
Chapter 3:   Sequential Logic                                                                                                                  1           
 

 

3. Sequential Logic 1 
 “It's a poor sort of memory that only works backward.” 

Lewis Carroll (1832-1898) 

 
All the Boolean and arithmetic chips that we built in previous chapters were combinational. 
Combinational chips compute functions that depend solely on combinations of their input values.  
These relatively simple chips provide many important processing functions (like the ALU), but 
they cannot maintain state.  Since computers must be able to not only compute values but also to 
store and recall values, they must be equipped with memory elements that can preserve data over 
time.   These memory elements are built from sequential chips. 
 
The implementation of memory elements is an intricate art involving synchronization, clocking, 
and feedback loops. Conveniently, most of this complexity can be embedded in the operating 
logic of very low-level sequential gates called flip-flops.  Using these flip-flops as elementary 
building blocks, we will specify and build all the memory devices employed by typical modern 
computers, from binary cells to registers to memory banks and counters.  This effort will 
complete the construction of the chip-set needed to build an entire computer – a challenge that we 
take up in the next chapter. 
 
Following a brief overview of clocks and flip-flops, section 1 introduces all the memory chips 
that we will build on top of them. Sections 2 and 3 describe the chips specifications and 
implementation, respectively.  As usual, all the chips mentioned in the chapter can be built and 
tested using the hardware simulator supplied with the book. 
 
 
1. Background 
 
The act of “remembering something” is inherently a function of time: you remember now what 
has been committed to memory before.  Thus, in order to employ chips that “remember” 
information, we must first develop some means for representing the progression of time. 
 
The Clock: In most computers, the passage of time is marked by a master clock that delivers a 
continuous train of alternating signals. The exact hardware implementation is usually based on an 
oscillator that alternates continuously between two phases labeled “0-1”, “low-high”, “tick-tock”, 
etc. The elapsed time between the beginning of a “tick” and the end of the subsequent “tock” is 
called cycle, and each clock cycle is treated as a discrete time unit.  The current clock phase (tick 
or tock) is represented by a binary signal. Using the hardware’s circuitry, this signal is 
simultaneously broadcast to every sequential chip throughout the computer platform. 
 
Flip-flops: The most elementary sequential element in the computer is a device called flip-flop, 
of which there are several variants.  In this book we use a variant called data flip-flop, or DFF, 
whose interface consists of a single-bit data input and a single-bit data output. In addition, the 
DFF has a clock input that continuously changes according to the master clock’s signal.  Taken 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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together, the data and the clock inputs enable the DFF to implement the time-based behavior 

, where in and out are the gate’s input and output values and t is the current clock 
cycle.  In other words, the DFF simply outputs the input value from the previous time unit. 

)1()( −= tintout

 
As we now turn to show, this elementary behavior can form the basis of all the hardware devices 
in the computer that have to maintain state, from binary cells to registers to arbitrarily large 
random access memory units. 
 
Registers: A register is a storage device that can “store,” or “remember,” a value over time, 
implementing the classical storage behavior )1()( −= touttout

)1(
.  A DFF, on the other hand, can 

only output its previous input, i.e. )( −= tintout .  This suggests that a register can be 
implemented from a DFF by simply feeding the DFF output back into its input, creating the device 
shown in the middle of Fig. 1.  Presumably, the output of this device at any time t will equal its 
output at time t-1, yielding the classical function expected from a storage unit. 
 
Well, not so.  The device shown in the middle of Fig. 1 is invalid.  First, it is not clear how we’ll 
be able to ever load this device with a new data value, since there are no means to tell the DFF 
when to draw its input from the in wire and when from the out wire.  More generally, the rules 
of chip design dictate that internal pins must have a fan-in of 1, meaning that they can be fed 
from a single source only. 
 
The good thing about this thought experiment is that it leads us to the correct and elegant solution 
shown in the right of Fig. 1.  In particular, a natural way to resolve our input ambiguity is to 
introduce a multiplexor into the design.  Further, the “select bit” of this multiplexor can become 
the “load bit” of the overall register chip: if we want the register to start storing a new value, we 
can put this value in the in input and set the load bit to 1; if we want the register to keep storing 
its internal value until further notice, we can set the load bit to 0.  

DFF
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X

load

DFFDFF

out(t) = in(t-1) if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

1-bit register (Bit)Flip-Flop

out(t) = out(t-1) ?
out(t) = in(t-1) ?

Invalid design

in out in out in out

 
FIGURE 1:  From DFF to single-bit register. The small triangle represents 
the clock input of the DFF.  In chip diagrams, this icon states that the marked 
chip, as well as the overall chip that encapsulates it, are time-dependent. 
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Once we have the basic ability to remember a single bit over time, we can easily construct 
arbitrarily wide registers.  This can be achieved by forming an array of as many single-bit 
registers as needed, creating a register that holds multi-bit values (Fig. 2). The basic design 
parameter of such a register is its width – the number of bits it holds; in modern computers, 
registers are usually 32-bit or 64-bit wide.  The contents of such registers are typically referred to 
as words. 

Bit out

load

in

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

. . .Bit

w-bit register

out

load

binary cell (Bit)

in
w w

if load(t-1) then out(t)=in(t-1)
else out(t)=out(t-1)

Bit Bit

 
 

FIGURE 2:  From single-bit to multi-bit registers.  A multi-bit register of width w can be 
constructed from an array of w Bit chips.  The operating functions of both chips is exactly 
the same, except that the "=" assignments are single-bit and multi-bit, respectively. 

 
 
Memories: Once we have the basic ability to represent words, we can proceed to build memory 
banks of arbitrary length.  As Fig. 3 shows, this is done by stacking together many registers to 
construct a Random Access Memory (RAM) unit. The term random access memory derives from 
the requirement that read/write operations on a RAM should be able to access randomly chosen 
words, with no restrictions on the order in which they are accessed.  That is to say, we require 
that any word in the memory -- irrespective of its physical location -- will be accessed 
instantaneously, in equal speed.  
 
This requirement can be satisfied as follows.  First, we assign each word in the n-registers RAM a 
unique address (an integer between 0 to n-1), according to which it will be accessed. Second, in 
addition to stacking the n registers together, we augment the RAM chip design with a set of logic 
gates that, given an address j,  is capable of selecting the individual register whose address is j. 
 
In sum, a classical RAM device accepts three inputs: a data input, an address input, and a load bit.  
The address specifies which RAM register should be accessed in the current time unit.  In the 
case of a read operation (load=0), the RAM’s output immediately emits the value of the selected 
register.  In the case of a write operation (load=1), the selected memory register will commit the 
input value in the next time unit, at which point the RAM’s output will start emitting it. 
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FIGURE 3:  RAM chip (conceptual). The width and length of the RAM can vary. 
 
The basic design parameters of a RAM device are its data width -- the width of each one of its 
words, and its size -- the number of words in the RAM.  Modern computers typically employ 32- 
or 64-bit wide RAMs whose size is up to hundreds of millions. 
 
Counters: A counter is a sequential chip whose state is an integer number that increments every 
time unit, effecting the function out(t)=out(t-1)+c, where c is typically 1. Counters play an 
important role in digital architectures.  For example, most CPU’s include a program counter that 
keeps track of the address of the instruction that should be executed next in the current program.   
 
A counter chip can be implemented by combining the input/output logic of a standard register 
with the combinatorial logic for adding the constant 1.  Typically, the counter will have to be 
equipped with some additional functionality, such as possibilities for resetting the count to zero, 
loading a new counting base, or decrementing instead of incrementing.  
 
Time Matters 
 
All the chips that were described above are sequential.  Simply stated, a sequential chip is a chip 
that includes one or more DFF gates, either directly or indirectly.  Functionally speaking, the DFF 
gates endow sequential chips with the ability to either maintain state (as in memory units), or to 
operate on state (as in counters).  Technically speaking, this is done by forming feedback loops 
inside the sequential chip (see Fig. 4).  In combinational chips, where time is neither modeled nor 
recognized, the introduction of feedback loops will be problematic: the output would depend on 
the input, which itself would depend on the output, and thus the output would depend on itself. 
On the other hand, there is no difficulty in feeding the output of a sequential chip back into itself, 
since the DFFs introduce an inherent time delay: the output at time t does not depend on itself, but 

 



Chapter 3:   Sequential Logic                                                                                                                  5           
 
rather on the output at time t-1. This property guards against the uncontrolled “data races” that 
would occur in combinational chips with feedback loops. 
 

out = some function of  (in)

Combinational Chip

comb.
logicin out

out(t) = some function of  (in(t-1), out(t-1))

Sequential Chip

comb.
logicin outDFF

gate(s)
comb.
logic

(optional) (optional)time delay

 
 

FIGURE 4:  Combinational versus sequential logic (in and out stand for potentially 
several input and output variables). Sequential chips always consist of one  layer of DFFs 
and optional combinational logic layers. 

 
Recall that the outputs of combinational chips change when their inputs change, irrespective of 
time.  In contrast, the special architecture of sequential chips implies that their outputs change 
only at the point of transition from one clock cycle to the next, and not within the clock cycle 
itself.  In fact, we allow sequential chips to be in unstable states during clock cycles, requiring 
only that by the beginning of the next cycle they will output correct values. 
 
This “discretization” of the sequential chips outputs has an important side effect: it is used to 
synchronize the overall computer architecture. To illustrate, suppose we instruct the arithmetic 
logic unit (ALU) to compute yx +  where x is the value of a nearby register and y is the value of 
a remote RAM register. Because of various physical constraints (distance, resistance, 
interference, random noise, etc.) the electrons representing x and y will arrive to the ALU at 
different times.  However, being a combinational chip, the ALU it insensitive to the concept of 
time -- it continuously adds up whichever data values happen to lodge in its inputs.  Thus, it will 
take some time before the ALU’s output will stabilize to the correct yx +  result.  Until then, the 
ALU will generate garbage. 
 
How can we overcome this difficulty? Well, since the output of the ALU is always routed to 
some sort of a sequential chip (a register, a RAM location, etc.), we don’t really care.  All we 
have to do is ensure that the length of the clock cycle will be slightly longer that the time it takes 
an electron to travel the longest distance from one chip in the architecture to another.  This way, 
we are guaranteed that by the time the sequential chip will update its state (at the beginning of the 
next clock cycle), the inputs that it will receive from the ALU will be correct.  This, in a nutshell, 
is the trick that synchronizes a set of stand-alone hardware components into a well-coordinated 
system, as we will see in Chapter 5. 
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2. Specification 
 
This section specifies a hierarchy of sequential chips:  
 
� D-Flip-flops (DFF) 
� Registers (based on DFF’s) 
� Memory banks (based on registers) 
� Counter chips (also based on registers) 

 
D-Flip-Flop 
 
The most elementary storage device that we present – the basic component from which all 
memory elements will be designed – is the Data Flip-Flop gate.  A DFF gate has a single-bit 
input and a single-bit output, as follows: 
 

Chip name: DFF 
Inputs:    in 
Outputs:   out 
Function: out(t)=in(t-1) 

DFF outin

 
Comment: This clocked gate has a built-in 

implementation and thus there is 
no need to implement it. 

 
Like Nand gates, DFF gates enter our computer architecture at a very low level.  Specifically, all 
the sequential chips in the computer (registers, memory, and counters) are based on numerous 
DFF gates.  All these DFFs are connected to the same master clock, forming a huge distributed 
“chorus line”.  At the beginning of each clock cycle, the outputs of all the DFFs in the computer 
commit to their inputs during the previous time-unit.  At all other times, the DFFs are “latched,” 
meaning that changes in their inputs have no immediate effect on their outputs. This remarkable 
conduction feat is done in parallel, many times each second (depending on the clock frequency).  
 
In hardware implementations, the time-dependency of the DFF gates is achieved by 
simultaneously feeding the master clock signal to all the DFF gates in the platform.  Hardware 
simulators emulate the same effect in software.  As far the computer architect is concerned, the 
end result is the same: the inclusion of a DFF gate in the design of any chip ensures that the 
overall chip, as well as all the chips that depend on it up the hardware hierarchy, will be 
“automatically” time-dependent.  These chips are called sequential, by definition. 
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Registers 
 
A single-bit register, which we call Bit, or binary cell, is designed to store a single bit of 
information (0 or 1).  The chip interface consists of an input pin which carries a data bit, a load 
bit which enables the cell for writes, and an output pin which emits the current state of the cell. 
The interface diagram and API of a binary cell are as follows: 

 
Chip name: Bit 
Inputs:    in,load 
Outputs:   out 

Bit outin

load

 
Function: If load(t-1) then out(t)=in(t-1) 

else out(t)=out(t-1) 
 
The API of the Register chip is essentially the same as that of a binary cell, except that the 
input and output pins are designed to handle multi-bit values: 
 

Chip name: Register         
Inputs:    in[16],load 
Outputs:   out[16] 
Function: If load(t-1) then out(t)=in(t-1) 

else out(t)=out(t-1) in Register

load

w bits
out

w bits

 
Comment: “=” is a 16-bit operation. 

 
The Bit and Register chips have exactly the same read/write behavior, as follows: 
 
Read: To read the contents of a register, we simply probe its multi-bit output.  
 
Write: To write a new multi-bit data value d into a register, we put d in the in input and assert 

the load input. In the next clock cycle, the register will commit to the new data value, and 
its output will start emitting d. 

 
Memory 
 
A direct-access memory unit, also called RAM, is an array of n w-bit registers, equipped with 
direct access circuitry. The number of registers (n) and the width of each register (w) are called 
the memory’s size and width, respectively.  We will build a hierarchy of such RAM units, all 16-
bit wide, but with varying sizes: RAM8, RAM64, RAM512, RAM4K, and RAM16K units.  All these 
memory chips have precisely the same API, and thus we describe them in one parametric 
diagram, as follows: 
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Chip name: RAMn  // n and k are listed below 
Inputs:    in[16],address[k],load 

Outputs:   out[16] 

Function: Out(t)=RAM[address(t)](t) 
If load(t-1) then 
   RAM[address(t-1)](t)=in(t-1) 

Comment: “=” is a 16-bit operation. 

We need 5 such chips, as follows: 
Chip name n   k 

 RAM8 8     3 
 RAM64 64     6 
 RAM512 512     9 
 RAM4K 4096   12 

address

load

out

in

16  bits

log 2 n
bits

RAMn
16  bits

  RAM16K 16384   14 
 
Read: To read the contents of register number m, we put m in the address input. The RAM's 

direct-access logic will select register number m, which will then emit its output value to the 
RAM's output pin. This is a combinational operation, independent of the clock.  

 
Write: To write a new data value d into register number m, we put m in the address input, d in 

the in input, and assert the load input bit. The RAM's direct-access logic will select register 
number m, and the load bit will enable it. In the next clock cycle, the selected register will 
commit to the new value (d), and the RAM’s output will start emitting it. 

 
Counter 
 
Although a counter is a stand-alone abstraction in its own right, it is convenient to motivate its 
specification by saying a few words about the context in which it is normally used.  For 
example, consider a counter chip designed to contain the address of the instruction that the 
computer should fetch and execute next.  In most cases, the counter has to simply increment 
itself by 1 in each clock cycle, thus causing the computer to fetch the next instruction in the 
program.  In other cases, e.g. in “jump to execute instruction number n”, we want to be able to 
set the counter to n, and then have it continue its default counting behavior: n , 1+ 2+n , etc. 
Finally, the program’s execution can be restarted anytime by simply setting the counter to 0, 
assuming that that’s the address of the program’s first instruction.  In short, we need a loadable 
and resettable counter. 
 
With that in mind, the interface of our Counter chip is similar to that of a register, except that it 
has two additional control bits, labeled reset and inc.  When inc=1, the counter increments 
its state in every clock cycle, emitting the value out(t)=out(t-1)+1.  If we want to reset the 
counter to 0,  we assert the reset bit;  if we want to initialize it to some other counting base d, 
we put d in the IN input and assert the load bit. The details are given in the counter API, and an 
example of its operation is depicted in Fig. 5. 
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PC (counter)
w bits

outin
w bits

inc load reset

 
 

Chip name: PC   // 16-bit counter 
Inputs:    in[16],inc,load,reset 
Outputs:   out[16] 
Function: If reset(t-1) then out(t)=0 

   else if load(t-1) then out(t)=in(t-1) 
        else if inc(t-1) then out(t)=out(t-1)+1  
             else out(t)=out(t-1) 

Comment: “=” is a 16-bit operation.  
“+”  is 16-bit arithmetic addition. 

 
47 47 0 0 1 2 3 4 527 528 529 530 530

527 527 527 527 527 527 527 527 527 527 527 527 527

reset

load

22 23 24 25 26 27 28 29 30 31 32 33 34

inc

clock

in

cycle

out

We assume that we start tracking the counter in time unit 22, when its input
and output happen to be 527 and 47, respectively.  We also assume that the
counter's control bits (reset, load, inc) are 0 -- all aribtrary assuptions.  

 
FIGURE 5: Counter Simulation. At time 23 a reset signal is issued, causing the counter to 
emit zero in the following time-unit.  The zero persists until an inc signal is issued at time 25, 
causing the counter to starts incrementing, one time-unit later.  The counting continues until at 
time 29 the load bit is asserted.  Since the counter’s input holds the number 527, the counter is 
reset to that value in the next time-unit.  Since inc is still asserted, the counter continues 
incrementing, until time 33, when inc is de-asserted. 

 
3. Implementation 
 
Flip-Flop: DFF gates can be implemented from lower-level logic gates like those built in Chapter 
1. However, in this book we view DFF gates as primitive, and thus they can be used in hardware 
construction projects without worrying about their internal implementation. 
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1-bit register (Bit): The implementation of this chip was given in Fig. 1. 
 
Register: The construction of a w-bit Register chip from binary cells is straightforward.  All 
we have to do is construct an array of w Bit gates and feed the register’s load input to all of 
them. 
 
8-Registers Memory (RAM8): An inspection of Fig. 3 may be useful here.  To implement a 
RAM8 chip, we line up an array of 8 registers. Next, we have to build combinational logic that, 
given a certain address value, takes the RAM8's in input and loads it into the selected register. 
In a similar fashion, we have to build combinational logic that, given a certain address value, 
selects the right register and pipes its out value to the RAM8's out output.  Tip: the 
combinational logic mentioned above was already implemented in Chapter 1. 
 
n-Registers Memory: A memory bank of arbitrary length (a power of 2) can be built recursively 
from smaller memory units, all the way down to the single register level.  This view is depicted in 
Fig. 6.  Focusing on the right hand side of the figure, we note that a 64-register RAM can be built 
from an array of eight 8-register RAM chips. To select a particular register from the RAM64 
memory, we use a 6-bit address, say xxxyyy.  The MSB xxx bits select one of the RAM8 chips, 
and the LSB yyy bits select one of the registers within the selected RAM8.  The RAM64 chip 
should be equipped with logic circuits that affect this hierarchical addressing scheme. 
 

Bit Bit register

RAM8Register

RAM 8

RAM 64

8

8

register

..

.
register

..

.

RAM8

. . .Bit . . .
 

 
FIGURE 6:  Gradual construction of memory banks by recursive ascent. A w-bit register 
is an array of w binary cells, an 8-register RAM an array of eight w-bit registers, a 64-register 
RAM an array of eight RAM8 chips, and so on.  Only three more similar construction steps are 
necessary to build a 16K RAM chip.  
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Counter: A w-bit counter consists of two main elements: a regular w-bit register, and 
combinational logic.  The combinational logic is designed to (a) compute the counting function, 
and (b) put the counter in the right operating mode, as mandated by the values of its three control 
bits.  Tip: most of this logic was already built in Chapter 2. 
 
4. Perspective 
 
The cornerstone of all the memory systems described in this chapter is the flip-flop – a gate that 
we treated here as an atomic, primitive building block.  The usual approach in hardware 
textbooks is to construct flip-flops from elementary combinatorial gates (e.g. Nand gates) using 
appropriate feedback loops.  The standard construction begins by building a simple (non-clocked) 
flip-flop that is bi-stable, i.e. that can be set to be in one of two states.  Then a clocked flip-flop is 
obtained by cascading two such simple flip-flops, the first being set when the clock tics and the 
second when the clock tocks.  This “master-slave” design endows the overall flip-flop with the 
desired clocked synchronization functionality. 
 
These constructions are rather elaborate, requiring an understating of delicate issues like the 
effect of feedback loops on combinatorial circuits, as well as the implementation of clock cycles 
using a two-phase binary clock signal.   In this book we have chosen to abstract away these low-
level considerations by treating the flip-flop as an atomic gate.  Readers who wish to explore the 
internal structure of flip-flop gates can find detailed descriptions in [Mano, chapter 6] and 
[Hennessy & Patterson, appendix B].  
 
In closing, we should mention that memory devices of modern computers are not always 
constructed from standard flip-flops.  Instead, modern memory chips are usually very carefully 
optimized, exploiting the unique physical properties of the underlying storage technology.  Many 
such alternative technologies are available today to computer designers; as usual, which 
technology to use is a cost-performance issue. 
 
All the other chip constructions in this chapter -- the registers and memory chips that were built 
on top of the flip-flop gates -- were rather standard.   
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5. Build It 
 
Objective: Build the chips listed below (except the first one).  The only building blocks that you 
can use are primitive DFF gates, chips that you will build on top of them, and chips built in 
previous chapters. 
 

� DFF ........... Data Flip-Flop (primitive – no need to implement) 
� Bit  .......... 1-bit binary cell 
� Register ...... 16-bit  
� RAM8 .......... 16-bit / 8-register memory 
� RAM64 ......... 16-bit / 64-register memory 
� RAM512  ....... 16-bit / 512-register memory 
� RAM4K  ........ 16-bit / 4,096-register memory 
� RAM16K  ....... 16-bit / 16,384-register memory 
� PC  ........... 16-bit counter 

 
Resources: The main tool that you will use in this project is the hardware simulator supplied with 
the book.  All the chips should be implemented in the HDL language specified in appendix A. 
 
As usual, for each chip mentioned above we supply a skeletal .hdl program with a missing 
implementation part, a .tst script file that tells the hardware simulator how to test it, and a .cmp 
“compare file.”  All these files are packed in one file named project3.zip.  Your job is to 
complete the missing implementation parts of all the .hdl programs. 
 
Contract: When loaded into the hardware simulator, your chip design (modified .hdl program), 
tested on the supplied .tst file, should deliver the behavior specified in the supplied .cmp file.  
If that is not the case, the simulator will let you know. 
 
Tip: When your HDL programs invoke chips that you may have built in previous projects, it is 
recommended to use the built-in versions of these chips instead.  This will ensure correctness and 
speed up the simulator’s operation.  There is a simple way to accomplish this convention: make 
sure that your project directory includes only the files that belong to the present project. 
 
Likewise, when constructing RAM chips from smaller ones, we recommend to use built-in 
versions of the latter.  Otherwise, the simulator may run very slowly or even out of (real) memory 
space, since large RAM chips contain many tens of thousands of lower level chips, and all these 
chips must be simulated as software objects by the simulator.  Thus, we suggest that after you 
complete the implementation and testing of a RAM chip, you will move its respective HDL file 
out from the project directory.  This way, the simulator will resort to using the built-in versions of 
these chips. 
 
Steps:  We recommend proceeding in the following order: 
 
0. Before starting this project, read sections 6 and 7 of  Appendix A. 
1. Create a directory called project3 on your computer; 
2. Download the project3.zip file and extract it to your project3 directory; 
3. Build and simulate all the chips. 

http://www1.idc.ac.il/digitalCore/tools/index.html

