Data Structures— LECTURE 7

Heapsort and priority queues

» Motivation

e Heaps

Building and maintaining heaps
* Heap-Sort

Priority queues

I mplementation using heaps

Data Structures, Spring 2004 © L. Joskowicz

Priority queues and heaps

* We need an efficient ADT to keep adynamic set S
of elements x to support the following operations:
— Insert(x,S) —insert element x into S
— Max(S) —returns the maximum element
— Extract-Max(S) — remove and return the max. element
— Increase-Key(x,k,S) — increase X' s value to k

e Thisiscalled apriority queue (max-priority or
min-priority queue)

* Priority queues are implemented using a heap,

which isatree structure with special properties.

Data Structures, Spring 2004 © L. Joskowicz

Heaps

* A heapisanearly complete binary tree.

» Thebinary treeisfilled on all levels except
possibly the last one, which isfilled from the left
to the right up to the last element.

» Thetreeisimplemented as an array A[i] of length
length[A]. The number of elements is heapsize[A]

* Nodesin the tree have the property that parent
node elements are greater or equal to children’s
node elements: A[parent(i)] = A[i]

* Therefore, the maximum is at the root of the tree

Data Structures, Spring 2004 © L. Joskowicz

N

Example of aheap
parent(i) = floor(i/2)
@ left-child(i) = 2i
2 \.3 right-child(i) 2i +1
% o &%
Cé 3 45 6 7 8 9 10
|16\14\10\8\7\9\3\ 2]4]1]

Data Structures, Spring 2004 © L. Joskowicz

Data Structures, Spring 2004 © L. Joskowicz

Maintaining the heap property

With a max-heap, finding the maximum element
takes O(1). Removing and inserting an element will
take O(Ig n), where n = heapsize(A)

We need a procedure to maintain the heap property
- Max-Heapify

The idea: when inserting a new element x in the
heap, find its place by “floating it down” when its
value is smaller than the current node to the child
with the largest value. Apply this method recursively
until the right place is found.

Since the tree has height d =

Ign, it will take O(Ig n).

Example of max-heapify
(19
@
5 @ o
(2)

Data Structures, Spring 2004 © L. Joskowicz 6

Fix the heap

4<14

Da

Example of max-heapify

a Sructures, Spring 2004© L. Joskowicz

Example of max-heapify

Data Structures, Spring 2004 © L. Joskowicz 8

Max-Heapify routine
M ax-Heapify(A, i)
| € left(i)
r € right(i)
if 1 <heapsizelA] and A[l] > A[i]
then largest €< |
else largest € r
if r< heapsize[A] and Alr] > Allargest]
then largest € r
if largest!=1i
then Exchange(A[i],Allargest])
10. Max-Heapify(A,largest)

© oo N Ok WDNPE

Data Structures, Spring 2004 © L. Joskowicz

Max-Heapify complexity
e Therunning time on a sub-tree of size n rooted at
nodei is:
— O(1) tofix relations among elements A[i]

— Timeto recursively call Max-Heapify on a sub-tree
rooted at one of the children of I. In the worst case, the
size of such sub-tree is 2n/3, which occurs when the last
row of thetreeis exactly half full.

* Thus, therecurrenceis
T(/2) + O(1) < T(n) < T(2n/3) + BO(1)
» By themaster theorem, a=1, b = 3/2, f(n) = ©(1)
so log,a =0, so case 2 applies: T(n) = O(Ig n).

Data Structures, Spring 2004 © L. Joskowicz 10

Building aheap
Use Max-Heapify to recursively convert the array
AJi] into a max-heap from bottom to top

The elementsin the sub-array Al n/2|+1)...n]
are all leaves of the tree, so each is a 1-element
heap to begin with. The Build-Max-Heap
procedure has to go through the remaining nodes
of the tree and run Max-Heapify on each one

Build-M ax-Heap(A)

1. heapsize[A] € length(A)

2. for i € |length[A]/2] downtol

3. do Max-Heapify(A,i)

Data Structures, Spring 2004 © L. Joskowicz

Example: building aheap (1)
1 2 3 4 5 6 7 8 9 10
[a]1[3]2]16] 910214 8]7] 1

Data Structures, Spring 2004 © L. Joskowicz 12

Example: building aheap (2)

Example: building a heap (3)

Example: building a heap (4)

Example: building a heap (5)

Example: building a heap (6)

Example: building aheap (7)

Correctness of Build-Heap

« A useful technique for proving the correctness of
an algorithm isto use loop invariants, which are
properties that hold throughout the loop.

* Itisvery similar to induction, but it is stated in
terms of the loop. We show that the loop
invariant holds before the loop is executed,
during the loop, and after the loop terminates.

Data Structures, Spring 2004 © L. Joskowicz 19

Invariant of Build-Heap
Build-M ax-Heap(A)
1. heapsize[A] € length(A)
2. for i € |length[A]/2] downto 1l
3. do Max-Heapify(A,i)

Theloop invariant is:

Before the execution of each for step each node
i+1,i+2, ...,nistheroot of amax-heap

Data Structures, Spring 2004 © L. Joskowicz 20

Proof of loop invariant

e Initialization: beforethefirst iteration, i = floor(n/2) and
each nodeisaleaf and isthustrivially amax-heap of size 1.

» Maintenance: show that if theinvariant holds before the
iteration, it will also hold after theiteration. Note that all the
the nodes larger than i are roots of a max-heap, from
previous iterations. Therefore, the sub-treerooted at i is also
aheap, but not a max-heap. After the execution of the
Max-Heapify routine, it becomes a max-heap.

e Termination: i =0, so A[1] istheroot of amax-heap

Data Structures, Spring 2004 © L. Joskowicz 21

Complexity analysis of Build-Heap (1)

* For each height 0 <h <Ign, the number of
nodesin the treeis at most n/2h+1

« For each node, the amount of work is
proportional to its height h, O(h) = n/2*1 .O(h)
e Summing over all heights, we obtain:

ign] Lign
T(n)= Z{ZH o(h) =O[n _ LH]

Data Structures, Spring 2004 © L. Joskowicz 2

Complexity analysis of Build-Heap (2)

S X
» We usethe fact that ;k"k:(l_x)z for | xf<1

| h 1/2
> o | = iiar =2
= 2 1-1/2)

* Therefore:

lonl p = h
T(n)= O[n 2, [W—‘] = O[n% {?-l] =0(n)

* Building a heap takes only linear time and space!

Data Structures, Spring 2004 © L. Joskowicz 23

Sorting with heaps: Heap-Sort
We can use the heap structure to sort an array Afi] of n
elementsin place:
Since the maximum element of the array isitsfirst element,
A[1], it can be put in its correct final position at the end of the
array, in Aln].
We can now recursively fix the heap of the sub-tree rooted at
node 1 and containingn—1 elements with Max-Heapify until
two elements are |ft.
Each call to Max-Heapify takes O(lg n), and it is called once
for each element in the array, so the running timeis O(n Ig n)
adways (best, average, and worst case) with O(n) space.

Data Structures, Spring 2004 © L. Joskowicz 2

do Exchange(A[1],A[i])
heapsize[A] € length(A) -1
Max-Heapify(A,1)

Heap-Sort
Heap-Sort(A)
1. Build-Max-Heap(A)
2. heapsize[A] € length(A)
3. for i € length[A] downto 2 put maximum
4 at the root
5
6

25

Data Structures, Spring 2004 © L. Joskowicz

Example: Heap-Sort

[16[14]10/ 8] 7[9[3] 2 f4]1]

Example: Heap-Sort (2)

Example: Heap-Sort (3)

Example: Heap-Sort (4)

Example: Heap-Sort (5)

Example: Heap-Sort (6)

Example: Heap-Sort (7)
1

5 o
@@
&° Qe

Data Structures, Spring 2004 © L. Joskowicz

Example: Heap-Sort (8)
1

4 2 5 6 é 7
@ @ ©,

W @9

oo | 1] 2|3 4] 7]8]9]10]14]16

&)

3

Priority queues

We can implement the priority queue ADT with a
heap. The operations are:

* Max(S) —returns the maximum element

Extract-Max(S) —remove and return the
maximum element

Insert(x,S) —insert element x into S

Increase-Key(Sx,K) —increase X' svalue to k

Data Structures, Spring 2004 © L. Joskowicz

Priority queues: Extract-Max
Heap-Maximum(A) return A[1]

Heap-Extract-M ax(A)
if heapsize[A] <1
2 then error “heap underflow”
3. max € Al1]

4. A1] € Aheapsize[Al] Make last
5

6

7

=

. heapsize[A] ¢ heapsize[a] -1 &ement thereot
. Max-Heapify(A,1)
. return max

Data Structures, Spring 2004 © L. Joskowicz

Priority queues: Increase-Key

Heap-Increase-key(A, i, key)

1. ifkey<Ali]

2 then error “new key smaller than existing one’
3. Ali] € key

4. whilei> 1 and Alparent(i)] < Ali]

5 do Exchange(A[i], parent(A[i]))

6 i € parent(i)

Data Structures, Spring 2004 © L. Joskowicz

Priority queues: Insert-Max

Heap-Insert-Max(A, key)
1. heapsize{A] €< heapsize[A] + 1

2. Alheapsize[A]] € —©
3. Heap-Increase-Key(A, heapsize[A], key)

Data Structures, Spring 2004© L. Joskowicz 37

Example: increase key (1)

Data Structures, Spring 2004© L. Joskowicz

Example: increase key (2)

Example: increase key (3)

Example: increase key (4)

Data Structures, Spring 2004© L. Joskowicz 41

Summary
* All dynamic operations on a heap take O(lg n)

* All operations preserve the structure of the heap
as an almost complete binary tree

» Treerearrangement isin place

» Heapsort takes time Q(n 1g n) and space Q(n)

Data Structures, Spring 2004© L. Joskowicz

