004 © L. Joskowicz

� �

Optimal coding (1)
• An optimal code is represented as a full binary tree
• For a code alphabet C = { c1, c2, …, cn} with |C| code-

words, all with positive frequencies f (ci) > 0, the tree
for an optimal prefix code has exactly |C| leaves and
|C| –1 internal nodes.

• Definition: The cost of a prefix tree is defined as
number of bits B(T) required to encode all code-words

where dT(c) is the depth in T (length) of code-word c.

�
�

�
Cc

T cdcfTB)()()(

Data Structures, Spring 2004 © L. Joskowicz
� �

Optimal coding (2)
• Example

– Fixed-length code:

(.45×3 + .13×3 + .12×3+ .16×3 + .09×3 + .05×3) = 3
– Variable-length code:

(.45×1 + .13×3 + .12×3+ .16×3 + .09×4 + .05×4) = 2.24

• Optimal code: the code with the lowest cost:

• Theorem: Optimal coding is achievable with a
prefix code.

�
�

�
Cc

T cdcfTB)()(min)(

Data Structures, Spring 2004 © L. Joskowicz
� �

Huffman code: decoding
• Huffman invented in 1952 a greedy algorithm for

constructing an optimal prefix code, called a
Huffman code.

• Decoding:
1. Start at the root of the coding tree T, read input bits.
2. After reading “0” go left
3. After reading “1” go right
4. If a leaf node has been reached, output the character

stored in the leaf, and return to the root of the tree.

Complexity: O(n), where n is the message length.

Data Structures, Spring 2004 © L. Joskowicz
� �

Huffman code: construction
• Idea: build the tree bottom-up, starting with the

code-words as leafs of the tree and creating
intermediate nodes by merging the two least-
frequent objects, up to the root.

• To efficiently find the two least-frequent objects,
use a minimum priority queue.

• The result of the merger of two objects is a new
object whose frequency is the sum of the
frequencies of the merged objects.

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Huffman code construction (1)

a� 45b: 13c� 12 d� 16f � 5 e� 9Start:

a� 45b: 13c� 12 d� 1614

f � 5e� 9

10
Step 1:

a� 45d� 16

f � 5e� 9

1
14

0
Step 2:

b: 13 c� 12

1
25

0

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Huffman code construction (2)

a� 45Step 3:

b: 13 c� 12

1
25

0

d� 16

f � 5e� 9

1
14

0

1
30

0

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Huffman code construction (3)

a� 45Step 4:

b: 13 c� 12

1
25

0

d� 16

f � 5e� 9

1
14

0

1
30

0

1
55

0

Data Structures, Spring 2004 © L. Joskowicz � �

Example: Huffman code construction (3)

a� 45

Step 5:

b: 13 c� 12

1
25

0

d� 16

f � 5e� 9

1
14

0

1
30

0

1
55

0

1
100

0

100

0

101 111

1100 1101 Data Structures, Spring 2004 © L. Joskowicz � �

Huffman code construction algorithm
Huffman(C)
n

�
|C|

Q
�

C
for i

�
1 to n – 1

do allocate a new nodez
left[z]

�
x

�
Extract-Min(Q)

right[z]
�

y
�

Extract-Min(Q)

f (z) � f (x) + f (y)
Insert(Q, z)

return Extract-Min(Q) Complexity: O(n lg n)

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof (1)
Lemma 1: Let C be a code alphabet and x, y two code-

words in C with the lowest frequencies. Then there
exists an optimal prefix code tree in which x and y
are sibling leaves.

Proof: take a tree T of an arbitrary optimal prefix code
where x and y are not siblings and modify it so that
x and y become siblings of maximum depth and the
tree remains optimal. This can be done with two
transformations.

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof (2)

x

a b

y

T

a

x b

y

T’

a

x y

b

T”

first

transformation

second

transformation

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof (3)
• Let a and b two code-words that are sibling

leaves at maximum depth in T. Assume that
f (a) � f (b) and f (x) � f (y). Since f (x) and f (y)
are the two lowest frequencies, f (x) � f (a) and
f (y) � f (b).

• First transformation: exchange the positions of a
and x in T to produce a new tree T’ .

• Second transformation: exchange the positions of
b and y in T’ to produce a new tree T” .

• Show that the cost of the trees remains the same.

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof (4)

0

))()())(()((

)]()()()([)]()()()([

)]()()()([)]()()()([

)()()()()'()(

''

'

�

���

����

����

��� ��
��

xdadxfaf

xdafadxfadafxdxf

adafxdxfadafxdxf

cdcfcdcfTBTB

TT

TTTT

TTTT

Cc
T

Cc
T

First transformation:

because 0 � f (a) – f (x) and 0 � (dT(a) – dT(x))

Since T is optimal, B(T) = B(T’)

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof (5)

0

))()())(()((

)]()()()([)]()()()([

)]()()()([)]()()()([

)()()()()''()'(

''

''''

'''''

'''

�

���

����

����

��� ��
��

ydbdyfbf

ydbfbdyfbdbfydyf

bdbfydyfbdbfydyf

cdcfcdcfTBTB

TT

TTTT

TTTT

Cc
T

Cc
T

Second transformation:

because 0 � f (b) – f (y) and 0 � (dT’(b) – dT’(y))

Since T’ is optimal, B(T’) = B(T”)
Data Structures, Spring 2004 © L. Joskowicz � �

Conclusion from Lemma 1

• Building up an optimal tree by mergers can begin
with the greedy choice of merging together the
two code-words with the lowest frequencies.

• This is a greedy choice since the cost of a single
merger is the sum of the lowest frequencies,
which is the least expensive merge.

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof: lemma 2 (1)
Lemma 2: Let T be an optimal prefix code tree for

code alphabet C. Consider any two sibling code-
words x and y in C and let zbe their parent in T.
Then, considering zas a character with frequency
f (z) = f (x) + f (y), the tree T’ = T – { x,y}
represents an optimal prefix code for the code
alphabet C’ = C – { x,y} U { z} .

Proof: we first express the cost B(T) of tree T as a
function of the cost B(T’) of tree T’ .

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof: lemma 2 (2)

• For all c in C – { x,y} , dT(c) = dT’(c) and thus

f (c) dT(c) = f (c) dT’(c).

• Since dT(x) = dT(y) = dT’(z) + 1, we get:

f (x) dT(x) + f (y) dT(y) = [f (x) + f (y)](dT’(z) + 1)

= f (z) dT’(z) + [f (x) + f (y)]

• Therefore, B(T) = B(T’) + [f (x) + f (y)]

B(T’) = B(T) – [f (x) + f (y)]

Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof: lemma 2 (3)
We prove the lemma by contradiction:

• Suppose that T does not represent an optimal prefix code
for C. Then there exist a tree T” whose cost is better than
that of T: B(T”) < B(T).

• By Lemma 1, T” has two siblings, x and y. Let T’ ’ ’ be the
tree with the common parent of x and y replaced by leaf z
with frequency f (z) = f (x) + f (y). Then:

B(T’ ’ ’) = B(T”) – [f (x) + f (y)]

< B(T) – [f (x) + f (y)]

= B(T’)

yielding a contradiction to T’ being an optimal code for C’ .
Data Structures, Spring 2004 © L. Joskowicz � �

Optimality proof: Huffman algorithm (1)

Theorem: Huffman’s algorithm produces an
optimal prefix code.

Proof: By induction on the size of the code alphabet
C, using Lemmas 1 and 2.

• For |C| = 2 it is trivial, since the tree has two
leaves, assigned to “0” and “1” , both of length 1.

Data Structures, Spring 2004 © L. Joskowicz � �

The induction step (1)
• Suppose the Huffman algorithm generates an optimal code

for a code of size n, let us prove this for C with |C| = n + 1.

• Let T be the tree generated for C by the Huffman algorithm,
Let x and y be two nodes with minimal frequencies that the
Huffman algorithm picks first. Suppose in contradiction that
S is a tree for |C|=n+1, which is strictly better than T: B(S)<
B(T). By Lemma 1, we can assume that Shas x, y as siblings.

• Define the node z’ to be their parent, S’ to be the sub-tree of S
without x and y, T’ to be the sub-tree of T without x, y.

• T’ is the Huffman code generated for C – { x,y} U { z} with
f (z) = f (x) + f (y). S’ describes a prefix code for
C – { x,y} U { z’ } with f (z’) = f (x) + f (y).

Data Structures, Spring 2004 © L. Joskowicz � �

The induction step (2)

T’ S’

T = S =

Compare now S’ and T’ :

x y

z

x y

z’

B(S’) = B(S) – [f (x)dS(x) + f (y)dS(y)] + f (z’)dS(z’)

SincedS(x) = dS(y) = dS(z’) + 1, we get:

B(S’) = B(S) – f (x) – f (y) and similarly,

B(T’) = B(T) – f (x) – f (y)

Data Structures, Spring 2004 © L. Joskowicz � �

But now if B(S) < B(T) we have that B(S’) < B(T’).

Since |S’ | = |T’ | = n, this contradicts the induction
assumption that T’ , the Huffman code for
C – { x.y} U { z} is optimal!

The induction step (3)

Data Structures, Spring 2004 © L. Joskowicz � �

Extensions and applications

• d-ary codes: we merge the d objects with the least
frequency at each step, creating a new object.
whose frequency is the sum of the frequencies

• Many more coding techniques!

