Data Structures— LECTURE 4

Comparison-based sorting

* Why sorting?

» Formal analysis of Quick-Sort

» Comparison sorting: lower bound

« Summary of comparison-sorting algorithms

Data Structures, Spring 2004 © L. Joskowicz

Sorting
Definition
Input: A sequence of n numbersA = (a,, a,, ..., a,)
Output: A permutation (reordering)
(a,...,a,) suchthat a’;<...<a,
Why sorting?
— Fundamental problem in Computer Science
— Many algorithms use it as a key subroutine
— Wide variety with arich set of techniques
— Known lower bounds, asymptotically optimal
— Many programming and implementation issues come up!

Data Structures, Spring 2004 © L. Joskowicz 2

Sorting algorithms
Two types of sorting algorithms:
1. Comparison sorting: the basic operation isthe
comparison between two elements. a,< g
— Merge-Sort, Insertion-Sort, Bubble-Sort
— Quick-Sort: analysis with recurrence equations

— Lower bounds for comparison sorting:
T(n) =Q(nIgn) and S(n) = Q(n)

Quick-Sort

Uses a“Divide-and-Conquer” strategy:
— Split A[Left..Right] into A[Left..Middle—1] and
A[Middle+1..Right] such that the elements of A[Left..Middle—1]
are smaller or equal than thosein A{Middle+1..Right]

— Sort each part recursively
Quick-Sort(A, Left, Right)
1. if Left<Right thendo

— Heap Sort with priority queues (later, after trees) 2. Middle € Partition(A, Left, Right)
2. Non comparison-based: does use comparisons! 3. Quick-Sort(A, Left, Middle —1)

— Requires additional assumptions 4. Quick-Sort(A, Middle +1, Right)

— Sorting in linear time: T(n) = Q(n) and S(n) = Q(n)

Partition Example (1) i

Rearranges the array and returns the partitioning index Pivot 1% iteration
The partition is the leftmost element larger than the last 2 ‘ 8‘ 7 ‘ 1‘ 3‘ 5 ‘ 6|4 ‘

y . i L R
Partition(A, Left, Right)
1 Pivot ¢ A[Right 2|8[7[1[3]5]6]4] suappedwithitsel
2 i<let-1 fLit tr
3. forj € LefttoRight-1
4. doif (Alj] <Pivot) 2|8[7][1]3]5]6]4]
5. theni€<i+1 1L' 1 fR
6 Exchange(A[i], Alj] !
7. Exchange (Ali+1], AlRight]) 2|s8|7]|1]3|5]|6]4a]
8. returni+1 - ;

e dLi IR 6

Example (2)

Pivot
2|1|7]8[3|5]|6|a]| 1and8swapped
foti ti tr
2|1][3|8]7|5]6[4] 3and7swapped
fL t ti tr
2|1]|3]|8|7|5][6]4]

L t titr
2|1]3]|8]7|5|6]4]
L tr

Data Structures, Spring 2004 © L. Joskowicz

Example (3)

2" jteration

2|1|3|4|[7]5]6]8]
tL t tr

Left list Pivot Right list

Pivot
2|1]|3]|4|7[5]|6[8]| genera patem
L t ti 'tr

Left list Right list Unrestricted
Ali] <Pivat AJi] >Pivat list

Data Structures, Spring 2004 © L. Joskowicz 8

Quick-Sort complexity

The complexity of Quick-Sort depends on whether
the partitioning is balanced or unbalanced, which
depends on which elements are used for partitioning

1. Unbalanced partition: there is no partition, so the
sub-problems are of sizen—1 and 0.

2. Perfect partition: the partition is alwaysin the
middle, so the sub-problems are both of size < n/2.

3. Balanced partition: the partition is somewhere in the
middle, so the sub-problems are of sizen—k and k.

Let us study each case separately!

Data Structures, Spring 2004 © L. Joskowicz 9

Unbalanced partition

The recurrence equation is:

T(n) = T(n—1) + T(0) + B(n)

T(n)=T(h-1)+6(n) A

Sew g

Data Structures, Spring 2004 © L. Joskowicz 10

Perfect partition

I
LTI 11 [T

The recurrence equation is:

T(n) < T(n/2) + T(/2) + O(n)

T(n)=2T(n/2)+©(n)

T(n)=0©(nlgn)

Data Structures, Spring 2004 © L. Joskowicz 1

BRER

Genera case
The recurrence equation is:

T(n)=T(q)+T(n-g-1)+06(n)
T(n)=max {T(a)+T(n-q-1)}+6(n)

Average case is somewhere between unbalanced
and perfect partition:

©(nlgn)<T(n)<©(n?)

which one dominates?

Data Structures, Spring 2004 © L. Joskowicz 12

Example: 9-to-1 proportiona split

* Suppose that the partitioning algorithm always
produces a 9-to-1 proportional split.

* The complexity is:

T(n) = T(n/10) + T(9n/10) + O(n)

* Atevery level, the boundary condition is reached at
depth log;,n with cost ®(n). The recursion
terminates at depth 10g, 9N

 Therefore, the complexity isT(n) = O(n Ig n)

« Infact, thisistrue for any proportional split!

Data Structures, Spring 2004 © L. Joskowicz 13

Worst-case analysis. proof (1)
T(n)=max {T(q) +T(n-q)j+0(n)
Claim: T(n)<cn? =0(n?)
Proof:

Base of induction:True for n=1.
Induction step: Assumefor n<n’, and provefor n'.

T(n)= max(T (@) +T(n-a)} ()

cg? +c(n'—qg)? + dn’

IN

= 2cg®+c¢(n')? - 2con'+dn’

Data Structures, Spring 2004 © L. Joskowicz 14

Worst-case analysis. proof (2)

To prove the claim, we need to show that thisis
smaller than c¢(n")? , or equivalently that:

dn'< 2cq(n'-q)

Since q(n'-q) is aways greater than n/2, as can be
easily verified by checking the two cases:

4<% o n>qg>1
we can pick ¢ such that the inequality holds.

Data Structures, Spring 2004 © L. Joskowicz 15

Average case complexity

* We must first define what is an average case

» The behavior is determined by therelative
ordering of the elements, not by the elements
themselves.

» Thus, we are interested in the average of al
permutations, where each permutation is equally
likely to appear (uniformly random input).

» The average complexity is the number of steps
averaged over a uniformly random input.

» The complexity is determined by the number of
“bad splits’ and the number of “good splits”.

Data Structures, Spring 2004 © L. Joskowicz 16

Bad splits and good splits -- intuition

0 (=D || (-2
\(n —1)/2—1H (n-1)12 \

Alternate bad split Good split

In both cases, the complexity is @(n). Thus
the bad split was “ absorbed” by a good onel!

Data Structures, Spring 2004 © L. Joskowicz 17

Randomi zation and average complexity

« One way of studying the average case analysisisto
analyze the performance of a randomized version of
the algorithm.

* In the randomized version, choices are made with a
uniform probability, and this mimicks input
generality — essentially, we reduce the chances of
hitting the worst input!

» Randomization ensures that the performance is good
without making assumptions on the input

» Randomness is one of the most important concepts
and toolsin modern Computer Science!

Data Structures, Spring 2004 © L. Joskowicz 18

Randomized Quick-Sort

» Randomized Complexity: The number of steps, (for
the WORST input !) averaged over the random
choices of the algorithm.

* For Quick-Sort, the pivot determines the number of
good and bad splits

* We chose the leftmost element to select a pivot.
What if we choose instead any element randomly?

* In Partition, use Pivot € A[Random(Left,Right)]
instead of Pivot € A[Left]
* Note that the algorithm remains correct!

Data Structures, Spring 2004© L. Joskowicz 19

Randomized compl exity
¢ Randomized-case recurrence:

The pivot isequally likely to be in any place, and since there
are n places, each case occursin 1/n of theinputs.
We get: .
1 &
ri0)-2{ S @-+T0-a) ol
g=1
e Thisis “Recurrence with Full History”, since it depends on
all previous sizes of the problem.
It can be proven, using methods which we will not get into
thistime, that the solution for this recurrence satisfies:

Data Structures, Spring 2004© L. Joskowicz 20

Sorting with comparisons

» The basic operation of all the sorting al gorithms we
have seen so far is the comparison between two
elements: a<3g

The sorted order they determine is based only on
comparisons between the input elements!

We would like to prove that any comparison sorting
algorithm must make Q(nlg n) comparisonsin the
worst case to sort n elements (lower bound).

Sorting without comparisons takes Q(n) in the worst
case, but we must make assumptions about the input.

Data Structures, Spring 2004© L. Joskowicz 21

Comparison sorting — lower bound

« Wewant to prove alower bound (Q2) on the worst-case
complexity sorting for ANY sorting algorithm that uses
comparisons.

* Wewill use the decision tree model to evaluate the
number of comparisons that are needed in the worst case.

« Every algorithm A hasits own decision tree T, depending
on how it does the comparisons between elements.

« Thelength of the longest path from the root to the leaves
in thistree T will determine the maximum number of
comparisons that the algorithm must perform.

Data Structures, Spring 2004© L. Joskowicz 2

Decision trees

» A decisiontreeisafull binary tree that represents
the comparisons between elements that are
performed by a particular algorithm.

» Thetree hasinternal nodes, leaves, and branches:
—Internal node: two indicesi:j for 1<i,j<n
—Leaf: apermutation of the input z(1), ... z(n)

— Branches: result of a comparison
a < g (left) or a > g (right)

Data Structures, Spring 2004© L. Joskowicz 23

Decision tree for 3 e ements

Data Structures, Spring 2004© L. Joskowicz 2

Paths in decision trees

The execution of sorting algorithm A on input |
corresponds to tracing a path in T fromtheroot to a
leaf

» Eachinternal node is associated with ayesno
question, regarding the input, and the two edges that
are coming out of it are associated with one of the
two possible answers to the question.

 Theleaves are associated with one possible outcome
of the tree, and no edge is coming out of them.

« At theleaf, the permutation « is the one that sorts
the elements!

Data Structures, Spring 2004© L. Joskowicz 25

Decision tree for 3 elements
| L ongest path: 3!

(7,9,6) @

1(A)=(6,7,9)

Data Structures, Spring 2004 © L. Joskowicz 2%

Decision tree computation

» The computation for an input starts at the root,
and progresses down the tree from one node to
the next according to the answers to the questions
at the nodes.

 The computation ends when we get to a leaf.

« ANY correct algorithm MUST be able to produce
each permutation of the input.

» There are at most n! permutations and they must
all appear inthe leafs of thetree.

Data Structures, Spring 2004© L. Joskowicz 27

Worst case complexity

» The worst-case number of comparisons is the length

of the longest root-to-leaf path in the decision tree.

 The lower bound on the length of the longest path for

agiven algorithm gives alower bound on the worst-
case number of comparisons the algorithm requires.

* Thus, finding alower bound on the length of the

longest path for a decision tree based on comparisons
provided a lower bound on the worst case complexity
of comparison based sorting algorithms!

Data Structures, Spring 2004© L. Joskowicz 28

Comparison-based sorting algorithms

» Any comparison-based sorting algorithm can be
described by adecision tree T.

» The number of leavesin the tree of any comparison
based sorting algorithm must be at least n!, since
the algorithm must give a correct answer to every
possible input, and there are n! possible answers.

* Why “at least”? Because there might be more than
one leaf with the same answer, corresponding to
different ways the al gorithm treats different inputs.

Data Structures, Spring 2004© L. Joskowicz 29

Length of the longest path (1)

« n! different possible answers.
* Consider all treeswith n! leaves.

¢ In each one, consider the longest path. Let d be the depth
(height) of thetree.

¢ The minimum length of such longest path must be such
that n! <2d

 Therefore, log (n!) <log (29) =d
e Quick check: (n/2)W2 <nl <nn
(n/2) log (n/2) <log (n')<nlogn
log (n!) =®(n log n)

Data Structures, Spring 2004© L. Joskowicz 30

Length of the longest path (2)

Claim: forn>2
Proof: log(n') = |09(]_[i":1i) = Zin:llog(i)
>3 log() = 5l0g(5)
=Q(nlog(n)).

On the other hand:

log(n) =" log(i) < nlog(n).
Thisisthe lower bound on the number of comparisons
in any comparison-based sorting a gorithm.

Data Structures, Spring 2004 © L. Joskowicz e

Complexity of comparison-sorting

algorithms
Space Worst | Best case| Average | Random.
case Case Case
Bubble-Sort O(n) o(n?) O(n) o(n?) O(n?)

Insertion-Sort o(n) o(n?) Qo(n) o(n?) o(n?)

Merge-Sort O(nlgn) | O(nlgn) | O(nlgn) | O(nlgn)

Quick-Sort O(n) O(m?) | O(nlgn) | O(nlgn) | O(nlgn)

L ower boundsfor comparison sortingis T(n) = (n Ign)

and S(n) = Q(n) for worst and aver age case, deter ministic
and randomized algorithms.

Data Structures, Spring 2004 © L. Joskowicz 12

