
Chapter 6: The Assembler 1

6. The Assembler1

1. Introduction

Work in progress.

2. Hack Assembly-to-Binary Translation Specification

This section gives a complete specification of the translation between the symbolic Hack
assembly language to its equivalent binary representation. Unlike the language description given
in chapter 4, this specification is both compact and formal. Therefore, it can be viewed as the
contract that Hack assemblers must implement, in one way or another.

2.1 Syntax Conventions and Files Format

File names: By convention, programs in binary machine code and in assembly code are stored in
text files with “hack” and “asm” extensions, respectively. Thus, a Prog.asm file is translated
into a Prog.hack file.

Binary code (.hack) files: A binary code file is composed of text lines. Each line is a sequence of
16 “0” and “1” ASCII characters, coding a single 16-bit machine language instruction. Taken
together, all the lines in the file represent a machine language program. When a machine
language program is loaded into the computer’s instruction memory, the binary code represented
by the file’s n-th line is stored in address n of the instruction memory (the count of both program
lines and memory addresses starts at 0).

Assembly language (.asm) files: An assembly language file is composed of text lines, each
representing either an instruction or a symbol declaration:

� Instruction: an A-instruction or a C-instruction, described below.

� (Symbol): This pseudo-command binds the Symbol to the memory location into
which the next command in the program will be stored. It is called “pseudo-
command” since it generates no machine code.

Constants and symbols in assembly programs: Constants must be non-negative and are always
written in decimal notation. A user-defined symbol can be any sequence of letters, digits,
underscore (“_”), dot (“.”), dollar sign (“$”), and colon (“:”) that does not begin with a digit.

Comments in assembly programs: text beginning with two slashes (“//”) and ending at the end of
the line is considered a comment and is ignored.

White space in assembly programs: space characters are ignored. Empty lines are ignored.

1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd

Chapter 6: The Assembler 2

Case conventions: All the assembly mnemonics must be written in upper-case. The rest (user-
defined labels and variable names) is case sensitive. The convention is to use upper-case for
labels and lower-case for variable names.

2.2 Instructions

The Hack machine language consists of two instruction types called addressing instruction (A-
instruction) and compute instruction (C-instruction). The instructions format is as follows:

value (v = 0 or 1)

0 v v v v v v v v v v v v v v vBinary:

A-instruction: @value // Where value is either a non-negative decimal number
 // or a symbol referring to such number.

jumpdestcomp

1 1 1 a c1 c2 c3 c4 c5 c6 d1 d2 d3 j1 j2 j3

dest=comp;jump // Either the dest or jump fields may be empty.
 // If dest is empty, the "=" is ommitted;
 // If jump is empty, the ";" is omitted.

C-instruction:

Binary:

The translation of each of the three fields comp, dest, jump of the C-instruction to their binary
forms is specified in the following three tables.

comp(a=0) c1 c2 c3 c4 c5 c6 comp(a=1)
0 1 0 1 0 1 0
1 1 1 1 1 1 1

-1 1 1 1 0 1 0
D 0 0 1 1 0 0
A 1 1 0 0 0 0 M

!D 0 0 1 1 0 1
!A 1 1 0 0 0 1 !M
-D 0 0 1 1 1 1
-A 1 1 0 0 1 1 -M

D+1 0 1 1 1 1 1
A+1 1 1 0 1 1 1 M+1
D-1 0 0 1 1 1 0
A-1 1 1 0 0 1 0 M-1
D+A 0 0 0 0 1 0 D+M
D-A 0 1 0 0 1 1 D-M
A-D 0 0 0 1 1 1 M-D
D&A 0 0 0 0 0 0 D&M
D|A 0 1 0 1 0 1 D|M

Chapter 6: The Assembler 3

 dest d1 d2 d3 jump j1 j2 j3
null 0 0 0 null 0 0 0
M 0 0 1 JGT 0 0 1
D 0 1 0 JEQ 0 1 0
MD 0 1 1 JGE 0 1 1
A 1 0 0 JLT 1 0 0
AM 1 0 1 JNE 1 0 1
AD 1 1 0 JLE 1 1 0
AMD 1 1 1

JMP 1 1 1

2.3 Symbols

Hack assembly commands can refer to memory locations (addresses) using either constants or
symbols. Symbols can be introduced into assembly programs in three ways:

Predefined symbols: Any Hack assembly program is allowed to use the following pre-defined
symbols:

Label RAM address (hexa)
SP 0 0x0000
LCL 1 0x0001
ARG 2 0x0002
THIS 3 0x0003
THAT 4 0x0004
R0-R15 0-15 0x0000-f
SCREEN 16384 0x4000
KBD 24576 0x6000

Note that each one of the 5 top RAM locations can be referred to using two pre-defined symbols.
For example, either R2 or ARG can be used to refer to RAM[2].

Label symbols: The pseudo-command “(Xxx)” defines the symbol Xxx to refer to the
instruction memory location holding the next command in the program. A label can be defined
only once and can be used anywhere in the assembly program, even before the line in which it is
defined.

Variable symbols: Any user-defined symbol Xxx appearing in an assembly program that is not
predefined and is not defined elsewhere using the “(Xxx)” command is treated as a variable.
Variables are mapped to consecutive memory locations as they are first encountered, starting at
RAM address 16 (0x0010).

2.4 Example

In chapter 4 we presented a program that sums up the numbers between 1 and 100. Program 1
repeats this example, showing both its assembly and binary version.

Chapter 6: The Assembler 4

Assembly code Binary code

// sum the numbers 1...100 (this line should be erased)
 @i // i=1 (allocated at 0x0010) 0000 0000 0001 0000
 M=1 1110 1111 1100 1000
 @sum // sum=0 (allocated at 0x0011) 0000 0000 0001 0001
 M=0 1110 1010 1000 1000
(loop) (this line should be erased)
 @i // if i-100>0 then goto end 0000 0000 0001 0000
 D=M 1111 1100 0001 0000
 @100 0000 0000 0110 0100
 D=D-A 1110 0100 1101 0000
 @end 0000 0000 0001 0010
 D;jgt 1110 0011 0000 0001
 @i // sum+=i 0000 0000 0001 0000
 D=M 1111 1100 0001 0000
 @sum 0000 0000 0001 0001
 M=D+M 1111 0000 1000 1000
 @i // i++ 0000 0000 0001 0000
 M=M+1 1111 1101 1100 1000
 @loop // goto loop 0000 0000 0000 0100
 0;jmp 1110 1010 1000 0111
 (end) (this line should be erased)

PROGRAM 1: Assembly and binary representations of the same program. If the
assembler is given the text file on the left, it should generate the text file given on the right.

3. Implementation

The previous section gave a complete specification of the Hack language, in both its assembly
and binary versions. The program that translates assembly programs into binary programs
according to this contract is called the Hack assembler. This section describes a proposed design
for this assembler.

The assembler reads as input a text file named Prog.asm, containing an assembly program, and
produces as output a text file named Prog.hack, containing the translated machine code. The
name of the input file is supplied to the assembler as a command line argument:

prompt> Assembler Prog

The translation of each individual assembly command to its equivalent binary instruction is direct
and one-to-one. Each command is translated separately. In particular, each mnemonic
component (field) of the command is translated into its corresponding bit-code according to the
tables in section 2.2, and each symbol in the command is resolved to its numeric address as
explained in section 2.3.
We propose an assembler implementation based on four modules: a Parser module that parses
the input, a Code module that provides the binary codes for different mnemonics, a
SymbolTable module that handles symbols, and a main program that drives the entire
translation process.

Chapter 6: The Assembler 5

3.1 The Parser

The main function of the parser is to break each assembly command into its underlying
components (fields and symbols). The API is as follows.

Parser Module

Encapsulates access to the input code. Reads an assembly language command, parses it, and provides
convenient access to the command's components (fields and symbols). In addition, removes all white
space and comments.

Routine Arguments Returns Function
Constructor
(initializer)

Input file
(stream)

-- Opens the input file/stream and gets ready to
parse it.

hasMoreCommands -- boolean Are there more assembly language commands
in the input?

advance -- -- Reads the next command from the input and
makes it the current command. Should be
called only if hasMoreCommands() is
true. Initially there is no current command

commandType -- Enumeration:

• A_COMMAND

• C_COMMAND

• L_COMMAND

Returns the type of the current command:

• C_COMMAND for dest=comp;jump
• A_COMMAND for @Xxx where Xxx is

either a symbol or a decimal number
• L_COMMAND (actually, pseudo-

command) for (Xxx) where Xxx is a
symbol.

symbol -- string Returns the symbol or decimal Xxx of the
current command @Xxx or (Xxx). Should be
called only when commandType() is
A_COMMAND or L_COMMAND.

dest -- string

Returns the dest mnemonic in the current
C-command. The 8 possible mnemonics are
given in section 2.2. Should be called only
when commandType() is C_COMMAND.

comp -- string Returns the comp mnemonic in the current
C-command. The 28 possible mnemonics are
given in section 2.2. Should be called only
when commandType() is C_COMMAND.

jump -- string Returns the jump mnemonic in the current
C-command. The 8 possible mnemonics are
given in section 2.2. Should be called only
when commandType() is C_COMMAND.

Chapter 6: The Assembler 6

3.2 The Code Module

The Code module translates Hack mnemonics into their respective binary codes. The details are
given in the following API.

Code Module

Translates Hack assembly language mnemonics into binary codes.

Routine Arguments Returns Function

dest string mnemonic 3 bits Returns the 3-bit binary code of the dest
mnemonic, as listed in section 2.2.

comp string mnemonic 7 bits Returns the 7-bit binary code of the comp
mnemonic, as listed in section 2.2.

jump string mnemonic 3 bits Returns the 3-bit binary code of the jump
mnemonic, as listed in section 2.2.

3.3 Assembler for programs with no symbols

We suggest building the rest of the assembler in two stages. In the first stage, write an assembler
that translates assembly programs without symbols. This can be done using the Parser and Code
modules just described. In the second stage, extend the assembler with symbol handling
capabilities, as we explain in the next section.

The contract for the first symbol-less stage is that the input Prog.asm program contains no
symbols. This means that (a) in all address commands of type “@Xxx” the Xxx constants are
decimal numbers and not symbols, and (b) the file contains no label commands, i.e. no
commands of type “(Xxx)”.

The overall symbol-less assembler program can now be implemented as follows. First, the
program opens an output file named Prog.hack. Next, the program marches through the lines
(assembly instructions) in the supplied Prog.asm file. For each C-instruction, the program
concatenates the translated binary codes of the instruction fields into a single 16-bit word. Next,
the program writes this word into the Prog.hack file. For each A-instruction of type @Xxx, the
program translates the decimal constant returned by the parser into its binary representation and
writes the resulting 16-bit word it into the Prog.hack file.

3.3 The SymbolTable Module

Since Hack instructions are allowed to use symbols, the symbols must be resolved as part of the
translation process. The assembler deals with this task using a symbol table, designed to create
and maintain the correspondence between symbols and their meaning.

The symbol table is a data structure that contains pairs of symbols and their corresponding
semantics, which in our case are RAM and ROM addresses. In general, the most appropriate data

Chapter 6: The Assembler 7

structure for representing such a relationship is the classical hash table. In many programming
environments, such a data structure is available as part of a standard library, and thus there is no
need to develop it from scratch. We propose the following API.

SymbolTable Module

A symbol table that keeps a correspondence between symbolic labels and numeric addresses.

Routine Arguments Returns Function

Constructor -- -- Creates a new empty symbol table

addEntry string symbol,
int address -- Adds the pair (symbol, address) to the

table.

contains string symbol boolean Does the symbol table contain the given
symbol?

addressOf string symbol int Returns the address associated with the symbol.

3.5 Assembler for programs with symbols

Once we have a symbol table in place, the handling of symbols in the translation process is
straightforward. Whenever we encounter a new symbol in the program, we allocate a numeric
address to it, and add the pair (symbol, address) to the table. To translate an instruction that
includes a symbol into binary code, we simply look-up the symbol in the symbol table, retrieve
its numeric address, and plant it in the translated instruction. This symbol handling capability is
all we need to complete the assembler’s implementation

There’s one complication though: in assembly programs, label symbols (used in goto commands)
are often used before they are defined. One common solution is to write a 2-pass assembler that
reads the code twice, from start to end. In the first pass, the symbol table is built and no code is
generated. In the second pass, all the label symbols encountered in the program have already
been bound to memory locations. Thus, in the second pass the assembler can replace them with
their corresponding meanings (numbers) in order to generate the final binary code.

Recall that there are three types of symbols in the Hack language: pre-defined symbols, labels,
and variables. The symbol table should contain and handle all these symbols, as follows:

Initialization: Initialize the symbol table with all the pre-defined symbols and their pre-allocated
RAM addresses, according to Section 2.2.

First pass: Go through the entire assembly program, line by line, and build the symbol table
without generating any code. As you march through the program lines, keep a running number
anticipating the ROM address that will eventually be allocated to the current command. This
number starts at 0 and is incremented by 1 whenever a C-instruction or an A-instruction is
encountered, but does not change when a label pseudo-command or a comment is encountered.
Each time a pseudo command “(Xxx)” is encountered, add a new entry to the symbol table,
associating Xxx with the ROM address that will eventually store the next command in the
program.

Chapter 6: The Assembler 8

This pass results in entering all the program’s labels along with their ROM addresses into the
symbol table. The program’s variables are handled in the second pass.

Second pass: Now go again through the entire program, and parse each line. Each time a
symbolic A-instruction is encountered, i.e. “@Xxx” where Xxx is a symbol and not a number, look
up Xxx in the symbol table. If the symbol is found in the table, replace it with its numeric
meaning and complete the command’s translation. If the symbol is not found in the table, then it
means that it represents a new variable. Hence, allocate the next available RAM address to it, say
n, add the pair (Xxx, n) to the symbol table, and complete the command’s translation. The
allocated RAM addresses are running, starting at address 16 (just after the addresses allocated to
the pre-defined symbols).

This completes the assembler’s implementation.

4. Perspective

Work in Progress.

5. Build it

Objective: To develop an assembler that translates programs written in Hack assembly language
into the binary code understood by the Hack hardware platform. The assembler must implement
the Translation Specification described in Section 2.

Resources: The only tool needed for completing this project is the programming language in
which you will implement your assembler. You may also find the following two tools useful: the
assembler and CPU Emulator supplied with the book. These tools allow you to experiment with a
working assembler before you set out to build one yourself. In addition, the supplied assembler
provides a visual line-by-line translation GUI, and allows online code comparisons with the
outputs that your assembler will generate. For more information about these capabilities, refer to
the supplied Assembler Tutorial.

Contract: When loaded into your assembler, a Prog.asm file containing a Hack assembly
language program should be translated into the correct Hack binary code and stored in a
Prog.hack file. The output produced by your assembler must be identical to the output
produced by the assembler supplied with the book.

Testing: We suggest building the assembler in two stages. First write a symbol-less assembler,
i.e. an assembler that can only translate programs that contain no symbols. Then extend your
assembler with symbol handling capabilities. The test programs that we supply for this project
come in two such versions (without and with symbols), to help you test your assembler
incrementally.

Chapter 6: The Assembler 9

Test Programs

Each test program, except the first one, comes in two versions: ProgL.xxx is symbols-less, and
Prog.xxx is with symbols.

Add: This program adds the constants 2 and 3 and puts the result in R0.

Max: This program performs the operation R2=max(R0,R1).

Rect: This program draws a rectangle at the top left corner of the screen. The rectangle is 16
pixels wide and R0 pixels high.

Pong: A single-player Ping-Pong game. A ball bounces constantly off the screen's “walls.” The
player attempts to hit the ball with a bat by pressing the left and right arrow keys. For
every successful hit, the player gains one point and the bat shrinks a little to make the
game harder. If the player misses the ball, the game is over. To quit the game, press ESC.

The Pong program was written in the Jack programming language (described in Chapter
9) and translated by the Jack compiler (described in Chapters 10-11) into the supplied
assembly program. The resulting machine-level program is about 20,000 lines of code,
which also include the Sack operating system (described in Chapter 12). Running this
game in the CPU Emulator is a slow affair, so don't expect a high-powered Pong game.
This slowness is actually a virtue, since it enables your eye to track the graphical behavior
of the program. In future projects in the book this game will run much faster.

Steps: We recommend proceeding in the following order:

1. Download project6.zip and extract its contents into a directory called project6 on
your computer, without changing the directories structure embedded in the zip file.

2. Write and test your assembler program in the two stages described above. You may use
the assembler supplied with the book to compare the output of your assembler to the
correct output. This can be done by treating the .hack file generated by your assembler
as the compare file used by the supplied assembler. For more information about the
supplied assembler, go through the Assembler Tutorial.

