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8. The Virtual Machine II: Flow Control1 
 

It’s like building something where you don’t have to order the cement. 
 You can create a world of your own, your own environment, 

and never leave this room.  
(Ken Thompson, 1983 Turing Award lecture) 

 
Chapter 7 introduced the notion of a virtual machine (VM), and ended with the construction of a 
basic VM implementation over the Hack platform.  In this chapter we continue to develop the 
virtual machine abstraction, language, and implementation.  In particular, we focus on a variety 
of stack-based mechanisms designed to handle nested subroutine calls (procedures, methods, 
functions) of procedural or object-oriented languages.  As the chapter progresses, we extend the 
previously built basic VM implementation, ending with a full-scale VM translator.  This 
translator will serve as the backend of the compiler that we will build in chapters 10 and 11, 
following the introduction of a high-level object-based language in chapter 9.  
 
In any “Great Gems in Computer Science” contest, stack processing will be a strong finalist.  The 
previous chapter showed how any arithmetic and Boolean expression could be calculated by 
elementary stack operations.  This chapter goes on to show how this remarkably simple data 
structure can also support remarkably complex tasks like dynamic memory management, nested 
subroutine calling, parameter passing, and recursion. Most people tend to take these 
programming capabilities for granted, expecting modern programming languages to deliver them, 
one way or another.  We are now in a position to open this black box, and see how these 
fundamental programming mechanisms can be supported and implemented using a relatively 
simple stack-processing model. 
 
1. Background 
 
The previous chapter focused on the arithmetic, logical, and data management operations of a 
typical stack-based, virtual machine. This, of course, was just the beginning.  If we want our VM 
to become the backend of present and future compilers, we obviously need to support program 
flow and subroutine handling capabilities as well. We will do this by equipping the basic VM 
with two additional and final sets of commands: program flow commands for handling 
conditional and unconditional branching, and function commands for handling subroutine calls. 
 
The remainder of this section gives an informal introduction to both subjects. This sets the stage 
for section 2, which rounds up the VM specification started in Chapter 7.  Sections 3 and 4 
discuss how to actually complete the VM implementation, leading to a full-scale VM-to-Hack 
translator. 
 
1.1 Program flow 
 
The default execution of computer programs is linear, one command after the other.  This 
sequential flow is occasionally broken, e.g. to embark on another iteration of a loop. In low-level 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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programming, this branching logic is accomplished by instructing to continue execution at some 
specified part of the program other than in the next instruction, using a “goto destination” 
command.  The destination specification can take several forms, the most primitive being the 
physical address of the instruction that should be executed next.  A slightly more abstract 
redirection is established by describing the jump destination using a symbolic label rather than a 
physical address.  This variation requires that the language be equipped with some labeling 
command, designed to assign symbolic labels to selected points in the program.  
 
The basic goto mechanism just described can be easily altered to affect conditional branching as 
well.  Instead of jumping to some destination unconditionally, an “if-goto destination” command 
instructs to take the jump only if a certain Boolean condition is true; if the condition is false, the 
regular program flow should continues, executing the next command in the code. How should we 
introduce the Boolean condition specification into the if-goto mechanism? In stack-based 
machines, the simplest and most natural approach is to condition the jump on the value of the 
stack’s top element: if it’s not zero, jump to the specified destination; otherwise execute the next 
command in the program.  Since the topmost stack value can be computed using any series of 
arithmetic and logical VM operations, one can condition the jump operation on arbitrarily 
complex Boolean expressions. 
 
As is often the case in computer science, humble appearance often belies a great power of 
expression. In this case, the simple goto and if-goto commands can be used to express all the 
conditional and repetition constructs found in any high-level programming language.  Figure 1 
gives two typical examples. 
 

High-level source code   Compiled low-level pseudo code  
if (cond)     code for computing cond 
   s1    if-false-goto L1 
else    code for executing s1 
   s2    goto L2 
…  label L1 
    code for executing s2 
  label L2 
       … 
  

  
while (cond)  label L1 
   s1    code for computing cond 
…    if-false-goto L2 
    code for executing s1 
    goto L1 
  label L2 
        … 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Figure 1: Implementing flow of control using goto and if-goto commands. 
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1.2 Subroutine Calls 
 
Any programming language is characterized by a fixed repertoire of elementary commands. The 
key abstraction mechanism provided by modern languages is the freedom to extend this 
repertoire with high-level operations, designed to meet various programming needs.  Each high-
level operation has an interface specifying how it can be used, and an implementation consisting 
of elementary commands and previously defined high-level operations.  In procedural languages, 
the high-level operations are called subroutines, procedures, or functions. In object-oriented 
languages they are usually called methods, and are typically grouped into classes.  In this chapter 
we will use the term subroutine to refer to all these high-level programming constructs.   
 
The use of a subroutine is typically referred to as a call operation.  Ideally, the part of the 
program that calls the subroutine -- the caller -- should treat the subroutine like any other basic 
operation in the language.  To illustrate, the caller typically contains a sequence of commands 
like <c1, c2, call s1, c3, call s2, c4, …>, where the c’s are elementary commands and the s’s 
are subroutine names. In other words, the caller assumes that the code of the called subroutine 
will get executed -- somehow -- and that following the subroutine’s termination the flow of 
control will return -- somehow -- to the next instruction in the caller’s code.  The freedom to 
ignore these implementation details enables us to write programs in abstract terms, using high-
level operations that are closer to the world of algorithmic thought than to the world of machine 
execution. 
 
Of course the more abstract is the high level, the more work the low level must do.  In particular, 
in order to support subroutine calls, VM implementations must handle several issues: 

• Passing parameters to the called subroutine, and optionally returning a value from the 
called subroutine back to the caller; 

• Allocating memory space for the local variables of the called subroutine, and freeing the 
memory when it is no longer needed; 

• Jumping to execute the called subroutine’s code; 

• When the called subroutine terminates, returning (jumping back) to the command 
following the call operation in the caller’s code. 

 
These issues must be handled in a way that takes into account that subroutine calls can be 
arbitrarily nested, i.e. one subroutine may call another subroutine, which may then call another 
subroutine, and so on and so forth, to any desired depth.  To add to the complexity, we also need 
to support recursion.  This means that subroutines should be allowed to call themselves, and each 
recursion level must be executed independently of the other calls. 
 
1.3 Stack-Based Implementation  
 
We see that the low-level handling of subroutine calls is rather delicate.  The property that makes 
this task tractable is the hierarchical structure of the call-and-return logic: the called subroutine 
must complete its execution before the caller can resume its own execution.  This protocol 
implies a Last-In-First-Out (LIFO) structure, resembling (conceptually) a stack of active 
subroutines.  All the layers in the stack are waiting for the top layer to complete its execution, at 
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which point the stack become shorter and execution resumes at the level just below the previous 
top layer. 
 
Indeed, users of high-level programming languages often encounter terms like “call-stack,” 
“stack overflow,” and so on.  To illustrate, figure 2 shows a method calling pattern in a high-level 
program, along with some run-time checkpoints and the states of the abstract call-stack associated 
with them. 
 
 

 
method a: 
    call b 
    call c 
 
method b: 
    call c 
    call d 
 
method c: 
    call d 
 
method d: 
       … 

start a 
      start b 
          start c 
               start d 
                             stack stateÆ 
               end d 
          end c 
          start d 
                             stack stateÆ 
          end d 
      end b 
      start c 
           start d 
           end d 
      end c 
end a 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a 

b 

c 

d 

a 

b 

d 

 

 
Figure 2: Subroutine calls and the abstract call-stack states generated by their execution. 

 
It is perhaps useful to note that from this point onward, the term stack will be used rather freely, 
and the reader should be able to tell from the sentence context the which stack we are taking 
about.  For example, the call stack in Figure 2 is merely a conceptual notion, listing the names of 
all the active subroutine that are presently running.  The global stack, on the other hand, is a real 
object.  In particular, note that each subroutine that has not yet returned must maintain somehow 
its private set of local variables, argument values, pointers, and so on. Taken together, these data 
items are called the method’s frame.  Where should we keep all these frames? As Figure 2 shows, 
we can put them on the global stack.  The reader may wander where the working stack from the 
previous chapter fits in -- the stack that supports the VM’s push, pop, and arithmetic operations.  
Well, this stack can be maintained at the very top of the global stack, as we will see later. 
 
The agent responsible for maintaining the global stack and implementing the call-and-return 
mechanism is the VM implementation.  In order to carry out this stack, the VM implementation 
must handle such issues as return addresses, local variables allocation and de-allocation, and 
parameter passing.  
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Return address: The VM implementation of the “call subName” command is straightforward.  
Since the name of the target subroutine is specified in the command, the VM implementation has 
to resolve the name to a memory address -- a rather simple task -- and then jump to execute the 
code starting in that address. 
 
Returning from the called subroutine via a “return” command is trickier, as the command 
specifies no return address.  Indeed, the caller’s anonymity is inherent in the very notion of a 
subroutine call.  For example, subroutines like sqrt(x) or modulu(x,y) are designed to serve 
many unknown callers, implying that the return address cannot be part of their code. Instead, a 
“return” command should be interpreted as follows: re-direct the program’s execution to the 
command following the command that called the current subroutine, wherever this command 
may be in the program’s code.  The memory location to which we have to return is called return 
address. 
 
One way to implement the return logic is to have the VM implementation save the return address 
just before the subroutine is called, and have it retrieved just after the subroutine exits.  
Conveniently, this store-and-recall setting lends itself perfectly to stack storage: the VM 
implementation can push the return address onto the stack when a subroutine is called, and pop it 
from the stack when the subroutine returns.  In terms of Figure 2, the return address can be kept 
in the method’s frame. 
 
Parameter passing: An important characteristic of well-designed languages is that high-level 
operations defined by the programmer will have the same “look and feel” as that of elementary 
commands. Consider for example the operations add and raise to a power.  VM implementations 
will typically feature the former as an elementary operation, while the latter may be written as a 
subroutine.  In spite of their different implementations, we would like to use both operations in 
the same way.  Thus, assuming that we have already written a Power(x,y) subroutine that 
computes x to the y-th power, we would like to be able to write VM code segments like those 
depicted in Program 3. 
 
 // x+3  // x^3  // (x^3+2)^y 

push x  push x  push x 
push 2  push 3  push 3 
add  call power  call power 
    push 2 
    add 
    push y 
    call power 

 
 
 
 
 
 
 
 

PROGRAM 3: VM elementary commands and high-level operations have 
the same look-and-feel in terms of arguments usage and return values.  Thus 
they can be easily mixed together, yielding well-designed and readable code.  

 
Note that from the caller’s perspective, any subroutine -- no matter how complex -- is viewed and 
treated as a black box operation. In particular, just like with elementary VM  commands, the 
caller expects the subroutine to remove its arguments from the stack and replace them with a 
return value  (which may be ignored by the caller).  Thus, the contract is as follows: the caller 
passes the arguments to the subroutine by pushing them onto the stack; the called subroutine pops 
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the arguments from the stack, as needed, carries out its computation, and then pushes a return 
value onto the stack.  The result is a simple and natural parameter passing protocol requiring no 
memory beyond the already available stack structure. 
 
Local variables: Subroutines rely on local variables for temporary storage.  And when a 
subroutine is used recursively, each recursion level must maintain its own set of local variables.  
Note however that these variables must be stored in memory only during the subroutine call’s 
lifetime, i.e. from the point the subroutine starts executing until it returns.  At this point, the 
memory space allocated to the local variables can be freed.  How can the VM implementation 
effect this dynamic memory allocation? 
 
Once again, the hard-working stack comes to the rescue.  Although the subroutine calling chain 
may be arbitrarily deep as well as recursive, only one subroutine executes at the end of the chain, 
while all the other subroutines up the calling chain are waiting.  The VM implementation can 
exploit this Last-In-First-Out (LIFO) processing model by storing the local variables of all the 
waiting subroutines on the stack, and reinstate them when control returns to the subroutine to 
which they belong.  Revisiting Figure 2, we see that local variables can be saved in, and indeed 
they are part of, the method’s frame. 
.   
 
2. VM Specification, Part II 
 
This section extends the basic VM Specification from Chapter 7 with program flow and function 
commands.  This completes the overall VM speciation. 
 
2.1 Program Flow Commands 
 
The VM language features three program flow commands: 
 

label c This command labels the current location in the function’s code.  Only labeled 
locations can be jumped to from other parts of the program.  The label c is an 
arbitrary string composed of letters, numbers, and the special characters “_”, 
“:”, and “.”.  The scope of the label is the current function. 

goto c This command effects a "goto" operation, causing execution to continue from 
the location marked by the c label.  The jump destination must be located in the 
same function. 

if-goto c This command effects a "conditional goto" operation.  The stack’s topmost 
value is popped; if the value is not zero, execution continues from the location 
marked by the c label; otherwise, execution continues from the next command 
in the program. The jump destination must be located in the same function. 

 
TABLE 4: Program flow commands. 
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2.2 Function Commands 
 
Each function has a symbolic name that is used globally to call it.  The function name is an 
arbitrary string composed of letters, numbers, and the special characters “_” and “.”.   (We 
expect that a method bar in class Foo in some high-level language will be translated by the 
language compiler to a VM function named Foo.bar).  
 
The VM language features three function-related commands: 
 

function f n Here starts the code of a function named f, 
which has n local variables; 

call f m Call function f, stating that m arguments 
have already been pushed onto the stack; 

return Return to the calling function. 

 
TABLE 5: Function calling commands. 

 
 
The Calling Protocol 
 
The events of calling a function and returning from a function can be viewed from three different 
perspectives: that of the calling function, the called function, and the VM implementation. 
 
The calling function view:  

1. Before calling the function, I (the caller) must push all the arguments unto the stack;   

2. Next, I invoke the called function  f  using the command “call  f “; 

3. After the called function returns, the arguments that I pushed before have disappeared from 
the stack and the function’s return value (that always exists) appears at the top of the stack;   

4. After the called function returns, all my memory segments (e.g. arguments and locals) 
are the same as before the call, except for the Temp segment that is now undefined.   

 
The called function view: 

1. Upon getting called, my argument segment has been initialized with values passed by the 
caller, my local variables segment has been allocated and initialized to zero, the working 
stack that I see is empty, and the static segment that I see has been set to the static 
segment of the file to which I belong.  All the other memory segments are undefined and 
can be used as needed.  

2. Just before returning, I must push a value onto the stack. 
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The VM implementation view:  

When a function calls another function, I (the VM implementation) must: 
• Save the return address and the segment pointers of the calling function (except for temp 

which is not saved); 
• Allocate, and initialize to zero, as many local variables as needed by the called function; 
• Set the local and argument segments of the called function;  
• Transfer control to the called function. 

When a function returns, I (the VM implementation) must: 
• Clear the arguments and other junk from the stack; 
• Restore the local, argument, this and that segments of the calling function; 
• Transfer control back to the calling function, by jumping to the saved return address. 

 
2.3 Initialization 
 
When the VM starts running (or is reset), the VM function named “Sys.init” gets executed.   
 
 
3. Implementation 
 
We are now ready to complete the VM implementation whose first part was specified in Chapter 
7. We begin by laying out the full stack structure that must be maintained by the implementation, 
and how it can be mapped over the Hack platform. Next, we give design suggestions and a 
proposed API, leading to a full-scale virtual machine implementation, based on a VM-to-Hack 
translator. This program can be viewed as a stand-alone language translator, as well as the 
backend module of our future compiler. 
 
3.1 The Global Stack 
 
The “system memory” of the VM is implemented by maintaining a global stack.  Each time a 
function is called, a new block is added to the global stack.  The block consists of the arguments 
that were set for the called function, a set of pointers used to save the state of the calling function, 
the local variables of the called function (initialized to 0), and an empty working stack for the 
called function.  Importantly, the called function sees only the tip of this iceberg, i.e. the working 
stack.  The rest of the global stack is used only by the VM implementation and is not visible to 
VM functions. 
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argument n-1

ARG

Saved frame of the
calling function.
Used to return to, and
restore the segments
of, the calling function
upon returning from the
called function.

saved THIS

saved ARG

return address

saved LCL

local 0

local 1

. . .
local k-1

argument 0

argument 1

. . .

states and frames of all the functions
up the calling chain

LCL

SP

saved THAT

working stack of the
current function

local variables of
the current function

arguments of the
current function

 
 

                 FIGURE 6: The global stack  
 
 
 
Example: The factorial (n!) of a given number n can be computed by the bottom-up iterative 
formula .  This algorithm is shown in Figure 7, along with a time-line of a 
typical run-time. 

nnn ⋅−⋅⋅⋅= )1(21! K
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2

call fact(4)

call
mult(1,2)

time

fact

p

mult

waiting

call
mult(2,3)

mult

waiting

call
mult(6,4)

mult

waiting

waiting

6 24

24

return return return

return

function fact(n) {
    vars result,j;
    result=1; j=1;
    while j<=n {
      result=mult(result,j);
      j=j+1;
    }
     return result;
}

function mult(x,y) {
    vars sum,j;
    sum=0; j=y;
    while j>0 {
      sum=sum+x;
      j=j-1;
    }
    return sum;
}

function p(...) {
...
   ... fact(4) ...
}

 
FIGURE 7: Function call-and-return routine: an arbitrary function p calls function fact, which then 
calls mult several times.  Vertical arrows depict transfer of control from one function to another. At any 
given point of time, only one function is running, while all the functions up the calling chain are waiting 
for it to return. When a function returns, the function that called it resumes its execution (which typically 
does something useful with the value returned by the called function).   

 
Of course our concern here is neither the fact nor the mult functions, and that’s why did not 
bother to write them in the VM language.  Rather, we wish to shed light on the hidden 
infrastructure that enables these functions to interact with each other through parameter passing, 
return values, and control re-direction.  The centerpiece of this infrastructure is the global stack, 
as seen in Figure 8. 
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just before  "call mult"

ARG argument 0    (fact)

return addr        (p)

LCL                   (p)

ARG                  (p)

THIS                  (p)

working
stack              (fact)

argument 0    (mult)

argument 1    (mult)

local 0            (fact)

local 1            (fact)

LCL

SP

just after mult is entered just after mult returns

THAT                 (p)

ARG

argument 0   (fact)

return addr       (p)

LCL                  (p)

ARG                 (p)

THIS                  (p)

working
stack            (fact)

argument 0  (mult)

argument 1  (mult)

local 0          (fact)

local 1          (fact)

LCL

SP

THAT                 (p)

return addr   (fact)

LCL              (fact)

ARG            (fact)

THIS            (fact)

local 0          (mult)

local 1          (mult)

THAT        (of fact)

ARG argument 0    (fact)

return addr       (p)

LCL                   (p)

ARG                  (p)

THIS                   (p)

working
stack             (fact)

ret. value      (mult)

local 0           (fact)

local 1           (fact)

LCL

SP

THAT                  (p)

 
 
FIGURE 8: Global stack dynamics. We assume that function p (not seen in this figure) called fact, 
then fact called mult. If we ignore the middle stack instance, we observe that fact has set up some 
arguments and called mult to operate on them (left instance).  When  mult returns (right instance), 
the arguments of the called function have been replaced with the function's return value. In other 
words, when the dust clears from the function call, the calling function has received the service that it 
has requested, and processing resumes as if nothing happened: the drama of mult's processing 
(middle) has left no trace whatsoever on the stack, except for the return value. 
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3.2 Standard Mapping on the Hack Platform, Part II 
 
By standard mapping we refer to a set of guidelines on how to map VM implementations on a 
specific target architecture.  This section completes the standard VM-on-Hack mapping whose 
first part was given in Chapter 7. 
 
Function Calling Protocol 
 
The subroutine calling mechanisms of modern programming languages (e.g. Figures 6-7) can be 
implemented using stack operations.  Table 9 gives the details.  
 

VM command VM-on-Hack Implementation action (pseudo code) 

 

 

Calling a function: 

 
call f n 

push return-address // (using label below) 

push LCL            // save LCL of calling function 

push ARG            // save ARG of calling function 

push THIS           // save THIS of calling function 

push THAT           // save THAT of calling function 

ARG = SP-n-5        // reposition ARG (n=number of args) 

LCL = SP            // reposition LCL 

goto f              // transfer control 

(return-address)       // label for the return address 

 
Function declaration: 
 
function f k 

(f)                    // declare label for function entry   

repeat k times:     // k=number of local variables 

PUSH 0              // initialize all of them to 0 

 

Returning from 
a function: 
 

return 
 

FRAME=LCL           // FRAME is a temporary variable 

RET=*(FRAME-5)      // save return address in a temp. var 

*ARG=pop()          // reposition return value for caller 

SP=ARG+1            // restore SP for caller 

THAT=*(FRAME-1)     // restore THAT of calling function 

THIS=*(FRAME-2)     // restore THIS of calling function  

ARG=*(FRAME-3)      // restore ARG of calling function 

LCL=*(FRAME-4)      // Restore LCL of calling function 

goto RET            // GOTO the return-address 

 
TABLE 9: VM implementation of function commands (pseudo code).  
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Assembly Language Symbols 
 

Symbol Usage 

“functionName:label” 
symbols 

Each “label b” command in a function f should generate a globally 
unique symbol f:b where f is the function name and b is the label 
symbol within the function’s code. When translating “goto b” and 
“if-goto b” commands into the target language, the full label 
specification f:b should be used instead of b. 

“functionName” labels Each function f should generate a symbol f that refers to its entry 
point in the instruction memory of the target architecture. 

return address symbols Each function call should generate a unique symbol that serves as a 
return address, i.e. the location of the command following the call 
command in the instruction memory of the target architecture. 

 
TABLE 10: Special assembly symbols prescribed by the standard mapping.  

 
 
Bootstrap Code 
 
Upon reset, the Hack hardware is wired to fetch and execute the word located in ROM address 
0x0000.  Thus, the code segment that starts at address 0x0000, called bootstrap code, is the first 
thing that gets executed when the computer “boots up”.  As a convention, we want this code to 
effect the following operations (in machine language): 
 

SP=256          // initialize the stack pointer to 0x0100 

call Sys.init   // invoke Sys.init 

 
This code sets the stack pointer to its right value (as per the standard mapping) and then calls the 
Sys.init function.  The contract is that Sys.init should then call the main function of the 
main program, and enter an infinite loop. Taken together, these operations should cause the 
translated VM program to start running. 
 
The “main function” and the “main program” are compilation-specific and vary from one high 
level language to another.  For example, in the Jack language, the default is that the first program 
unit that starts running automatically is the main method of a class named Main.  In a similar 
fashion, when we tell the JVM to execute a given Java class, say Foo, it will look for, and 
execute, the Foo.main method.  Such “automatic” start-up routines can be effected by the 
bootstrap logic described above. 
 
3.3 Design Suggestions for the VM implementation 
 
In chapter 7 we proposed implementing the VM translator as a main program consisting of two 
modules: parser and code writer. The basic translator built in Project 7 was based on basic 
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versions of these modules. In order to turn the basic translator into a full-scale VM 
implementation, we have to extend the basic parser and code writer modules with the 
functionality described below. 
 
Parser 
 
If the basic parser that you built in Project 7 does not already parse the six commands specified in 
this chapter, then add their parsing now.  Specifically, make sure that the commandType method 
developed in Project 7 also returns the constants corresponding to the six VM commands 
described in this chapter: C_LABEL, C_GOTO, C_IF, C_FUNCTION, C_RETURN, C_CALL. 
 
Code Writer 
 
The basic CodeWriter specified in Chapter 7 should be augmented with the following methods. 

 

CodeWriter Module 

Translates VM commands into Hack assembly code. 

The routines listed below should be added to the CodeWriter module API given in Chapter 7. 

Routine Arguments Returns Function 

writeInit 
 

-- -- Writes the assembly code that effects the 
VM initialization (also called bootstrap 
code).  This code should be placed in the 
ROM beginning in address 0x0000. 

writeLabel label (string) -- Writes the assembly code that is the 
translation of the given label command. 

writeGoto label (string) -- Writes the assembly code that is the 
translation of the given goto command. 

WriteIf label (string) -- Writes the assembly code that is the 
translation of the given if-goto command. 

writeCall functionName (string)
numArgs (int) 

-- Writes the assembly code that is the 
translation of the given Call command. 

writeReturn -- -- Writes the assembly code that is the 
translation of the given Return command. 

writeFunction functionName (string)
numLocals (int) 

-- Writes the assembly code that is the trans. of 
the given Function command. 
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4. Perspective 
 
Work in progress. 
 
5. Build it 
 
Objective: Extend the basic VM translator built in project 7 with the ability to handle the 
program flow and function commands specified in this chapter.  The VM should be implemented 
on the Hack computer platform, conforming to the standard mapping described in this chapter. 
 
Resources (same as in Project 7): You will need two tools: the programming language in which 
you will implement your VM Translator, and the CPU Emulator supplied with the book.  This 
emulator allows executing the machine code generated by your VM Translator -- an indirect way 
to test the correctness of the latter.  Another tool that may come handy in this project is the visual 
VM Emulator supplied with the book. This program allows experimenting with a working VM 
environment before you set out to implement it yourself.  For more information about this tool, 
refer to the VM Emulator Tutorial. 
 
Contract: Write a full-scale VM-to-Hack translator, extending the translator developed in Project 
7.  Use it to translate the test .vm programs supplied below, yielding corresponding .asm 
programs written in the Hack assembly language.  When executed on the supplied CPU 
Emulator, the assembly programs generated by your translator should deliver the results 
mandated by the supplied test scripts and compare files. 
 
Proposed Implementation Stages 

 
We recommend implementing the translator in two stages.   

• Stage I: Implementation of program flow commands 
• Stage II: Implementation of function commands 

This modularity will allow you to test your implementation incrementally, using the step-by-step 
test programs that we provide. 
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Test Programs 
The supplied test programs are designed to support the incremental development plan described 
above.  We supply five test programs and test scripts, as follows. 

Program Flow Test Programs 

• basicLoop: Simple test of goto and if-goto commands. Computes the sum 
and pushes the result onto the stack; n+++ L21

• fibonacci: A more challenging test. Computes and stores in memory the first n elements 
of the Fibonacci series. 

Function Calling Test Programs 

• simpleFunction: Simple test of the “function” and “return” commands.  The 
function performs a simple calculation and returns the result. 

• FibonacciElement: A full test of the function call commands, the bootstrap section and 
most of the other VM commands.  The FibonacciElement directory consists of two .vm 
files: 

� Math.vm contains one recursive function called fibonacci.  This function 
returns the n’th element of the Fibonacci series; 

� Sys.vm contains one function called init.  This function calls the 
Math.fibonacci function with n=4, and then loops infinitely. 

Since the overall program consists of two .vm files, the entire directory should be compiled 
in order to create a single FibonacciElement.asm file (compiling each .vm file 
separately will yield two separate .asm files, which is not desired here). 

• StaticTest: A full test of static variables handling.  Consists of two .vm files, each 
representing the compilation of a typical class file, and a sys.vm file, as usual.  Once again, 
the entire directory should be compiled in order to create a single StaticTest.asm file. 

 

As prescribed by the VM Specification (section 2), the bootstrap code must include a call to the 
Sys.init function. 
 
Steps 
 

1. Download project8.zip and extract its contents into a directory called project8 on your 
computer, without changing the directories structure embedded in the zip file. 
 
2. Write and test the full-scale VM translator in stages, as described above. 


