ELPARASOFT

Jjtest

Automatic Java Software
and Component Testing:

Using Jtest® to Automate Unit Testing and Coding Standard Enforcement

=L PARASOFT

Abstract

For some time now, the development community has been praising such practices as
unit testing, coding standard enforcement, metrics measurement, and Design by Con-
tract™. When implemented, these techniques can dramatically improve product reliabil-
ity and reduce development time and cost. However, until now, these practices have
required so much work that few developers could actually adopt them. Jtest® removes
this obstacle for Java™ developers by automating these beneficial techniques. When
performing unit testing, Jtest automatically creates and executes test cases that verify
class functionality and class construction; when statically analyzing code, Jtest enforces
coding standards that prevent errors and measure metrics that help pinpoint complicated
(and thus error-prone) areas of code. By automating these practices, Jtest makes it easy
for even the most time-pressed devel opers to incorporate them into their development
processes and reap the rewards they offer.

1. Introduction
The key to developing reliable Java software on time and on budget is twofold:

* Reduce the opportunity for errors by following Java coding standards.

» Thoroughly test each class as soon asit is devel oped to prevent small mistakes
from growing into widespread, difficult-to-pinpoint problems.

Jest, a unique Java unit testing tool from Parasoft®, completely automates both of these
tasks so you can perform them as frequently and thoroughly as needed. Jtest automati-
cally tests any Java class, JSP, or component without requiring you to write asingle test
case, harness, or stub. With the click of a button, Jtest automatically tests code construc-
tion (white-box testing), tests code functionality (black-box testing), and maintains code
integrity (regression testing). No difficult set-up is required; Jtest pinpoints problems
immediately. Moreover, if you use Design by Contract (DbC) to add specification infor-
mation to your code, Jtest automatically creates and executes test cases that verify
whether a class functions as specified. For information on how Jtest leverages DbC
information, see our paper “Using Design by Contract to Automate Java Software and
Component Testing.”

Jest also helps prevent errors with a customizable static analysis feature that lets you
automatically enforce over 300 industry-respected coding standards, create and enforce
any number of custom coding standards, and tailor the standards enforced to a particular
project or group.

Jest fits seamlessly into existing devel opment processes and Java development IDEs
suchas|BM Visual Age, IBM WebSphere Studio Application Devel oper, Sun Forte, and

Borland JBuilder. It contains special group sharing features so your entire team can eas-
ily share Jtest settings and projects. In addition, it integrates with CV S source control so
that group file access is managed as effortlessly as possible.

This paper explains how devel opment techniques such as unit testing and coding stan-
dard enforcement can help prevent software errors and increase software reliability.
Along the way, it describes how Jtest automates these techniques, enabling them to
become arealigtic part of any development process.

2. Unit Testing
2.1 What is Unit Testing?

Often, developers hear about unit testing and think of module testing. In other words,
developersthink they are performing unit testing when they take a module, or a sub-pro-
gram that is part of alarger application, and test it. Module testing is important and
should certainly be performed, but when we use the term “unit testing,” we are talking
about testing the smallest possible part of an application. In terms of Java, unit testing
involvestesting a class as soon as it is compiled.

2.2 Benefits

Unit testing dramatically improves software quality by helping you detect errors during
implementation, the stage where it is easiest and most cost-effective to find and fix
errors. First of all, because unit testing brings you much closer to the errors, it helpsyou
detect errors that application-level testing might not find. Figures 1 and 2 demonstrate
how unit testing does this.

\ Application /

Potential Errors input

Figure 1: Application Testing

Figure 1 shows amodel of testing an application containing many instances of multiple
objects. The application is represented by the large oval, and the objectsit contains are

represented by the smaller ovals. External arrows indicate inputs. Starred regions show
potential errors.

To find errorsin this model, you need to modify inputs so interactions between objects
will force objectsto hit the potential errors. Thisisincredibly difficult. Imagine standing
at apool table with aset of billiard ballsin atriangle at the middle of the table, and hav-
ing to use a cue ball to move the triangle's center ball into a particular pocket — with
one stroke. Thisis how difficult it can be to design an input that finds an error within an
application. Asaresult, if you rely only on application testing, you might never reach
many of the classes, let alone uncover the errors that they contain.

input

Figure 2: Unit Testing

AsFigure 2 illustrates, testing at the unit level offers amore effective way to find errors.
When you test one object apart from all other objects, it ismuch easier to reach potential
errors because you are much closer to the errors. The difficulty of reaching the potential
errors when the classistested as an isolated unit is comparable to the difficulty of hitting
one billiard ball into a particular pocket with a single stroke. It’s challenging, yet defi-
nitely possible.

The second way that unit testing facilitates error detection is by preventing bugs from
spawning more bugs, which relieves you from having to wade through problem after
problem to remedy what began as a single, smple error. Because bugs build upon and
interact with one another, if you leave abug in your code, chances are it will lead to
additional bugs. If you delay testing until the later stages of development, you will not
only spend more time fixing each bug, but you will also have more bugsto fix. If you
test as you go, you will avoid this scenario. The result: a significant reduction in debug-
ging time and cost.

2.3 Performing Unit Testing

If performed manually, unit testing tends to be difficult, tedious, and time-consuming.
However, by automating the processes involved, Jtest significantly speeds up unit test-
ing and makes it more thorough and precise. In this section, we cover the general steps
that unit testing entails, then describe how Jtest automates them.

The first step in performing unit testing is making the class testable. This requires two
main actions:

» Designing scaffolding that will run the class.

» Designing stubs that return values for any external resources that are referenced
by the class under test, but that are not currently available or accessible.

Creating scaffolding involves creating a new class that can only be used to test the origi-
nal class. Scaffolding should include the following features:

* A standard way to specify setup and cleanup.
* A method for selecting individua tests or all available tests.
* A means of analyzing output for expected (or unexpected) results.

» A standard form of failure reporting.

If your class references any external resources (such as external files, databases, and
CORBA® objects) that are not yet available or accessible, you must then create stubs that
return values similar to those the actual external resource could return. When creating
stubs, you need to choose return values that will test the class's functionality and provide
thorough coverage.

Several modifications or rewrites might be required to design scaffolding that tests the
class thoroughly and accurately. Once the scaffolding is created, you must examine it
carefully to ensure that it does not contain errors. An error in the scaffolding can sabo-
tage the test. However, because you cannot test aclassin isolation (the original prob-
lem), you cannot test the scaffolding either.

Once the classis testable, you need to design and execute the necessary test cases.
Ideally, you will test the class's construction (i.e., perform white-box testing), test its
functionality (i.e., perform black-box testing), then perform regression testing with each
modification to ensure that changes did not affect the class's integrity. (These three
techniques are described in detail in the sections that follow).

Asyou can probably see by now, unit testing can consume afair amount of time, effort,
and resources if performed without an automatic unit testing tool; that’swhy it israrely
performed as often or as thoroughly as necessary. Jest makes unit testing practical by
automating all of the stepsinvolved — even black-box testing. Simply tell Jest which
classor project (aset of classes) you want to test, then Jest automatically examines each
class, generates appropriate scaffolding and any necessary stubs, then automatically
tests the class using the construction, functionality, and regression testing techniques
described later in this section; it aso performs static analysison all available. j ava
files (thisfeature is described in “ Coding Standard Enforcement” on page 11).

2.3.1 White-Box (Construction) Testing

White-box (construction) testing validates that unexpected inputs to a class will not
cause the program to crash. To perform white-box testing, you design and execute test
case inputs derived from the class'sinternal structure to determine whether any possible
class usages will make the class crash (in Java, thisis equivalent to throwing an
uncaught runtime exception) and whether coding defects might make the code more
error-prone. The success of white-box testing hinges on whether your test case inputs
cover the class's methods thoroughly enough to expose its hidden weaknesses.

Preventing and detecting construction problemsin the early stages of development is
particularly critical in Java. In most languages (for example, C and C++), anillegal pro-
gram operation usually results in the program terminating suddenly. Java, by contrast,
provides avery ssmple way to catch exceptions without stopping program execution.
This mechanism was designed to deal with the checked exceptions (i.e.j ava. i 0
exceptions) to simplify the handling of callsto the underlying operating system and
other services. However, aruntime exception arises from an illegal operation and usu-
aly pointsto acritical program error. Catching the exception and letting the program
execution continue is usually more problematic than the sudden termination that occurs
with C++. The program will keep running and appear as though no problem has
occurred, but it will probably enter an inconsistent state, possibly generating incorrect
results and/or corrupting the resources that it is accessing.

Although white-box testing isacritical step in ensuring class and application reliability,
the difficulty involved in performing white-box testing manually usually causesit to be
either skipped or performed less precisely than it should be. Effectively performing
white-box testing requires that someone determine exactly what test cases are required
to fully exercise the class under test. Thisisincredibly difficult to do manually. Recent
studies indicate that atypical company only tests 30% of the source code in the pro-
grams it develops; the remaining 70% is never tested. One reason that so little codeis
tested is the difficulty of writing test cases that test infrequently executed paths or
extreme conditions. To achieve the scope of coverage required for effective white-box
testing, you must execute a significant number of paths. For example, in atypical 10,000
line program, there are approximately 100 million possible paths. Manually generating
input that would exercise all those pathsisinfeasible and nearly impossible.

Jest uses unique technology to completely automate the white-box testing process. Jtest
examines the internal structure of each class under test, automatically designs and exe-
cutes test cases designed to fully test the class's construction, then determines whether
each test case’s inputs would produce an uncaught runtime exception. For each uncaught
runtime exception detected, Jtest reports the exception type, the stack trace, and the call-
ing sequence that led to the problem.

For example, let’s say you have written the following class and want to test its construc-
tion.

package exanpl es. eval ;

public class Sinple

{
public static int map (int index) {
switch (index) {
case O:
caselO:
return -1;
case 2:
case 20:
defaul t:
return -2;
}
}
public static boolean startsWth (String str, String match) {
for (int i =0; i < match.length (); ++i)
if (str.charAt (i) !'= match.charAt (i))
return fal se;
return true;
}
public static int add (int i1, int i2) {
return il + i2;
}
}

Simply tell Jtest where to find this class, then click the Start button. Jtest examines the
class, then creates and executes test cases designed to feed it a wide range of inputs.
Jest’s automatically-generated test cases expose the uncaught runtime exception dis-
played in Figure 3.

-HZ [1] Uncaught Runtime Exceptions: done

E|--->:}é startsWvith: java.lang. StringlndexCutOfBoundsException: String index out of range: 0
| gt java.lang. String.charst (00

- at examples.eval Simple.starts\With (™, "0" [Simple.java, line 19]

b Test Case Input

B | boolean RETWAL = examples.eval Simple.startsiwith (™, "0");

Figure 3: Uncaught runtime exception exposed by Jtest

Figure 4 displays some of the test cases that Jtest automatically created to test thisclass's
construction. These test cases execute awide variety of inputs and fully exercise the
class's methods.

Test Cases for "examples.eval.Simple™ [_ O] x]
=42 [14] Automatic Test Cases
....... ® [0] Simple
#m (2] add
=@ [5] map
@ [7] startsitith
=1 Test Case 1
= l>€>€> TesICaselnput
i - hoolean RETYAL = examples.eval Simple.startsyith (null, null);
= 44 [1] Outcomes

B Q Exception: java lang MullPointerException (suppressed)

| @t examples.eval Simple.startswith (null, null) [Simple java, line 18]
-] Test Case 2
E| ----- l>€>€> TestCaseInput
~| hoolean RETVAL = exarnples.eval Sirple.startswith (null, ™);

E| 4 [2] CQutcomes

----- # Exception: =MNO-Exception=

~e RETVAL = true
=13 Test Case 3
E| Bk Test Case Input

s hoolean RETWAL = examples.eval Simple.startsivith (nall, "0"y;
E| 44 [1] Outcomes

[H- ‘Q Exception: java.lang.MullPointerException {suppressed)
=13 Test Case 4
E| ----- l>€>€> TestCaseInput
: -] honlean RETYAL = examples.eval Simple.startsyith (*, "0";

B4 [1] Dutcomes

El---»-% Exception: java.lang.StringlndexOutOfBoundsException: String index out of range: 0
o] it java lang . String.charAt (0)

o] at examples.eval. Simple.statswith (", "0 [Simple.java, line 18]
=] Test Case &
E| ----- l>€>€> Test Case Input
--| honlean RETYAL = examples.eval Simple.startsivith (0% 0",

E| 4 [2] Cutcomes

- @ Exception: =MO-Exception=

~o# RETYAL =true
{9 Test Case 6
{3 Test Case 7
[+-£7 [0] User Defined Test Cases

4 | o]

Figure 4: Automatically-created white-box test cases

Jest can perform white-box testing on any Java class, JSP, or component, including
classes that reference externa resources (such as external files, databases, Enterprise
JavaBeans™ [EJB], and CORBA). If you are performing white-box testing on classes
that reference external resources, Jtest will automatically generate the necessary stubs,
or give you the option of calling the actual external method or entering your own stubs.
For classes using CORBA, Jtest provides stubs for the Object Request Broker and other
objects referenced by the class. For classes using EJB, Jtest invokes bean initialization
routines and provides a simulated container context, then performs white-box testing to
verify whether the bean class will always behave correctly.

If you find that certain exceptions reported are not relevant to the project at hand, you
can easily tailor Jtest’s error reports to your needs. If you document avalid exception in
the code using the @xcept i on comment tag, Jest will not report any occurrence of
that particular exception. If you use the @r e comment tag to document the permissible
range for valid method inputs, Jtest will suppress errors found for inputs that fall outside
of that range. You can also suppress exceptions using shortcut menus or the suppression
panel.

2.3.2 Black-Box (Functionality) Testing

Black-box (functionality) testing checks that a class behaves according to specification.
Whileitiscritical to ensure that aclassis constructed strongly, it is equally important to
ensure that it functions as expected, and that all parts of the specification have been ful-
filled. To perform black-box testing, you typically create a set of input/outcome relation-
ships that test whether the class's specifications are implemented correctly. At least one
test case should be created for each entry in the specification document; preferably, these
test cases should test the various boundary conditions for each entry. After the test suite
isready, you execute the test cases and verify whether the correct outcomes are gener-
ated.

If your classes use Design by Contract (DbC) to express specification information, Jtest
completely automates the black-box testing process. If your classes do not use DbC,
Jest makes the black-box testing process significantly easier and more effective than it
would be if you were creating test cases on your own.

DbC isaformal way of using comments to incorporate specification information into
the code itself. Basically, the code specification is expressed unambiguously using a
formal language that describes the code'simplicit contracts. These contracts specify
such requirements as:

» Conditions that must hold true before a method can execute (preconditions).
» Conditions that must hold true after a method completes (postconditions).

» Conditions that must hold true any time a client can invoke an object’s method
(invariants).

* Method body assertions that must evaluate to true (assertions).

Jest reads each class's DbC specification information, then automatically develops test
cases based on this specification. Jtest designsits test cases as follows:

» If thecode has @ost contracts, Jtest creates test cases that verify whether the
code satisfies those conditions.

» If thecodehas @ssert contracts, Jtest creates test cases that try to make the
assertions fail.

» |Ifthecodehas @ nvar i ant contracts, Jtest creates test cases that try to make
the invariant conditions fail.

» If thecode has @r e contracts, Jtest triesto find inputs that force all of the
paths in the preconditions.

» If the method under test calls other methods that have specified @r e contracts,
Jest determines whether the method under test can pass non-permissible values
to the other methods.

» If any class under test (with or without contracts) calls a class that contains con-
tracts, Jest determines whether the class under test can interact with the second
classin away that violates the contract.

If any contract violations are found, they are reported under the Jtest Ul’s Design by
Contract Violations branch.

Class Testing Ul 9= E3

File Test ¥iew Preferences Tools Window Help
> m | d Bk e =

Start Stop Report Resul Wiew Metrics Clasz Global Rules Source Help

A

8] Static Analysis Violations: done
1] Design by Contract Violations: done

[0] @pre violations

[1] @post violations

S [$result==a + h]

at examples.eval Example.add§dbcipost [Examplejava, line 4]
------ | at examples.eval Example.add (7, 7) [Example.java, line 8]
Test Case Input

[0] @imvariant violations

[0] @assert violations

[0] i@concurrency violations

1] Uncaught Runtime Exceptions: done

0] Specification and Regression Errors: done

| ChjavalExample.ctp |

Figure 5: Functionality problem automatically exposed by Jtest

For amore detailed description of how Jtest automatically creates and executes test
cases that verify class functionality, aswell asinformation on how DbC information can
help focus Jtest’s white-box testing, see our paper “Using Design by Contract to Auto-
mate Java Software and Component Testing.”

Jest also helps you create black-box test casesif you do not use DbC. You can use
Jest’s automatically-generated set of test cases as the foundation for your black-box test
suite, then extend the test suite by adding your own test cases.

Test cases can be added in avariety of ways, for example, test cases can be introduced
by adding

» Method inputs directly to atree node representing each method argument.

» Constants and methods to global or local repositories, then adding them to any
method argument.

* JUnit-like Test Classes for test cases that are too complex or difficult to be added
as method inputs. JUnit Test Classes can be created automatically based on auto-
matic or user-defined inputs, and JUnit Test Class templates can be automatically
generated for any class so you never have to build a Test Class from scratch.

T Class Test Parameters: C:\Program Files\ParaS... =] B3
-3 Static Analysis -
= Dynamic Analysis
<& Petform Dynamic Analysis: inherit
st Case Generation
Automatic
1111 User Defined
1] Method Inputs
------ @ [0] Simple k Exportto a JUnit Test Class

Delete All Inputs

- [1] int A

e 3

By [1] intARG2
Leags §

""" @ [0] startsivith
~£ [0] Test Classes
Common

Automatically Instrument Desion by Contract Comme
ubs

e-filtering Suppression Categories
.

Tea=t Cace Fraliatinn e
| | »

Figure 6: Creating a Test Class based on method inputs

If aclass references external resources, you can enter your own stubs or have Jest call
the actual external method.

When the test isrun, Jtest uses any available stubs, automatically executes the inputs,
and displays the outcomes for those inputs in a simple tree representation. You can then
view the outcomes and verify them with the click of abutton. Jtest automatically notifies
you when specification or regression testing errors occur on subsequent test runs.

2.3.3 Regression Testing

Performing precise regression testing is another necessary step in guaranteeing software
quality and reliability. Regression testing — testing modified code under the exact same
set of inputs and test parameters used in previous test runs — is the only way to ensure
that modifications did not introduce new errors into the class, or to check if modifica-

10

tions successfully eliminated existing errors. Every time a classis modified or used in a
new environment, regression testing should be used to check the class's integrity.

Jest lets you perform regression testing at the class level; this means that you can run
test suites that monitor your code’s integrity early in the devel opment process. Jtest
completely automates all stepsinvolved in and related to regression testing. Even if you
do not specify the correct outcomes, Jtest remembers the outcomes from previous runs,
compares the outcomes every time the classis tested, then reports an error for any out-
come that changes. If you specify the correct outcomes, Jtest uses those values as a ref-
erence when running regression tests. Whenever Jtest tests a class or set of classes, it
automatically saves all test inputs and settings, then adds the test to Jtest’s menu options.
Asaresult, all you need to do to perform regression testing is select the appropriate test,
then click the Start button. You can also integrate batch-mode Jtest into your nightly
builds to ensure that regression errors are always found and fixed as soon as possible.

3. Coding Standard Enforcement
3.1 What Are Coding Standards?

Coding standard enforcement is another software development practice that has been
proven to increase application reliability and reduce development time. Coding stan-
dards are language-specific “rules’ that prevent errors by reducing the opportunity for
making errors. Coding standards should be enforced as soon as the code is written and
should be implemented in al languages. If they are applied consistently, they can pre-
vent entire classes of errors from entering the code.

The best way to explain what coding standards are and how they work isto show an
example. In the code below, a smple spacing error destroys the code’s functionality:

public class PB_TLS {
static int method (int i) {
switch (i) {
case 4.
case3:
i ++;
br eak;
case 25:
wr ongl abel :
br eak;
defaul t:
}

return i;

}

public static void main (String args[]) {
int i = method (3);
Systemout.println (i);

11

Asyou can see, the developer intended to writecase 3 but instead wrote case3.
Because of this simple typographical error, case3 will now become atext label. Mean-
while, wheni equals 3, thevaluewill not gotocase3. Instead, i = 3 will dwaysgo
to the default. This codeis not illegal, but it isincorrect.

If the developer of this code had followed the coding standard “Don't use text labelsin
swi t ch statements,” he would have found his mistake and this problem would have
been avoided.

3.2 Enforcing Coding Standards

During static analysis, Jtest automatically enforces the above coding standard, aswell as
over 300 additional industry-respected coding standards; this allows you to enforce cod-
ing standards without consuming valuable code review time. Jest statically analyzes
each class by parsing the . | ava source and applying to it acomprehensive set of Java
coding standards. After analysisis complete, Jtest alerts you to any coding standard vio-
lations found.

Class Testing Ul [_ O]]

File Test Wiew Preferences Tools Window Help
b v 2 -
B J »
Sl m g h R ‘D 7
Repnrt Resul \."law Metrics | Class Glnhal Rules | Source Help

Few Project Stat S

Class Mame Iexamplea eval Simple Browse |

+27 [12] Static Analysis Violations: done
[1] Awoid using text labels in "switch" statements. (PB.TLS-1)
+3 [Simplejava, line 8] Text label 'tase! 0' may be typo for 'case 10°

Hag [1] Provide a private” default constructar for utilty classes. (CODSTAUCDC-2)
3 [Simple.java, line 4] Utility class does not have a "private” default constructor: 'Simple’.
vl 3] Provide Javadoc comments for "public® methods. (AYADOC PUDCM-1)
+# 2] Mumber of"return” staternents. (METRICS.TRET-2)
B+ [2] Avoid using literal constants. (CODSTAUSN-2)
¢ e [Simplejava, line 13] Literal constant is used: -2
+3 [Simple.java, line 11] Literal constant is used: 20
[1] Provide a file header camment for each source file. (FORMAT MCH-2)
- [0] Design by Contract Violations: done
-+ [1] Uncaught Runtime Exceptions: done [—
v startsWWith: java lang StringindexQutOBounds Exception; String index out of range; 0 -

| CljavalSimple.ctp |

Figure 7: Coding standard violations found by Jtest

Jest’s coding standards are divided into the following categories:

* Possible Bugs
* Object-Oriented Programming
* Unused Code

12

* Formatting

* Initialization

* Naming Conventions
» Javadoc Comments

* JUnit Test Cases

* Portability

e Optimization

» Garbage Collection

» Threads and Synchronization
* Enterprise JavaBeans
» ClassMetrics

* Project Metrics

* Miscellaneous

* Internationalization

» Security

* Servlets

In addition, Jtest includes a set of coding standardsthat help you use Design by Contract
(DbC) to add contracts to your code. For more information about this set of coding stan-
dards, see our paper “Using Design by Contract to Automate Java Software and Compo-
nent Testing.”

Each of Jtest’s coding standards is assigned a violation severity level (violations of cod-
ing standards that are most likely to cause an error are level 1; violations of coding stan-
dards that are least likely to cause an error are level 5). By default, Jtest reports
violations of all coding standards with a severity level of 1 and 2. However, it is easy to
tailor Jtest’s static analysis feature to meet the needs of a project or development team.
With the click of abutton, you can enable or disable asingle coding standard, or all cod-
ing standards that belong in acertain level or category. You can also create rule mapping
filesto modify rule categorization or severity. Because this customization capacity
relieves you from having to sort through messages that are not relevant to your team or
project, it expedites the error prevention process.

To learn more about how Java coding standards can help prevent errors, see the “ Enforc-
ing Coding Standards’ chapter in Adam Kolawa et al, Bulletproofing Web Applications
aswell as John Viagaet al, “ Statically Scanning Java Code: Finding Security Vulnera-
bilities’ in |EEE Software, September/October 2000.

13

3.3 Customized Coding Standards

If you want to create and enforce customized coding standards that prevent problems
unique to your coding style, team, or project, you can do so with Jtest’s RuleWizard fea-
ture. RuleWizard lets you compose and modify coding standards (“rules’) by graphi-
cally expressing the pattern you want Jest to find during static analysis. Rules are
created by pointing and clicking to add rule building blocks to a flowchart-like represen-
tation, then using dialog boxes to make any necessary modifications. No knowledge of
the parser isrequired to write or modify arule. During testing, Jest implements these
custom coding standards along with “built-in” coding standards.

For example, if you find that you repeatedly use assignment ini f statement condition
when you should use equality (i.e., youwritei f (a=b) when you should writei f
(a==Db)), you could create and enforce the following coding standard: “Avoid assign-
mentini f statement condition.”

ﬁkule\'ﬁzard - Java: PE_ASLrule
File Modes Rule Yiew Help

=4 Staternents |

------ # Simple
------ #® break

...... ® for Candition
...... - a=h

Java Results
|

Figure 8: Customized coding standard created with RuleWizard

By providing an easy, flexible way to enforce even the most complex and unique Java
coding standards, Jtest helps you perform what many software development experts
believe is the most essential task in ensuring software quality: error prevention. Prevent-
ing as many errors as possible from entering the code translates not only to lesstime,
effort, and money spent finding and fixing errors as the project progresses, but also to a
significantly reduced risk of having errors that elude testing and make their way to the
end user.

14

3.4 Metrics

A metric is ameasurement of a specific attribute or pattern of attributes in a piece of
code. For example, ametric might measure the total lines of codein afile, the number of
method callsin aclass, or the number of return statementsin a method. Like traditional
coding standards, metric measurements can help prevent errors from entering the code.
They do this by indicating which areas of code are most complicated and thus most
error-prone and difficult to debug.

For error-prevention purposes, the most effective metrics are specific and correlated to
particular areas of code. For example, it might be interesting to know that your codeis
generally complicated, but it is much more useful to know which specific classes and
methods are the most complicated and why. If you use metrics analysisto target the most
complicated code, you can simplify the code before problems arise.

It isalso beneficial to measure more general, project-wide metrics. When you use met-
rics consistently and track them across multiple team or company projects, you can use
them to make determinations about project length, cost, and status.

Jest automatically measures both class and project metrics during static analysis. If any
metrics fall outside the specified “legal” bounds, Jtest reports a static analysis violation
for each out-of-bound metric. These messages report the exact location of the problem,
S0 you can easily determine what code should be simplified and how it should be
changed. Jtest also offers a summary of all metrics for each class and each project.

15

T& Metrics for Class: examples.eval.Simple [H[=]E3

& Cyclomatic Complexity: [0to 2], average 1.0

& "class” ortinterface” inheritance level: 0

& Mumber of lines in "class" or“interface"; 24

& Mumber of fields: 0

& Mumber of methods: 3

& Mumber of package-private fields: 0

& Mumber of package-private methods: 0

& Number of "private” fields: 0

& Mumber of "private" methods: 0

& Mumber of "protected” fields: 0

& Mumber of "protected" methods: 0

& Mumber of "public” fields: 0

& Mumber of "public" methods: 3

& Mumber of lines in a method: [3 to 11], average 6.66
& Number of method calls: [0to 3], average 1.0

& Mumber of parameters: [1 to 2], average 1.66

& Mumber of "return” statements: [1 to 2], average 1.66
& Mumber of statements in a method: [1 to 6], average 4.33
& Percentage of Javadoc comments (%3 0

4 | »

Metrics for Project: C:\Program Files\ParaSoft\.Jtestd...
=23 Project Metrics

g Mumber of bytes: 6013
& Nurnher of classes: 8
—4& Number of Java source files: 8
g% Nurmnher of lines: 349
—4 Number of packages: 1
& Number of package-private classes: 0
—4 Number of “private” classes: 0
&% Nurnber of *protected” classes: 0
4 Number of "public’ clagses: 8
& Nurnher of fields: 12

& NMumber of methods: 29

[=-{Z3 Class Metrics Averages

|

& Cyclomatic Complexity: [010 2), average 0.26
- "tlass" or"interface” inheritance level: [01o 0], average 0.0
& Numbet of lines in “class” or“interface” [11 1o B8], average 32.1
g Number of fields: [0 to 4], average 1.5
& Number of methods: [1 to 8], average 3.62
- Number of package-private fields: [0 to O], average 0.0
& Number of package-ptivate methods: [0 to 1), average 0.25
g Number of "private” fields: [0 1o 4], average 1.5
& Number of "private” methods: (010 1], average 0,12
- Mumber of "protected” fields: [0to 0], average 0.0
& Number of "protected” methods: [0 to O], average 0.0
g Mumber of "public” fields: [0to 0], average 0.0
& Number of"public* methods: [1 to 6], average 3.25
g Mumber of lines in a method: [3 to 13], average 6.06
& Numbet of method calls: [0to 5], average 0.73
g Mumber of parameters: [01o0 2], average 0.83
& Number of "retum” statements: [01o 2], average 0.53
- Mumber of statements in a method: [1 to 8], average 2.82
& Percentage of Javadoc comments (%3 [0to 10, average 1.25

| »

In addition, Jest tracks metrics across the duration of a project; it saves project metrics

Figure 9: Class and Project Metrics

for each test, and graphs how the following metrics change over time:

Total
Total
Total
Total
Total
Total
Total
Total
Total

number of bytes of all classfilesin the project.
number of classesin the project.

number of Java source files in the project.
number of linesin the project’s classes.

number of packages in the project.

number of package-private classes in the project.
number of private classesin the project.

number of “protected” classesin the project.

number of “public” classes in the project.

16

Number of Bytes Graph =] E3

Numbetr of Bytes Graph
10768

10,020_]
a2z1_|
7785_]
7037_] (===
723 6723

6,289
55M_|]
470z _|

4,045,

237

T T T T
320 22101 22101 32101 32101

Figure 10: Metrics graph: bytes over time

4. Conclusion

For some time now, the development community has been praising such practices as
unit testing, coding standard enforcement, metrics measurement, and Design by Con-
tract. When implemented, these techniques

» Decrease the number of errorsin your code.

* Reduce the amount of debugging you need to perform.

* Improve the quality of the software you release.

* Reduce development and maintenance time and cost.
Until now, these practices have required so much work that few devel opers could actu-
aly adopt them. By automating these practices, Jtest makes it easy for even the most

time-pressed devel opers to incorporate them into their development processes and reap
the rewards they offer.

5. References

Kolawa, A., Hicken, W., Dunlop, C., Bulletproofing Web Applications. Hungry Minds,
Inc. (ISBN 0764548662), 2001.

17

Parasoft Corporation, “Using Design by Contract to Automate Java Software and Com-
ponent Testing.” http://www2.parasoft.com/jsp/products/article.jsp?arti-
cleld=579& product=Jtest.

Schroeder, M., “A Practical Guide to Object-Oriented Metrics.” IT Pro, November/
December 1999.

Viaga, J., McGraw, G, Mutsdoch, T. and Felten, E., “ Statically Scanning Java Code:
Finding Security Vulnerabilities.” |EEE Software, September/October 2000.

6. Availability

Jest isavailable now at www.parasoft.com. To learn more about how Jest and other
Parasoft devel opment tools can help your department prevent and detect errors, talk to a
Software Quality Specialist today at 1-888-305-0041, or visit www.parasoft.com.

7. Contacting Parasoft

USA

2031 S. Myrtle Ave.
Monrovia, CA 91016

Toll Free: (888) 305-0041
Tel: (626) 305-0041

Fax: (626) 305-3036
Email: info@parasoft.com
URL: www.parasoft.com

Europe

France: Tel: +33 (1) 64 89 26 00
UK: Tel: +44 (020) 8263 2827
Germany: Tel: +49 7805 956 960
Email: info-europe@parasoft.com

Parasoft and Jtest are registered trademarks of Parasoft Corporation. RuleWizard and Jcontract are trademarks of Parasoft Corpora
tion. All other brands are trademarks or registered trademarks of their respective holders.
Last Updated 3/8/02

18

	Abstract
	1. Introduction
	2. Unit Testing
	2.1 What is Unit Testing?
	2.2 Benefits
	2.3 Performing Unit Testing

	3. Coding Standard Enforcement
	3.1 What Are Coding Standards?
	3.2 Enforcing Coding Standards
	3.3 Customized Coding Standards
	3.4 Metrics

	4. Conclusion
	5. References
	6. Availability
	7. Contacting Parasoft

