
Chapter 7: The Virtual Machine I 1

7. The Virtual Machine I: Stack Arithmetic1

Programmers are creators of universes for which they alone are responsible.

Universes of virtually unlimited complexity can be created
in the form of computer programs.

(Joseph Weizenbaum, Computer Power and Human Reason, 1974)

This chapter describes the first steps toward building a compiler for a typical object-based high-
level language. We will approach this substantial task in two stages, each spanning two chapters
in the book. High-level programs will be first translated into an intermediate code (Chapters 10-
111), and the intermediate code will then be translated into machine language (Chapters 7-8).
This two-tier translation model is a rather old idea that recently made a significant comeback
following its adoption by modern languages like Java.

The basic idea is as follows: instead of running on a real platform, the intermediate code is
designed to run on a Virtual Machine (VM) -- an abstract computer that does not exist for real.
There are many reasons why this idea makes sense, one of which being code transportability.
Since the VM may be implemented with relative ease on multiple target platforms, it allows
running software on many processors and operating systems without having to modify the
original source code. The VM implementation can be done in several ways, by software
interpreters, by special purpose hardware, or by translating the VM programs into the machine
language of the target platform.

A virtual machine can be described as a set of virtual memory segments and an associated
language for manipulating them. This chapter presents a typical VM architecture, modeled after
the Java Virtual Machine (JVM) paradigm. As usual, we focus on two perspectives. First, we
will describe, illustrate, and specify the VM abstraction. Next, we will implement it over the
Hack platform. Our implementation will entail writing a program called VM Translator,
designed to translate VM code into Hack assembly code. The software suite that comes with the
book illustrates yet another implementation vehicle, called VM Emulator. This program
implements the VM by emulating it on a standard personal computer.

The VM language that we present consists of four types of commands: arithmetic, memory
access, program flow, and subroutine-calling commands. We will split the implementation of
this language into two parts, each covered in a separate project. In this chapter we will build a
basic VM translator, capable of translating the VM’s arithmetic and memory access commands
into Hack code. In the next chapter we will extend the basic translator with program flow and
subroutine-calling functionality. The result will be a full-scale virtual machine that will serve as
the backend of the compiler that we will build in chapters 10-11.

1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd

Chapter 7: The Virtual Machine I 2

The virtual machine that will emerge from this effort illustrates many important ideas in
computer science. First, the notion of having one computer emulating another is a fundamental
idea in the field, tracing back to Alan Turing in the 1930’s. Over the years it had many practical
implications, e.g. using an emulator of an old generation computer running on a new platform in
order to achieve upward code compatibility. More recently, the virtual machine model became
the centerpiece of two well-known mainstreams -- the Java architecture and the .NET
infrastructure. These software environments are rather complex, and one way to gain an inside
view of their underlying structure is to build a simple version of their VM cores, as we do here.

Another important topic embedded in this chapter is stack processing. The stack is a fundamental
data structure that comes to play in many computer systems and algorithms. In particular, the
VM presented in this chapter is stack-based, providing a working example of the elegance and
power of this remarkably versatile data structure. As the chapter unfolds we will describe and
illustrate many classical stack operations, and then implement them in our VM translator.

1. Background

The Virtual Machine Paradigm

Before a high-level program can run on a target computer, it must be translated into the
computer’s machine language. This translation -- known as compilation -- is a rather complex
process. Normally, a separate compiler is written specifically for any given pair of high-level
language and target machine language. This leads to a proliferation of many different compilers,
each depending on every detail of both its source and destination languages. One way to
decouple this dependency is to break the overall compilation process into two nearly separate
stages. In the first stage, the high-level program is parsed and its commands are translated into
“primitive” steps -- steps that are neither “high” nor “low”. In the second stage, the primitive
steps are actually implemented in the machine language of the target hardware.

This decomposition is very appealing from a software engineering perspective: the first stage
depends only on the specifics of the source high-level language, and the second stage only on the
specifics of the target machine language. Of course, the interface between the two compilation
stages -- the exact definition of the intermediate primitive steps -- must be carefully designed. In
fact, this interface is sufficiently important to merit its own definition as a stand-alone language
of an abstract machine. Specifically, one formulates a virtual machine whose instructions are the
primitive steps into which high-level commands are decomposed. The compiler that was
formerly a single monolithic program is now split into two separate programs. The first program,
still termed compiler, translates the high-level code into intermediate virtual machine
instructions, while the second program translates this VM code into the machine language of the
target platform.

This two-stage compilation model has been used by many compiler writers, in one way or
another. Some developers went as far as defining a formal virtual machine language, most
notably the p-code generated by several Pascal compilers in the 1970s and the bytecode language
generated by Java compilers. More recently, the approach has been adopted by Microsoft, whose
.NET infrastructure is also based on an intermediate language, running on a virtual machine
called CLR.

Chapter 7: The Virtual Machine I 3

Indeed, the notion of an explicit and formal virtual machine language has several practical
advantages. First, compilers for different target platforms can be obtained with relative ease by
replacing only the virtual machine implementation (sometimes called the compiler’s “backend”).
This, in turn, allows the VM code to become transportable across different hardware platforms,
permitting a range of implementation tradeoffs between code efficiency, hardware cost, and
programming effort. Second, compilers for many languages can share the same VM “backend”,
allowing code re-use and language inter-operability. For example, some high-level languages
are good at handling the GUI, while others excel in scientific calculations. If both languages
compile into a common VM language, it is rather natural to have routines in one language call
routines in the other, using an agreed-upon invocation syntax.

Another virtue of the virtual machine approach is modularity. Every improvement in the
efficiency of the VM implementation is immediately inherited by all the compilers above it.
Likewise, every new digital device or appliance which is equipped with a VM implementation
can immediately gain access to a huge base of available software.

. . .

RISC
machine

VM language

other digital devices and appliances, each
equipped with its own VM implementation

RISC
program

Hack
computer

Hack
program

CISC
program

CISC
machine

. . .

Chapters
10-11

written in some
high level
language

any
 platform

. . .

VM
implementation

for CISC
platforms

VM imp.
for RISC
platforms

VM imp.
for Hack
platforms

VM
Emulator

Jack high level
language n

language 1
compiler

Jack
compiler

language n
compiler

. . .

Chapters
7-8

high level
language 1

. . .

FIGURE 1: The virtual machine paradigm. Once a high-level program is compiled into VM code,
the program can run on any hardware platform equipped with a suitable VM implementation. In
this chapter we will start building the VM implementation on the Hack Platform, and use a VM
emulator like the one depicted on the right. (The Jack language is introduced in chapter 9).

Chapter 7: The Virtual Machine I 4

The Stack Machine Model

A virtual machine can be described as a set of virtual memory segments and an associated
language for manipulating them. Like other languages, the VM language consists of arithmetic,
memory access, program flow, and subroutine calling operations. There are several possible
software paradigms on which to base such a virtual machine architecture. One of the key
questions regarding this choice is where will the operands and the results of the VM operations
reside? Perhaps the cleanest solution is to put them on a stack data structure.

In a stack machine model, arithmetic commands pop their operands from the top of the stack and
push their results back onto the top of the stack. Other commands transfer data items from the
stack's top to designated memory locations, and vice versa. Taken together, these simple stack
operations can be used to implement the evaluation of any arithmetic or logical expression.
Further, any program, written in any programming language, can be translated into an equivalent
stack machine program. One such stack machine model is used in the Java Virtual Machine as
well as in the VM described and built in this chapter.

Elementary Stack Operations: A stack is an abstract data structure that supports two basic
operations: push and pop. The push operation adds an element to the “top” of the stack; the
element that was previously on top is pushed “below” the newly added element. The pop
operation retrieves and removes the top element; the element just “below” it moves up to the top
position. Thus the stack implements a last-in-first-out (LIFO) storage model. This basic anatomy
is illustrated in Figure 2.

a

b

pop a

SP

121
5

17 push b

6

108
...

SP

121
5

17
108

SP

121
5

stack memory
...

...

a

b

17

108
...

...

...

a

b

6

108
...

memory
...

...

stack

a

bSP

121
5

17

6

108
...

stack memory
...

...

stack memory

(before) (after)

FIGURE 2: Stack processing example, illustrating the two elementary operations push and pop.
Following convention, the stack is drawn upside down, as if it grows downward. The location just
after the top position is always referred to by a special pointer called sp, or stack pointer. The
labels a and b refer to two arbitrary memory addresses.

Chapter 7: The Virtual Machine I 5

We see that stack access differs from conventional memory access in several respects. First, the
stack is accessible only from the top, one item at a time. Second, reading the stack is a lossy
operation: the only way to retrieve the top value is to remove it from the stack. In contrast, the
act of reading a value from a regular memory location has no impact on the memory’s state.
Finally, writing an item onto the stack adds it to the stack’s top, without changing the rest of the
stack. In contrast, writing an item into a regular memory location is a lossy operation, since it
erases the location’s previous value.

The stack data structure can be implemented in several different ways. The simplest approach is
to keep an array, say stack, and a stack pointer variable, say sp, that points to the available
location just above the “topmost” element. The push x command is then implemented by storing
x at the array entry pointed by sp and then incrementing sp (i.e. stack[sp]=x; sp=sp+1). The
pop operation is implemented by first decrementing sp and then returning the value stored in the
top position (i.e. sp=sp-1; return stack[sp]).

As usual in computer science, simplicity and elegance imply power of expression. The simple
stack model is an extremely useful data structure that comes to play in many computer systems
and algorithms. In the virtual machine architecture it serves two main purposes. First, it is used
for handling all the arithmetic and logical operations of the VM. Second, it facilitates function
calls and dynamic memory allocation -- the subjects of the next chapter.

Stack Arithmetic: Stack-based arithmetic is a simple matter: the two top elements are popped
from the stack, the required operation is performed on them, and the result is pushed back onto
the stack. For example, here is how addition is handled:

SP

17
9

17
4
5

SP

+

It turns out that every arithmetic expression -- no matter how complex -- can be easily converted
into, and evaluated by, a sequence of simple operations on a stack. For example, consider the
expression d=(6–4)*(8+1), taken from some high-level program. The stack-based evaluation
of this expression is shown in Figure 3.

Chapter 7: The Virtual Machine I 6

push 6
push 4
-
push 8
push 1
+
*
pop d

SP

SP 6

SP

6
4

2
8
1

SP

2

SP

2
8

SP

SP

2
9 SP

18
d 18

...

memory
SP ...

push 6

push 8

push 1

*

pop d

push 4

+

-

FIGURE 3: Stack-based evaluation of arithmetic expressions.
This example evaluates the expression “d=(6–4)*(8+1)”

In a similar fashion, every logical expression can also be converted into, and evaluated by, a
sequence of simple stack operations. For example, consider the high-level command “if (x<7)
or (y=8) then …”. The stack-based evaluation of this expression is shown in Figure 4.

push x
push 7
<
push y
push 8
=
Or

y

SP

SP

12
7

false
8
8

x 12

...

...

8
SP

12

SP

false

SP

false
8

SP

SP

false
true SP

true

memory

push x

push 7

<

push y

push 8

=

or

FIGURE 4: Stack-based evaluation of logical expressions.
This example evaluates the expression “if (x<7) or (y=8) then ...”

To sum up, the above examples illustrate a general observation: any arithmetic and Boolean
expression can be transformed into a series of elementary stack operations that compute its value.
Further, as we will show in Chapter 9, this transformation can be described systematically. Thus,

Chapter 7: The Virtual Machine I 7

one can write a compiler program that translates high-level arithmetic and Boolean expressions
into sequences of stack commands. Yet in this chapter we are not interested in the compilation
process, but rather in its results – i.e. the VM commands that it generates. We now turn to
specify these commands (section 2), illustrate them in action (section 3), and describe their
implementation on the Hack platform (section 4).

2. VM Specification, Part I

2.1 General

The virtual machine is stack-based: all operations are done on a stack. It is also function-based: a
complete VM program is composed of a collection of functions, written in the VM language.
Each function has its own stand-alone code and is separately handled. The VM language has a
single 16-bit data type that can be used as an integer, a Boolean, or a pointer. The language
consists of four types of commands:

� Arithmetic commands perform arithmetic and logical operations on the stack;
� Memory access commands transfer data between the stack and virtual memory segments;
� Program flow commands facilitate conditional and unconditional branching operations;
� Function calling commands call functions and return from them.

Building a virtual machine is a complex undertaking, and so we divide it into two stages. In this
chapter we specify the arithmetic and memory access commands, and build a basic VM translator
that implements them only. The next chapter specifies the program flow and function calling
commands, and extends the basic translator into a full-blown virtual machine implementation.

Program and command structure: A VM program is a collection of one or more files with a
.vm extension, each consisting of one or more functions. From a compilation standpoint, these
constructs correspond, respectively, to the notions of program, class, and method in an object-
oriented language.

Within a .vm file, each VM command appears in a separate line, and in one of the following
formats: <command>, <command arg>, or <command arg1 arg2>, where the arguments are
separated from each other and from the command part by an arbitrary number of spaces. “//”
comments can appear at the end of any line and are ignored. Blank lines are permitted.

Chapter 7: The Virtual Machine I 8

2.2 Arithmetic and logical commands

The VM language features nine stack-oriented arithmetic and logical commands. Seven of these
commands are binary: they pop two items off the stack, compute a binary function on them, and
push the result back onto the stack. The remaining two commands are unary: they pop a single
item off the stack, compute a unary function on it, and push the result back onto the stack. We
see that each command has the net impact of replacing its operand(s) with the command's result,
without affecting the rest of the stack. Table 5 gives the details.

Command Return value (after popping the operand/s) Comment
add x+y integer addition (2's complement)
sub x-y integer subtraction (2's complement)
neg –y arithmetic negation (2's complement)
eq true if x=y and false otherwise equality

gt true if x>y and false otherwise greater than

lt true if x<y and false otherwise less than

and x and y bit-wise

or x or y bit-wise

not not y bit-wise

SP

...
x
y

TABLE 5: Arithmetic and Logical stack commands. Throughout the table, y refers to
the item at the top of the stack and x refers to the item just below it.

Three of the commands listed in Table 5 (eq, gt, lt) return Boolean values. The VM represents
true and false as -1 (minus one, 0xFFFF) and 0 (zero, 0x0000), respectively.

Chapter 7: The Virtual Machine I 9

Example: Figure 6 illustrates all the VM arithmetic commands in action. Each command is
applied to an arbitrary 4-bit stack, showing the stack's state before and after the operation. We
focus on the three top-most cells in the stack, noting that the rest of the stack is never affected by
the current command.

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 1 0 1

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 0 1 1

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 0 0 0

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 1 0 1

SP

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 1 0 0
1 1 1 1

0 1 1 0
0 1 0 0
1 1 1 0

SP

SP

SP

SP

SP

SP

SP

SP SP

SP

SP

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 0 0 0

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
1 1 1 1

0 1 1 0
0 1 0 0
0 0 0 1

0 1 1 0
0 0 0 0

SP

SP

SP

SP

SP
SP

add

and

neg

eq

lt

sub

or

not

gt

FIGURE 6: Arithmetic commands examples.

2.3 Memory Access Commands

Unlike real computer architectures, where the term “memory” refers to a collection of physical
storage devices, the “memory” of a virtual machine consists of abstract devices. In particular, the
VM manipulates eight memory segments, listed in Table 7. VM functions can access these
memory segments explicitly, using VM commands. In addition, the VM manages the stack, but
only implicitly. In other words, although the stack proper is not mentioned in VM commands,
the state of the stack changes in the background, as a side effect of other commands.

Chapter 7: The Virtual Machine I 10

Another memory element that exists in the background is the heap. As we elaborate later in the
chapter, the heap is an area in the physical RAM where objects and arrays are stored. These
objects and arrays can also be manipulated by VM commands, as we will see shortly.

Memory Segments: Each VM function sees the eight memory segments described in Table 7.

Segment Purpose Comments
argument Stores the function’s arguments. Allocated dynamically by the VM

implementation when the function is entered.

local Stores the function’s local variables. Allocated dynamically by the VM
implementation when the function is entered.

static Stores static variables shared by all
functions in the same .vm file.

Allocated by the VM implementation for
each file; Seen by all functions in the file.

constant Pseudo-segment that holds all the
constants in the range 0...32767.

Emulated by the VM implementation;
Seen by all the functions in the program.

this
that

General-purpose segments that can be
made to correspond to different areas in
the heap. Serve various programming
needs.

Any VM function can bind these segments to
any area on the heap by setting the segment’s
base. The setting of the segment’s base is
done through the pointer segment.

pointer Fixed 2-entry segment that holds the base
addresses of this and that.

May be set by the VM program to bind this
and that to various areas in the heap.

temp Fixed 8-entry segment that holds
temporary variables for general use.

May be used by the VM program for any
purpose.

TABLE 7: The memory segments seen by every VM function.

Six of the virtual memory segments have a fixed purpose, and their mapping onto the host RAM
is controlled by the VM implementation. In contrast, the this and that segments are general
purpose and their mapping on the host RAM can be controlled by the current VM program:
pointer 0 controls the base of the this segment and pointer 1 controls the base of the
that segment.

Memory access commands: There are two memory access commands:

• push segment index push the value of segment[index] onto the stack;

• pop segment index pop the topmost stack item and store its value in segment[index].

Where segment is one of the eight segment names and index is a non-negative integer.

Chapter 7: The Virtual Machine I 11

The stack: Consider the commands sequence “push argument 2” followed by “pop local
1”. This code will end up storing the value of the function’s 3rd argument in its 2nd local variable
(each segment’s index starts at 0). The working memory of these commands is the stack: the
data value did not simply jump from one segment to another -- it went through the stack. Yet in
spite of its central role in the VM architecture, the stack proper is never mentioned in the VM
language. In addition, although every memory access operation involves the stack, individual
stack elements cannot be accessed directly, except for the topmost element.

2.4 Program flow commands

• label symbol // label declaration
• goto symbol // unconditional branching
• if-goto symbol // conditional branching

These commands are discussed in the next chapter, and are listed here for completeness.

2.5 Function calling commands

• function functionName nLocals // function declaration; must include
 // the number of the function’s local variables

• call functionName nArgs // function invocation; must include
 // the number of the function’s arguments

• return // transfer control back to the calling function

Where functionName is a symbol and nLocals and nArgs are non-negative integers. These
commands are discussed in the next chapter, and are listed here for completeness.

2.6 The big picture

We end the first part of the VM specification with a “big picture” view of the overall translation
process, from a high-level program into machine code. At the top of Figure 9 we see a Jack
program, consisting of two classes (Jack is a Java-like language that will be introduced in chapter
9). Each class consists of several methods. When the Jack compiler is applied to the directory in
which these classes reside, it produces two VM files. In particular, each method in the high-level
source code translates into one function at the VM level.

Next, the figure shows how the VM Translator can be applied to the directory in which the VM
files reside, generating a single assembly program. This low-level program does two main
things. First, it emulates all the virtual memory segments shown in the figure, as well as the
implicit stack. Second, it effects the VM commands on the target platform. This is done by
manipulating the emulated VM data structures using machine language instructions. If
everything works well, i.e. if the compiler and the VM translator are implemented correctly, the
target platform will end up effecting the behavior mandated by the original Jack program.

Chapter 7: The Virtual Machine I 12

m1

Foo.vm

m1 m1 m1 m1

f1 f2 f3 f1 f2

constant

static static

argument

local

this

that

pointer

Jack classes

Bar.vm

Foo.jack Bar.jack

Hack assembly code

Prog.asm

argument

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

argument

local

this

that

pointer

temp

compiler

VM
translator

VM
translator

VM files

virtual memory segments

machine
language
program

prog directory

(one set for
each instance
of a running
function)

prog directory

(chapters 9-10)

(m=methods)

(f=functions)

FIGURE 9: VM translation: the big picture.

Chapter 7: The Virtual Machine I 13

3. VM Programming Examples

We now turn to illustrate the VM architecture, language, and programming style in action. We
give three examples: (i) a typical arithmetic task, (ii) typical handling of object fields, and (iii)
typical handling of array elements.

It’s important to note at the outset that VM programs are rarely written by human programmers,
but rather by compilers. Therefore, it is instructive to begin each example with a high-level
version of the program, and then track down its translation it into VM code. We use a C-style
syntax for all the high-level examples.

3.1 A Typical Arithmetic Task

Consider the multiplication algorithm shown at the top of Program 10. How should we (or more
likely, the compiler) express this algorithm in the VM language? Well, given the primitive nature
of the VM commands, we must think in terms of simple "goto logic," resulting in the “first
approximation” version of Program 10. Next, we have to express this logic using a stack-oriented
formalism. It is instructive to carry out this translation in two stages, beginning with a symbolic
pseudo version of the VM language. Finally, we replace the symbols in the pseudo code with
virtual memory locations, leading to the actual VM program. (The exact semantics of the VM
commands function, label, goto, if-goto, and return are described in chapter 8, but their
intuitive meaning is self-explanatory.)

Chapter 7: The Virtual Machine I 14

High-Level Code (C style)
int mult(int x,int y) {
 int sum,j;
 sum=0;
 for(int j=y; j!=0; j--)
 sum+=x; // repetitive addition

 return sum;

}

First approximation Pseudo VM code Final VM code
function mult function mult(x,y) function mult 2 // 2 local variables
 args x,y push 0 push constant 0

 vars sum,j pop sum pop local 0 // sum=0
 sum=0 push y push argument 1

 j=y pop j pop local 1 // j=y
loop: label loop label loop

 if j==0 goto end push 0 push constant 0

 sum=sum+x push j push local 1

 j=j-1 eq eq

 goto loop if-goto end if-goto end // if j==0 goto end
end: push sum push local 0

 return sum push x push argument 0

 add add

 pop sum pop local 0 // sum=sum+x
 push j push local 1

 push 1 push constant 1

 sub sub

 pop j pop local 1 // j=j-1
 goto loop goto loop

 label end label end
 push sum push local 0

 return return // return sum

Just before mult(7,3) returns:

x
y

Run-time example: Just after mult(7,3) is entered:

(The symbols x,y,sum,j are not part of the VM! They are shown here only for ease of reference)

SP
SP 217

3
0

argument

1
2

...

sum
j

0
0

0

local

1
2

...

stack stack

PROGRAM 10: VM programming example.

Chapter 7: The Virtual Machine I 15

We end this example with two observations. First, let us focus on the figure at the bottom of
Program 10. We see that when a VM function starts running, it assumes that (i) the stack is
empty, (ii) the argument values on which it is supposed to operate are located in the argument
segment, and (iii) the local variables that it is supposed to use are initialized to 0 and located in
the local segment. Second, let us focus on the translation from the pseudo code to the final
code. Recall that VM commands are not allowed to use symbolic argument and variable names -
- they are limited to making <segment index> references only. However, the translation from the
former to the latter is straightforward. All we have to do is represent x, y, sum and j as
argument 0, argument 1, local 0 and local 1, respectively, and replace all their
symbolic occurrences in the pseudo code with corresponding <segment index> references.

To sum up, when a VM function starts running, it assumes that it is surrounded by a private
world, all of its own, consisting of initialized argument and local segments and an empty
stack, waiting to be manipulated by its commands. The agent responsible for building this world
for every VM function just before it starts running is the VM implementation, as we will see in
the next chapter.

3.2 Object handling

High-level object-oriented programming languages are designed to handle complex variables
called objects. Technically speaking, an object is a bundle of variables (also called fields, or
properties), with associated code, that can be treated as one entity. For example, consider an
animation program designed to juggle balls on the screen. Suppose that each Ball object is
characterized by the integer fields x, y, radius, and color. Let us assume that the program has
created one such Ball object, and called it b. What will be the internal representation of this
object in the computer?

Like all other objects, it will end up on an area in the RAM called heap. In particular, whenever
a program creates a new object using a high-level command like b=new Ball(...), the
compiler computes the object's size (in terms of words) and the operating system finds and
allocates enough RAM space to store it in the heap. The details of memory allocation and de-
allocation will be discussed later in the book. For now, let us assume that our b object has been
allocated RAM addresses 3012 to 3015, as shown in Program 11.

Suppose now that a certain function in the high-level program, say resize, takes a Ball object
and an integer r as arguments, and, among other things, sets the ball's radius to r. The function
and its VM translation are given in Program 11.

Chapter 7: The Virtual Machine I 16

120
80
50radius:

b=new Ball(120,80,50,3)

x:
y:

3color:

120
80
50

3012
3013
3014

33015

b object

19 3012
...

...

High level program view
RAM view

memory

allocation

(by the compiler
and the O/S)

0
...

b:

(The RAM locations
of the b pointer and
the b object are
arbitrary examples.)

High-level code VM code
resize (Ball b,int r) { // b.radius=r
 ... push argument 0 // get b's base address
 b.radius=r; pop pointer 0 // point the this segment to b
 ... push argument 1 // get r's value
} pop this 2 // set b's third field to r
 ...

0
1
2

0
1

Just after resize(b,17) is entered:

Just after setting b's radius to 17:

SP

...

stack

3012
17

0
1
2

SP

stack argument pointer this

... ...

120
80
17

0
1
2

30120
1

70

3012
17

0
1
2

argument pointer this

...

3012
3013
3014
30153

push

pop

push

pop

Run-time simulation (example):

PROGRAM 11: VM-based object manipulation. (The labels at the bottom right
(3012, ...) are not part of the VM state, and are given here for ease of reference.)

Note that the name of the object (which happens to be “b” in this example) is actually a reference
to a memory cell containing the address 3012 (see Program 11). Since b is the first argument
passed to the resize method, the compiler will treat it as the 0th argument of the translated VM
function. Hence, when we set pointer 0 to the value of this argument, we are effectively
setting the base of the VM's this segment to address 3012. From this point on, VM commands
can access any field in the heap-resident b object using the virtual memory segment this,
without ever worrying about the physical address of the actual object.

Chapter 7: The Virtual Machine I 17

3.3 Array Handling

An array is an indexed vector of objects of the same type. Suppose that a high-level program has
created an array of 10 integers called xxx, and proceeded to fill it with some 10 constants. Let us
assume that the array's base has been mapped on RAM address 4315 in the heap. Suppose now
that a certain method in the high-level program, say foo, takes an array as a parameter, and,
among other things, sets its k-th element to 34, where k is one of the method's local variables.

In the C language, this operation can be specified using two forms of syntax: xxx[k]=34, and
*(xxx+k)=34. Whereas the former expression is more intuitive for humans, the latter provides
a more accurate description of what the machine is actually doing under the surface. Specifically,
the C notation “*x” means “the contents of the memory location addressed by x”. Hence, the
command “*(xxx+k)=34” reads: “set the RAM location whose address is (xxx+k) to 34”. As
shown in Program 12, this is precisely what the VM code is doing, using primitive VM
commands.

Chapter 7: The Virtual Machine I 18

7
53

1212

xxx array

0
1

8

7
53

121

4315
4316
4317

8

4324

xxx array

...

...

...
19

High-level program view

199

3
4318...

memory

allocation

(by the compiler
and the O/S)

21 4315

RAM view
0

...
(The RAM locations
of the xxx pointer
and the xxx array are
arbitrary examples.)

xxx:

High-level code VM code
method foo (int[] xxx, ...) { ...

 int i,k; push constant 3 // set k=3
 ... pop local 1

 k=3; push argument 0 // get xxx's base address
 xxx[k]=34; push local 1 // get k
 ... add // put xxx+k on the stack
} pop pointer 1 // set that’s base to (xxx+k)
 push constant 34

 pop that 0 // *(xxx+k)=34
 ...

0
1

i
k

Just after the k=3 operation: Just after the xxx[k]=34 operation:

4318

43150
1
2

argument

...
pointer

4318
0
1

43150
1
2

argument

...

pointer

0
3

0
1

local

...

0
1
2

that

...

that

2

i
k

0
3

0
1

local

...
2

340
1
2

...

Run-time simulation (example):

PROGRAM 12: VM-based array manipulation. (The symbolic and numeric labels shown in
the right are not part of the VM state, and are given here for ease of reference.)

Chapter 7: The Virtual Machine I 19

4. Implementation
The virtual machine that was described up to this point is an abstract artifact. If we want to use it
for real, we must implement it on a real platform. Building such a VM implementation consists of
two conceptual tasks. First, we have to emulate the VM world on the target hardware. In
particular, each data structure mentioned in the VM specification, i.e. the stack and the virtual
memory segments, must be represented in some way by the hardware and low-level software of
the target platform. Second, each VM command must be translated into a series of machine
language instructions that effect the command on the target platform.

This section describes how to implement the VM specified in the previous section on the Hack
platform specified in Chapter 4. We start by defining a “standard mapping” from VM elements
and operations to the Hack hardware and machine language. Next, we suggest guidelines for
designing the software that achieves this mapping. In what follows, we will refer to this software
using the terms VM implementation or VM translator interchangeably.

4.1 Standard Mapping on the Hack Platform, Part I

If you re-read the virtual machine specification given so far, you will realize that it contains no
assumption whatsoever about the architecture on which the machine can be implemented. When
it comes to virtual machines, platform-independence is the whole point: you don’t want to
commit to any one hardware platform, since you want your machine to potentially run on all of
them, including those that were not built yet.

It follows that the VM designer can principally let programmers implement the VM on target
platforms in any way they see fit. As it turns out however, it is usually recommended to provide
some guidelines on how the VM should map on the target platform, rather than leaving these
decisions completely to the implementer’s discretion. These guidelines, called standard
mapping, are provided for two reasons. First, we wish the VM implementation to support inter-
operability with other high-level languages implemented over the target platform. Second, we
wish to allow the developers of the VM implementation to run standardized tests, i.e. tests that
conform to the standard mapping (this way the tests and the software can be written by different
people, which is always recommended). With that in mind, the remainder of this section
specifies the standard mapping of the VM on a familiar hardware platform: the Hack computer.

VM to Hack Translation

Recall that a VM program is a collection of one or more .vm files, each containing one or more
VM functions, each being a sequence of VM commands. The VM translator takes a collection of
.vm files as input and produces a single Hack assembly language .asm file as output. Each VM
command is translated by the VM translator into Hack assembly code. The order of the functions
within the .vm files does not matter.

RAM Usage

The data memory of the Hack computer consists of 32K 16-bit words. The first 16K serve as
general-purpose RAM. The next 16K contain the memory maps of I/O devices. The VM
implementation should use this space as follows:

Chapter 7: The Virtual Machine I 20

RAM addresses Usage
0–15: 16 virtual registers, whose usage is described below

16–255: Static variables (of all the VM functions in the VM program)
256–2047: Stack

2048–16483: Heap (used to store objects and arrays)
16384–24575: Memory mapped I/O

TABLE 13: Standard VM implementation on the Hack RAM.

Hack Registers: According to the Hack Machine Language Specification, RAM addresses 0 to
15 can be referred to by all assembly programs using the symbols R0 to R15, respectively. In
addition, the specification states that all assembly programs can refer to RAM addresses 0 to 4
(i.e. R0 to R4) using the symbols SP, LCL, ARG, THIS, and THAT. This convention was
introduced into the assembly language with foresight, in order to promote readable VM
implementations. In other words, we anticipated that the main use of the assembly language will
be to develop VM translators. With that in mind, the expected use of the Hack registers in the
VM context is described in Table 14.

Register Name Usage
RAM[0] SP Stack pointer: points to the next topmost location in the stack
RAM[1] LCL Points to the base of the current VM function's local segment
RAM[2] ARG Points to the base of the current VM function 's argument segment
RAM[3] THIS Points to the base of the current this segment (within the heap)
RAM[4] THAT Points to the base of the current that segment (within the heap)
RAM[5-12] TEMP Hold the contents of the temp segment
RAM[13-15] (-) Can be used by the VM implementation as general-purpose registers.

TABLE 14: Usage of the Hack registers in the standard mapping

Memory Segments Mapping

local, argument, this, that: Each one of these segments is mapped directly on the Hack
RAM, and its location is maintained by keeping its physical base address in a dedicated register
(LCL, ARG, THIS, and THAT, respectively). Thus any access to the i’th location in any one of
these segments should be translated to assembly code that accesses address (base+i) in the RAM,
where base is the value stored in the register dedicated to the respective segment.
pointer, temp: These segments are globally fixed and are each mapped directly onto a fixed
area in the RAM. Specifically, the pointer segment is mapped to RAM locations 3-4 (Hack
registers THIS and THAT) and the temp segment is mapped to RAM locations 5-12 (Hack

Chapter 7: The Virtual Machine I 21

registers R5, R6, …, R12). Thus access to pointer i should be translated to assembly code
that accesses RAM location i+3, and access to temp i should be translated to assembly code that
accesses RAM location i+5.
constant: This segment is truly virtual, as it does not occupy any physical space on the target
architecture. Instead, the VM implementation handles any VM access to <constant i> by simply
supplying the constant i.

static: According to the Hack machine language specification, when a new symbol is
encountered for the first time in an assembly program, the assembler allocates a new RAM
address to it, starting at address 16. This convention can be exploited to represent each static
variable number j in a VM file f as the assembly language symbol f.j. For example, suppose
that the file Xxx.vm contains the command “push static 3”. This command can be
translated to the Hack assembly commands “@Xxx.3” and “D=M”, followed by additional
assembly code that pushes D’s value to the stack. This implementation of the static segment
is somewhat tricky, but it works.

Assembly Language Symbols

To recap, Table 15 summarizes all the assembly language symbols used by VM implementations
that conform to the standard mapping.

Symbol Usage

SP, LCL, ARG,
THIS, THAT

These pre-defined symbols point to the stack top and to the base
addresses of the virtual segments local, argument, this, and that.

R13-R15 Can be used for any purpose.

“f.j” symbols Each static variable j in file f.vm is translated into the assembly
symbol f.j. In the subsequent assembly process, these symbols will
be automatically allocated RAM locations by the Hack assembler.

Flow of control
symbols (labels)

The VM commands function, call, and label are handled by
generating symbolic labels, to be described in chapter 8.

TABLE 15: Usage of Assembly symbols in the standard mapping.

4.2 Design Suggestion for the VM implementation

The VM translator should accept a single command line parameter, Xxx, where Xxx is either a
file name containing a VM program (the .vm extension must be specified) or the name of a
directory containing one or more .vm files (in which case there is no extension):

prompt> translator Xxx

The translator then translates the file Xxx.vm or, in case of a directory, all the.vm files in the Xxx
directory. The result of the translation is always a single assembly language file named Xxx.asm,

Chapter 7: The Virtual Machine I 22

created in the same directory as the input Xxx. The translated code must conform to the standard
VM-on-Hack mapping.

Program Structure

We propose implementing the VM translator using a main program and two modules: parser and
code writer.

Parser

This module handles the parsing of a single .vm file. We propose the following API:

Parser Module

Encapsulates access to the input code. Reads a VM command, parses it, and provides convenient access to
its components. In addition, Removes all white space and comments.

Routine Arguments Returns Function
Constructor

Input file /
stream -- Opens the input file/stream and gets ready

to parse it.

hasMoreCommands -- boolean Are there more commands in the input?

advance -- --

Reads the next command from the input and
makes it the current command. Should be
called only if hasMoreCommands() is
true. Initially there is no current command.

commandType --

C_ARITHMETIC,
C_PUSH, C_POP,
C_LABEL, C_GOTO,
C_IF,
C_FUNCTION,
C_RETURN,
C_CALL

(enumeration)

Returns the type of the current command.
C_ARITHMETIC is returned for all the
arithmetic VM commands.

arg1 -- string

Returns the first argument of the current
command. In the case of C_ARITHMETIC,
the command itself (“add”, “sub”, etc.) is
returned. Should not be called for
C_RETURN.

arg2 -- int

Returns the second argument of the current
command. Should be called only if the
current command is C_PUSH, C_POP,
C_FUNCTION, or C_CALL.

Chapter 7: The Virtual Machine I 23

Code Writer

This module is responsible for translating each VM command into Hack assembly code. We
propose the following API:

CodeWriter Module

Translates VM commands into Hack assembly code.

Routine Arguments Returns Function

Constructor

Output file / stream -- Opens the output file/stream and gets ready
to write into it.

setFileName fileName (string) -- Informs the code writer that the translation of
a new VM file is started.

writeArithmetic command (string) -- Writes the assembly code that is the
translation of the given arithmetic command.

WritePushPop command (enumeration),

segment (string),

index (int)

-- Writes the assembly code that is the
translation of the given command, where
command is one of the two enumerated
values: C_PUSH or C_POP.

Close -- -- Closes the output file.

Comment: More routines will be added to this module in chapter 8.

Main Program

The main program should construct a Parser to parse the VM input file and a CodeWriter to
generate code into the corresponding output file. It should then march through the VM
commands in the input file, and generate assembly code for each one of them.

If the program’s argument is a directory name rather than a file name, the main program should
process all the .vm files in this directory. In doing so, it should use a single CodeWriter for
handling the output, but a separate Parser for handling each input file.

Chapter 7: The Virtual Machine I 24

5. Perspective

In this chapter we began the process of developing a compiler for a high-level language.
Following modern software engineering practices, we have chosen to base the compiler on a two-
stage compilation model. In the frontend stage, covered in chapters 10 and 11, the high-level
code is translated into an intermediate code, running on a virtual machine. In the backend stage,
covered in this and in the next chapter, the intermediate code is translated into the machine
language of a target hardware platform (see Figures 1 and 9).

The idea of formulating the intermediate code as the explicit language of a virtual machine goes
back to the late 1970’s, when it was used by several popular Pascal compilers. These compilers
generated an intermediate “p-code” which could execute on any computer that implemented it,
typically using interpreters. This idea came in the right time, since in the early 1980’s the world
of personal computers began to split into different processor and operating system camps. On the
backdrop of this division, compilers that generated p-code provided a reasonable solution for
running the same high-level program on multiple platforms, without having to re-compile it. This
was the beginning of the cross-platform compatibility challenge, as well as the first attempt to
address it using a VM approach.

Following the wide spread adoption of the world-wide-web in the mid 1990s, cross-platform
compatibility became a universally vexing issue. Viewing this want as a business opportunity,
Sun Microsystems sought to develop a new language that could potentially run on any computer
and digital device hooked to the Internet. The language that emerged from this effort – Java –
was based on a virtual machine model. Specifically, the Java Virtual Machine (JVM) is a
specification that describes an intermediate language called bytebode. Files written in the
bytecode language are used for dynamic distribution of Java programs over the internet, most
notably as applets embedded in web pages. Of course in order to execute these programs, the
client computers must be equipped with suitable JVM implementations. These Java run-time
environments became widely available “plug-ins”, provided freely by Sun for practically any
processor / OS combination, including game consoles and cell-phones.

Today, the JVM model and the associated bytecode language are widely used for code-mobility
and interoperability over the Internet. The cornerstone of this architecture is the ubiquitous Java
virtual machine, allowing Sun to market Java as a “write once, run everywhere” language. As a
side benefit, the JVM became a means for empowering the client computer in several different
ways. For example, it allows verifying the transmitted bytecodes for safety, reducing the risk of
downloading malicious code.

In the early 2000’s, Microsoft entered the fray with its “.NET” infrastructure. The centerpiece of
.NET is a virtual machine model called CLR (Common Language Runtime). According to the
Microsoft vision, many programming languages (including C++, C#, Visual Basic, and J# -- a
Java variant) could be compiled into intermediate code running on the CLR. This enables code
written in different languages to inter-operate and share the software libraries of a common run-
time environment. Yet unlike the Java VM approach, which seeks to allow Java programs to
execute on any possible hardware/OS platform, the CLR is designed to run only on top of
operating systems provided by Microsoft.

Chapter 7: The Virtual Machine I 25

We note in closing that a crucial ingredient that must be added to the virtual machine model
before its full potential of inter-operability is unleashed is a common software library. Indeed the
Java virtual machine comes with the standard Java libraries, and the Microsoft virtual machine
comes with the Common Language Runtime. These software libraries can be viewed as small
operating systems, providing the languages that run on top of the VM with such services as
memory management, GUI utilities, string functions, math functions, and so on. One such library
will be described and built in chapter 12.

6. Build it

This section describes how to build the VM translator specified in this chapter. In the next
chapter we will extend this basic translator with additional functionality, leading to a full-scale
VM implementation.

Objective: Develop a VM translator that implements the stack arithmetic and memory access
commands described in the VM Specification, Part I (section 2). The VM should be implemented
on the Hack computer platform, conforming to the standard VM-on-Hack mapping described in
Section 4.1.

Resources: You will need two tools: the programming language in which you will implement
your VM Translator, and the CPU Emulator supplied with the book. This emulator will allow
you to execute the machine code generated by your VM Translator -- an indirect way to test the
correctness of the latter. Another tool that may come handy in this project is the visual VM
Emulator supplied with the book. This program allows to experiment with a working VM
environment before you set out to implement it yourself. For more information about this tool,
refer to the VM Emulator Tutorial.

Contract: Write a VM-to-Hack translator. Use it to translate the test .vm programs supplied
below, yielding corresponding .asm programs written in the Hack assembly language. When
executed on the supplied CPU Emulator, the assembly programs generated by your translator
should deliver the results mandated by the supplied test scripts and compare files.

6.1 Proposed Implementation Stages

We recommend implementing the translator in two stages. This modularity will allow you to test
your implementation incrementally, using the step-by-step test programs that we provide.

Stage I: Stack arithmetic: The first version of your translator should implement two things: (i)
the nine stack arithmetic and logical commands, and (ii) the “push constant” command.
Note that the latter is the push command for the special case where the first argument is
“constant”.

Stage II: Memory access commands: The next version of your translator should be a full
implementation of the push and pop commands, handling all eight memory segments. We
suggest the following order:

Chapter 7: The Virtual Machine I 26

0. You have already handled the constant segment;

1. Next, handle the four segments local, argument, this, and that;

2. Next, handle the pointer and temp segments, in particular allowing modification of the
bases of the this and that segments;

3. Finally, handle the static segment.

5.2 Test Programs

The supplied test programs and scripts are designed to support the incremental development plan
described above.

Stage I: Stack Arithmetic programs:

• simpleAdd: Adds two constants;
• stackTest: Executes a sequence of arithmetic and logical stack operations.

Stage II: Memory Access programs:

• basicTest: Executes pop and push operations using various memory segments;

• pointerTest: Executes pop and push operations using the pointer and temp
 segments;

• staticTest: Executes pop and push operations using the static segment.

We supply two test scripts for each test program. One script allows running the source .vm test
program on the VM emulator, so that you can gain familiarity with the program’s intended
operation. The other script allows testing the target assembly code generated by your VM
translator on the CPU emulator.

Chapter 7: The Virtual Machine I 27

5.3 The VM Emulator

A virtual machine model can be implemented in several different ways. Translating VM
programs into machine language -- as we have done so far -- is one possibility. Another
implementation option is simulating the VM model in software, using a high-level language. One
such simulation program, shown in Figure 16, is included in the software suite that accompanies
the book.

FIGURE 16: The VM emulator. This program is supplied with the book.

Our VM emulator was built with one purpose in mind: illustrating how the VM works, using
visual GUI and animation effects. Specifically, it allows executing VM programs directly,
without having to translate them first into machine language. This is a recommended exercise, as
it enables experimentation with the VM environment before you set out to implement it yourself.

Chapter 7: The Virtual Machine I 28

5.4 Tips

Implementation: In order for any VM program to start running, it should include a preamble
startup code that forces the VM implementation to start executing it on the host platform. In
addition, in order for any VM code to operate properly, the VM implementation must store the
base addresses of the virtual segments in the correct locations in the host RAM. Both issues --
startup code and segments initializations -- are described and implemented in the next chapter.
The difficulty of course is that we need these initializations in place in order to run the test
programs given in this project. The good news are that you should not worry about these issues,
since the supplied test scripts take care of them in a manual fashion (for the purpose of this
project only).

Testing/debugging: For each one of the five test programs, follow these steps:

1. Run the supplied test .vm program on the VM emulator, using the VM-emulator test script,
until you feel comfortable with the intended behavior of the output of this translation step.

2. Use your partial translator to translate the .vm program. The result should be a text file
containing a translated .asm program, written in the Hack assembly language.

3. Inspect the translated .asm program. If there are syntax (or any other) errors, debug and fix
your translator.

4. Use the supplied .tst and .cmp files to run your translated .asm program on the CPU
Emulator. If there are run-time errors, debug and fix your translator.

The supplied test programs were carefully planned to test the specific features of each stage in
your implementation. Therefore, it’s important to implement your translator in the proposed
order, and to test it using the appropriate test programs at each stage. Implementing a later stage
before an early one may cause the test programs to fail.

Steps

1. Download project7.zip and extract its contents into a directory called project7 on your
computer, without changing the directories structure embedded in the zip file.

2. Write and test the basic VM translator in stages, as described above.

