Data Structures— LECTURE 9

Balanced trees

» Motivation
 Red-black trees
— Definition, Height
— Rotations, Insert, Delete operations
e AVL trees— overview
For an excellent explanations and animations, see
http://www.cse.ohio-state.edu/~gur ar i/cour se/cis680/cis680Ch11.html

Data Structures, Spring 2004 © L. Joskowicz 1

Motivation

* Binary search trees are useful for efficiently
implementing dynamic set operations:

Search, Successor, Predecessor, Minimum,

Maximum, Insert, Delete
in O(h) time, where histhe height of the tree
When the tree is balanced, that is, its height
h = O(Ig n), the operations are indeed efficient.
However, the Insert and Delete alter the shape of
the tree and can result in an unbalanced tree. In the
worst case, h = O(n) - no better than alinked list!

Data Structures, Spring 2004 © L. Joskowicz

Balanced trees

» We need to devise amethod for keeping the tree
balanced at all times.
* When an Insert or Delete operation causes an
imbalance, we want to correct thisin at most
O(lg n) time = no complexity overhead.
To achieve this we need to augment the data
structure with additional information and to devise
tree-balancing operations.
» The most popular balanced tree data structures:
— Red-Black trees: height of at most 2(Ign + 1)
— AVL trees: sub-tree height difference of at most 1.

Data Structures, Spring 2004 © L. Joskowicz

Definition: Red-Black tree

A red-black tree (RB tree) isabinary search tree
where each node has an extra color bit (either red
or black) with the following properties

1. Every nodeiseither red or black.

2. Theroot is black.

3. Every leaf (null) isblack.

4. Both children of ared node are black.

5. All paths from a node to its descendant leafs
contain the same number of black nodes.

Data Structures, Spring 2004 © L. Joskowicz

Example: Red-Black tree (1)
P \j\
eISLe o
i e

i e

i black height next to nodes

ata Structures, Spring 2004© L. Joskowicz 5

Example: Red-Black tree (2)

e /@\
et I

/

/

Data Structures, Spring 2004 © L. Joskowicz

Example: Red-Black tree (3)
e
o o
v
FOXale

Data Structures, Spring 2004 © L. Joskowicz 7

The height of Red-Black Trees (1)

* Lemma: A red-black tree with ninternal nodes has height at
most 2 Ig(n +1)

« Definition: Black-height, bh(x), is the number of black
nodes on any path from x to aleaf (not counting x itself).

e Proof: Wefirst prove a claim: The sub-tree rooted at any
node x contains at least 2°h®) —1 internal nodes.

* We prove the claim by induction on the HEIGHT of the
node h (not the black height.)

e For h=0, thenodeisaleaf. In this case bh(x) = 0. Then the
claim implies that the number of internal nodes in the sub-
treerooted at the leaf is at least 20-1= 0, which is correct.

Data Structures, Spring 2004 © L. Joskowicz 8

The height of Red-Black Trees (2)

For theinduction step, consider x with h>0, soxisan
internal node and has two children, y and z. Then:

— yisblack © bh(y) = bh(x)-1

—yisred - bh(y) = bh(x)

— Hence, bh(y) > bh(x)-1
We can now use the induction assumption for y since its
height (not black height!) is < than the height of x

Hence, the sub-tree rooted at y contains at least 20h()-1 -1
internal nodes.

Multiplying this number by 2, for two sub-trees, and adding 1
for x, we get that the number of internal nodes in the sub-tree
rooted by x is at least (200091 —1) + (20h()-1 —1) + 1 = 2bh(¥) —1

Data Structures, Spring 2004 © L. Joskowicz 9

The height of Red-Black Trees (3)
* Let h bethe height of the tree and x be the root. We
just proved that n > 260 —1

By property 4, at least half of the nodes on any path
from the root to aleaf (not including the root) must
be black (cannot have two successive red nodes!)

» Consequently, the black-height of theroot is at
least h/2

* Thus, the number of internal nodesninthetreeis
n>2n2_1
« Weget:n+1>2"2 5 |g(n+1)>2Igh/2
> h<2Ig(n+l)

Data Structures, Spring 2004© L. Joskowicz 10

Static operationsin RB trees

 The operations Max, Min, Search, Successor, and
Predecessor take O(Ig n) timein RB trees.

 Proof: These operations can be applied exactly like
in regular binary search trees, because they do not
modify the tree, so the only difference isthat the
colors can be ignored.
For binary search trees, we know that these
operations take O(h) where h is the height of the
tree, and by the lemmathe height is O(Ig n).

Data Structures, Spring 2004 © L. Joskowicz 1

Dynamic operationsin RB trees

* The dynamic operations Insert and Delete change the
shape of the tree.

» Depending on the order of the operations, the tree can
become unbalanced and loose the RB properties.

» Tomaintain the RB structure, we must first change

the colors some nodesin the tree and re-balance the

tree by moving sub-trees around.

The re-balancing is done with the Rotation operation

followed by a Re-coloring depending on the result.

Data Structures, Spring 2004 © L. Joskowicz 12

Rotation operations (1)
Right-Rotate |
O — () —

Left-Rotate
— ()

[\ /N

a<X<pB and X<y<$

Data Structures, Spring 2004© L. Joskowicz

®
ANION

o<Xx<y and B<y<d

13

Rotation operations (2)

Right-Rotate |
—

Conflict: two A
Successive reds
The rotation operation helps resolve the conflict!

Data Structures, Spring 2004© L. Joskowicz

Left-Rotate

L eft-Rotate(T,x)
y € right[x] /* Sety
right[x] € left[y]
parent[left[y]] € x /* right sub-tree
parently] € parent[x] /* Link X'sparenttoy
if parent[X] = null[T]
then root[T] €y
elseif x = |eft[parent[x]]
then left[parent[x]] € vy
else right[parent[X]] € vy
left[y] € x
parent[x] €y

Data Structures, Spring 2004© L. Joskowicz

/* Turny left's sub-treeinto X's

/* Put xony's left

Example: Left-Rotate (1)

Data Structures, Spring 2004© L. Joskowicz

Example: Left-Rotate (2)

Data Structures, Spring 2004© L. Joskowicz

Example: Left-Rotate (3)

Data Structures, Spring 2004© L. Joskowicz

Example: Left-Rotate (4)

Data Structures, Spring 2004 © L. Joskowicz 19

Rotation operations (2)

* Preserves the properties of the binary search tree.

 Takes constant time O(1) sinceit involves a
constant number of pointer operations.

« Left- and Right-Rotate are symmetric.

Data Structures, Spring 2004 © L. Joskowicz 20

Red-Black Insert: principle (1)

» Useordinary binary search treeinsertion and color the
new node red.

* If any of the red-black properties have been violated,
fix the resulting tree using re-coloring and rotations.

» Which of the five properties can be violated?

1. Every nodeis either red or black > OK

. Theroot is black. > NO

. Every null leaf isblack > OK

. Both children of ared node are black > NO

. All paths from anode to its descendant |eafs contain
the same number of black nodes > OK

Data Structures, Spring 2004 © L. Joskowicz 21

a b~ wdN

Red-Black Insert: principle (2)

* Viodlations:
—2. If theinserted x node is aroot, paint it black
> OK

—4, What if the parent of the inserted node zis also
red?
 Three casesto fix this situations for node x:
—Case l: Zsuncleyisred
—Case 2: Zsuncleyisblack and zisaright child
—Case 3: Zsuncleyisblack and zis aleft child

Data Structures, Spring 2004 © L. Joskowicz 2

Casel: Zsuncleyisred

* If zhas both ared parent B and ared uncle D, re-
color the parent and the uncle in black, and the
grandparent C in red:

grandparent[7] ., ﬁ Recolor
O —newz

—_—
parent[z] — B¥ { ¥ ~—uncle{Z] /43\/ ?"&

ira" fw 0F

* If Cistheroot, we can simply color it black.
« If grandparent Cisin violation, apply Cases 2 and 3.

Data Structures, Spring 2004 © L. Joskowicz 23

Case 2: Zsuncleyisblack and
zisaright child

« If zistheright child of ared parent A and hasa
black uncle D, perform aleft rotation A:

Left Rotate

parent[Z] (/A \%‘_ uncleZ] /B\/O%

€

e Ay

* This produces a configuration handled by Case 3

Data Structures, Spring 2004 © L. Joskowicz 2

Case 3: Zsuncleyisblack and

zisaléeft child

« If zistheleft child of ared parent B and has a
black uncle D, perform aright rotation at Z s
grandparent C and re-color:

Right-Rotate
—
Re-color

o
parent[z]_’—p-‘/B§ {. —uncl€[Z] /,_\E !
“d © R k

* After Case 3, there isno longer a violation!

Data Structures, Spring 2004 © L. Joskowicz 25

grandparent[z] —

RB-Insert

» Toinsert anew node zinto an RB-Tree, do:

1. Insert the new node z in the binary tree
disregarding the colors.

2. Color zred

3. Fix theresulting treeif necessary by applying
on z Cases 1, 2, and 3 asrequired and
following their consequences

» The complexity of the operation is O(lg n)
* See Chapter 13 in textbook for code and proofs!

Data Structures, Spring 2004 © L. Joskowicz 2%

RB-Insert-Fixup (pseudo-code)

RB-Insert-Fixup(T,2)
while color[parent[Z]] = “red”
doy € Zsuncle
if color[y] =“red” then do Case 1
elsedo
if z=right[parent[Z]] then do Case 2
do Case 3
color[root[T]] € “black”

Data Structures, Spring 2004 © L. Joskowicz 27

RB-Insert-Fixup loop invariants
1. Nodezisred
2. If parent[Z] isthe root, then parent[Z] is black
3. If thereisaviolation of the red-black properties,
thereis at most one violation and it is either of
property 2 or 4.
— If property 2 isviolated, it is because z is root and red

— If property 4 isviolated, it is because both z and
parent[Z] arered.

Data Structures, Spring 2004 © L. Joskowicz 28

Example: insertion and fixup (1)

/5@\“&

[1
parent[Z] — «— uncle[7]
Violation: red node and red parent
inserted z

Case 1: Zsuncleisred = re-color

Data Structures, Spring 2004 © L. Joskowicz 29

Example: insertion and fixup (2)

parent[z] — — @\@_ uncle{Z]
/ \ A
o o

© ©
S
Violation: red node and red parent

Case 2: Zsuncleisblack and zisa
right child - left rotate

Data Structures, Spring 2004 © L. Joskowicz

30

Example: insertion and fixup (3)

parent[z] — /@\@huncle[z]
N N

207 N ©
/9 Violation: red node and red parent

Case 3: Zsuncleisblack and zisa
left child - right rotate and re-color

Data Structures, Spring 2004 © L. Joskowicz e

Example: insertion and fixup (4)

0
o/>e a/\@\

The tree has now RB properties

No further fixing is necessary!

Data Structures, Spring 2004 © L. Joskowicz 12

Red-Black Delete: principle (1)

» Use ordinary binary search tree deletion.
« If any of the red-black properties have been violated,
fix the resulting tree using re-coloring and rotations.
» Which of the five properties can be violated?
1. Every nodeis either red or black > OK
. Theroot isblack. > NO
. Every null leaf isblack > OK
. Both children of ared node are black > NO

. All paths from anode to its descendant |eafs contain
the same number of black nodes > NO

Data Structures, Spring 2004 © L. Joskowicz 13

a b~ wN

Red-Black Delete: principle (2)

 Violations:

—If the parent y of the spliced node x isred, y
then properties 2, 4, 5 may be violated.
—If xisred, re-coloring x black restores all of them! O X
—So we are left with cases where both x and y are black.
We need to restore property 5.

* Four casesto fix this situation for node x:
—Case 1: X'ssiblingwisred
—Case 2: X'ssibling w is black, as well as both children of w
—Case 3: X'ssibling wis black, w' s left isred and right is black
—Case 4: X'ssibling wisblack, and w'sright child isred.

Data Structures, Spring 2004 © L. Joskowicz 34

Case 1: X'ssiblingwisred

» Case listransformed into one of the Cases 2, 3,
or 4 by switching the color of the nodes B and D
and performing a left rotation:

Left-Rotate
>

Re-color

=W
sbling[x] g

sibling[x]

No change in black height!

Data Structures, Spring 2004 © L. Joskowicz 37

Case 2: X'ssibling w is black and
both its children are black

e Case 2 alows x to move one level up the tree by
re-coloring D to “red”:

Re-color
® — newx
—w (D)
sibling[x]
hildrenfw] & Q (g
S

Decreases black height of
nodes under D by one!

Data Structures, Spring 2004 © L. Joskowicz

38

Case 3: X'ssblingwisblack and its
children are red and black

e Case 3istransformed to Case 4 by exchanging
the colors of nodes C and D and performing a
right rotation:

Right-Rotate
>

Re-color

w
sibling[x]

hildren[w]
o

sasmars, smmso L sen: NO CHANGE 1N black height!

Case 4: X'ssiblingwisblack and its
right children isred

* Inthiscase, the violation is resolved by changing
some colors and performing aleft rotation
without violating the red-black properties:
Left-Rotate

—

w Re-color

sibling[x]

hildreniw] (&) (Q

d¢ a 3 0
Increases black height of
nodes under A by onel«

Data Structures, Spring 2004 © L. Joskowicz

RB-Delete

* Todelete anode x from an RB-Tree, do:

1. Deletethe node x from the binary tree
disregarding the colors.

2. Fix theresulting treeif necessary by applying
onx Cases 1, 2, 3, and 4 as required and
following their consequences

» The complexity of the operation is O(lg n)
* See Chapter 13 in textbook for code and proofs!

Data Structures, Spring 2004 © L. Joskowicz 41

RB-Delete-Fixup (pseudocode)

RB-Delete-Fixup(T, x)
while x # root[T] and color[x] = “black”
doif x = left[parent[x]]
then w € X' s brother
if color[w] ="“red” then do Case 1
1/ after thisx stays, w changes to x's new brother, and we arein Case 2
if color[w] = “black” and its two children are black
then do Case 2. // after this x movesto parent[x]
elseif color[w] = “black” and color[right[w]] = “black”
then do Case 3
/1 ater thisx stays, w changes to x's new brother, and we arein Case 4
if color[w] =“black” and color[right[w]] = “red”
then do Case4 // after thisx = root[T].
else same as everything above but for x = right[parent[x]]
w10 € “black’

Data Structures, Spr

RB-Delete: Complexity

* If Case 2 isentered from Case 1, then we do not
enter the loop again since X' s parent is red after
Case 2.

« If Case 3 or Case 4 are entered, then the loop is

not entered again.

The only way to enter the loop many timesisto

enter through Case 2 and remain in Case 2.

Hence, we enter the loop at most O(h) times.

Thisyields a complexity of O(lg n).

Data Structures, Spring 2004 © L. Joskowicz 3

Summary of RB trees

Important points to remember:

« Five simple coloring properties guarantee atree
height of no morethan 2(Ign + 1) = O(Ig n)

* Insertion and deletions are done asin uncolored
binary search trees

* Insertions and deletions can cause the properties of
the RB tree to be violated. Fixing these properties
is done by rotating and re-coloring parts of the tree

* Violation cases must be examined individualy.
There are 3 cases for insertion and 4 or deletion.

e Inall cases, at most O(Ig n) timeis required.

Data Structures, Spring 2004 © L. Joskowicz 47

AVL trees— definition

Binary tree with a single balance property:
For any node in the tree, the height difference

between its left and right sub-treesis at most one.

$=SatSe

Data Structures, Spring 2004 © L. Joskowicz

48

AVL trees— properties

* The height of an AVL treeisat most log, 5(n +1)
> h=0(Ign)
» Keep an extra height field for every node

» Four imbalance cases after insertion and deletion
(instead of seven for RB trees)

* Seedetailsin the Tirgul!

Data Structures, Spring 2004 © L. Joskowicz

Summary

« Efficient dynamic operations on a binary tree
reguire a balance tree whose height is O(Ig n)

* There are various ways of guaranteeing a

balanced height:

— Red-black properties

— Sub-tree height difference properties

— B-trees properties

Insertion and deletion operations might require

re-balancing in O(lg n) to restore balanced tree

properties

« Re-balancing operations require examining
various cases

Data Structures, Spring 2004 © L. Joskowicz

