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12. The Operating System1 
 

“Civilization progresses by extending the number of operations  
that we can perform without thinking about them" 

(Alfred North Whitehead, Introduction to Mathematics, 1911) 

(This chapter is work in progress.) In previous chapters of this book we described and built the 
hardware architecture of a computer platform, called Hack, and the software hierarchy that makes 
it usable. In particular, we introduced an object-based language, called Jack, and described how 
to write a compiler for it.  Other high-level programming languages can be specified on top of the 
Hack platform, each requiring its own compiler. 
 
The last major interface which is missing in this puzzle is an operating system.  The OS is 
designed to close gaps between the computer's software and hardware systems, and to make the 
overall computer more accessible to programmers and users.   For example, our computer is 
equipped with a bitmap screen.  In order to output the text “Hello World”, several hundreds 
pixels must be drawn at specific locations on the computer’s screen.  To do so, we can consult the 
hardware specification, and write commands that put the necessary bits in the RAM segment that 
controls the screen's output.  Needless to say, high-level programmers will need a better interface 
with the screen.  They will want to use commands like print(‘Hello World’), and let someone 
else worry about the details.  And that’s where the operating system enters the picture.   
 
Throughout the chapter, the term “operating system” is used rather loosely.  In fact, the OS 
services that we describe comprise an operating system in a very minimal fashion, aiming to 
encapsulate various hardware-provided services in a software-friendly way and extending high-
level languages with some mathematical functions and abstract data types. The dividing line 
between an operating system in this sense and a “standard language library” is not very clear.  
Usually, standard libraries associated with particular programming languages include both 
interfaces to the underlying services of the operating system and other libraries and services 
related to the programming language and its indented uses. 
 
Indeed, the simple operating system we build here may alternatively be viewed as a standard 
library for the Jack language.  It is packaged a collection of Jack classes, each providing a set of 
related services via Jack subroutine calls.  The resulting OS has many features resembling those 
of industrial strength operating systems, but it lacks numerous OS features such as process 
handling or disk management.   
 
Operating systems are usually programmed in a high level language and compiled into binary 
form like any other program.  Indeed the operating system described here is written completely in 
Jack.  Unlike normal programs written in a high-level language, the operating system code must 
be aware of the hardware platform it is running on.  For example, in order to implement the 
various encapsulated  I/O services, it must directly access the I/O devices.  The Jack 
programming language was defined with sufficient “lowness” in it, permitting an intimate 
closeness to the hardware, when needed.  

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2004, www.idc.ac.il/csd 
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The title of this chapter is somewhat misleading, since we discuss only the OS elements needed 
for our computer platform. The chapter starts with a background section that describes the 
underlying algorithms and programming techniques.  Next, we specify the complete Sack OS 
API, and give guidelines on how to implement it in Jack.  Section 4 mentions briefly  some of the 
elements of normal operating systems that were not discussed, and Section 5 walks you through a 
complete implementation of the OS. 
 
The chapter embeds two key lessons, one in software engineering and one in computer science.  
First, we describe and illustrate the important interplay between high-level languages, compilers, 
and operating systems.  Second, we present a series of elegant and efficient algorithms, each 
being a little computer science gem.  
 
 
 
1. Background 
 
1.1 Mathematical Operations 
 
Almost every computer system must support mathematical operations like addition, 
multiplication, and division.  Normally, addition is implemented in hardware, at the ALU level, 
as we have done in Chapter 3.  Other operations like multiplication and division can be 
implemented in either hardware or software, depending on the computer's purpose and 
cost/performance requirements.  This section shows how multiplication, division, and square root 
operations can be implemented efficiently in software, at the operating system level.  It should be 
noted that hardware implementation of these operations are based on the same algorithms 
presented below. 
 
A word about algorithmic efficiency is in order here.  Mathematical algorithms operate on n-bit 
binary numbers, with typical computer architectures having n=16 (as in Hack), 32 or 64.  As a 
rule, we seek algorithms whose running time is proportional (or at least “polynomial”) in this 
parameter n.  Algorithms whose running time is proportional to the value of n-bit numbers are 
unacceptable, since these values are exponential  in n.  For example, suppose we implement the 
multiplication operation yx ⋅  using the “repeated addition” algorithm for i = 1 ... y {sum = sum + 
x}.  If we use this algorithm on a 64-bit computer, y can be as large as 1,000,000,000,000,000,000 
(still smaller than the maximal value 632 ). In such cases, this naïve algorithm may run for years, 
even on the fastest computers.  On the other hand, the running time of the multiplication 
algorithm that we present below is proportional to the number of bits n, and thus will require only 
dozens or a few hundreds of operations on a 64-bit architecture for any value of y.  
 
We will use the standard “Big-Oh” notation, O(n), to describe the running time of algorithms.  
Readers who are not familiar with this notation should simply read O(n) as “in the order of 
magnitude of n”.  With that in mind, we now turn to present a multiplication yx ⋅  algorithm for 
n-bit numbers whose running time is O(n) rather than O(y), which is exponentially larger. 
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Multiplication 
 
Consider the standard multiplication method taught in elementary school.  To compute 356 times 
27, we write the two numbers one on top of the other.  Next, we multiply each digit of 356 by 7.  
Next, we "shift to the left" one position, and multiply each digit of 356 by 2.  Finally, we sum up 
the numbers in the two rows and obtain the result.  The binary version of this technique -- 
Algorithm 1 -- is exactly the same. 
 

The “steps”     The algorithm explained 
(first 4 of 16 iteration) 

             (ignoring some leading zeros, to save clutter) 
   1 0 1 1 = 1 1    x: 0 0 0 1 0 1 1  
    1 0 1 =  5    y: 0 0 0 0 1 0 1 j‘th bit of y 
   1 0 1 1       0 0 0 1 0 1 1 1 
  0 0 0 0        0 0 1 0 1 1 0 0 
 1 0 1 1         0 1 0 1 1 0 0 1 
 1 1 0 1 1 1 = 5 5    1 0 1 1 0 0 0 0 
             x·y: 0 1 1 0 1 1 1 sum 

 
multiply(x,y): 
   initialize sum = 0 
   initialize shiftedX = x 
   for j )1(0 −= nK  do  

        if (j’th bit of y) = 1 then  
             sum = sum + shiftedX 
        shiftedX = shiftedX * 2 

 
ALGORITHM 1:  Multiplication.  

 
This algorithm performs O(n) addition operations on n-bit numbers, where n is the number of bits 
in x and y.  (Note that shiftedX * 2 can be efficiently obtained by either adding shiftedX to itself or 
shifting its bit representation one place to the left.) 
 
Division 
 
The naïve way to compute x / y is to repeatedly subtract y from x until it is impossible to continue 
(i.e. until x<y).  The running time of this algorithm is clearly proportional to the quotient, and 
may be as large as O(x), which is exponential in the number of bits n.  To speed up this 
algorithm, we can try to subtract large chunks of y's from x in each iteration.  For example, if 
x=891 and y=5, we can tell right away that we can deduct a hundred 5's from x and the remainder 
will still be greater than 5, thus shaving 100 iterations from the naïve approach.  Indeed, this is 
the rationale behind the school method for long division.  Formally, in each iteration we try to 
subtract the largest possible shift of y, i.e. Ty ⋅  where T is the largest power of 10 such that 

xTy ≤⋅ .  The binary version of this algorithm is precisely the same, except that T is a power of 2 
instead of 10.   
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It is an easy exercise to formally write down this school algorithm for division, as we have done 
for multiplication.  We find it more illuminating to provide the same logic in the form of a 
recursive program that is probably easier to implement: 
 

divide (x,y): 
   // Integer part of x/y, where x and y are natural numbers. 

   if  y>x return 0 

   q = divide(x, 2*y) 

   if (x – 2*q*y) < y 

        return 2*q 

   else 
        return 2*q + 1 

 
ALGORITHM 2:  Division.  

 
The running time of this algorithm is determined by the depth of the recursion.  Since in each 
level of recursion the value of y is multiplied by 2, and since we terminate once y>x, it follows 
that the recursion depth is bounded by the number of bits in x.  Each recursion level involves a 
constant number of addition, subtraction, and multiplication operations, and thus the total running 
time of the algorithm requires O(n) such operations.   
 
Algorithm 2 may be considered sub-optimal since each multiplication operation also requires 
O(n) addition and subtraction operations. However, careful inspection reveals that the product 
2*q*y can be computed without any multiplication.  Instead, we can rely on the value of this 
product in the previous recursion level, and use a few addition operations to establish its current 
value.   
 
 
Square Root 
 
Square roots can be computed efficiently in a number of different ways, e.g. using the Newton-
Raphson method or a Taylor series expansion.  For our purposes though, a simple binary 
search will suffice.  The square root function xy =  has two convenient properties.  First, it 
is monotonically increasing.  Second, its inverse function  is something that we already 
know how to compute (multiplication).  Taken together, these properties imply that we have 
all we need to compute square roots using binary search.   

2yx =
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sqrt(x):        // Compute the integer part of xy = : 
   //  Find  y such that 22 )1( +<≤ yxy : 
   initialize low = 0  

   initialize high = square root of the largest n-bit number 

   while low < high do  

          med = (low + high) / 2 

          if med * med > x 

                high = med - 1 

          else 

                low = med  

   return low 

 

ALGORITHM 3:  Square root computation using binary search. 
 
Note that each loop iteration takes a constant number of arithmetic operations.  Since the 
difference between high and low shrinks by a factor of 2 in each iteration, the total number of 
iterations is at most the logarithm of the initial value of high-low, which is at most n.  Thus the 
total running time is O(n) arithmetic operations. 
 
1.2 String representation of numbers 

 
Computers represent numbers in memory using binary codes.  Yet humans are used to dealing 
with numbers in a decimal notation.  Thus, when humans have to read or input numbers, and only 
then, a conversion to or from decimal notation must be performed.  Typically, this service is 
implicit in the character handling services provided by the operating system. In other words, 
programmers can write high level code that operates directly on the decimal or textual 
representation of numbers, assuming that the OS will perform the necessary conversions, as 
needed.  We now turn to describe how some of these OS services are actually implemented. 
 
Of course the only subset of characters which is of interest here are the 10 digits which represent 
actual numbers. The ASCII codes of these characters are as follows: 
 

Character: ‘0’ ‘1’ ‘2’ ‘3’ ‘4’ ‘5’ ‘6’ ‘7’ ‘8’ ‘9’ 
           

ASCII code: 48 49 50 51 52 53 54 55 56 57 

 
As gleaned from the table, single digit characters can be easily converted into their numeric 
representation, and vice versa, as follows.  To compute the ASCII code of a given digit 0<=x<=9, 
we can simply add x to 48 – the code of ‘0’.  Conversely, the numeric value represented by an  
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ASCII code 48<=y<=57 is obtained by y - 48.  And once we know how to convert single digits, 
we can proceed to convert any given integer.  These conversion algorithms can be based on either 
an iterative or a recursive logic, so we present one of each. 
 
 
// Convert a number to a string. 

toString(n): 
      lastDigit = n % 10   

      c = character representing lastDigit 

      if n<10 

          return c (as a string) 

      else  

          return toString(n/10).append(c) 

  
// Convert a string to a number. 

toInt(s): 
n =0 

for i = 1 .. length of s 

     d = integer value of the digit s[i]  

      n=n*10 + d 

return n  
 

(Assuming that s[1] is the most significant digit 
character of s.) 
 

 
ALGORITHMS 4-5:  String-numeric conversion 

 
 
 
1.3 Memory Management 
 
Dynamic Memory Allocation: Some of the memory required for a program’s execution is 
explicitly defined in the program code. For example, static variables are allocated when the 
program starts running, local variables are allocated when a subroutine starts running, and so on.  
Other memory is dynamically requested during the program’s execution. For example, memory 
should be allocated dynamically to accommodate the construction of new objects or arrays whose 
size is determined only during run-time.  This dynamic memory allocation is typically done by 
the operating system.  When a running program constructs a new object of a certain size, enough 
RAM space must be located in memory and then allocated to store the new object. When the 
program declares that the object is no longer needed, its RAM space may be recycled.  The RAM 
segment from which memory is dynamically allocated is called the heap.   
 
Operating systems use various techniques for handling dynamic memory allocation and de-
allocation.  These techniques are implemented in two functions traditionally called alloc() and 
deAlloc().  We present two memory allocation algorithms: a basic one and an improved one. 
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Basic memory allocation algorithm: The data structure that this algorithm manages is a single 
pointer, called free, which points to the beginning of the heap segment that was not yet allocated.  
Algorithm 6-a gives the details. 
 

      // Objects and arrays are stored on the heap. 
Initialization: free=heapBase 
// Allocate a memory segment of size words: 
alloc(size):  
  pointer = free 

  free += size 

  return pointer 

// De-allocate the memory space of a given object: 
  deAlloc(object): 
    do nothing 

 
ALGORITHM 6-a: Basic Memory Allocation Scheme (wasteful) 

 
Algorithm 6-a is clearly wasteful, as it does not reclaim the space of decommissioned objects.    
 
Improved memory allocation algorithm: This algorithm manages a linked list of available 
memory blocks, called freeList.  Each block is characterized by two “housekeeping” fields: the 
block’s length, and a pointer to the next block in the freeList.  These fields can be kept in the two 
memory locations preceding the block itself.  For example, the implementation can use the 
convention b.length==x[-1] and b.next==x[-2].   

 
When asked to allocate a memory segment of size n, the algorithm has to search the freeList for a 
suitable block.  There are two well-known strategies for doing this. Best-fit finds the block whose 
size is the closest (from above) to the required size, while first-fit finds the first block that is long 
enough.  Once the block has been found, the required memory segment is taken from it.  Next, 
this block is updated in the freeList, becoming the part that remained after the allocation (if no 
memory was left in the block, the entire block is eliminated from the freeList).   
 
When asked to reclaim the memory of an unused object, the algorithm inserts the de-allocated 
block into the freeList.  The details are given in Algorithm 6-b. 
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      // Objects and arrays are stored on the heap. 
initialization: 
   freeList = heapBase+2 

   freeList.length = heapEnd–(heapBase+2) 

   freeList.next = null  

// Allocate a memory segment of size words: 
alloc(size): 
  1. use methods like best-fit or first-fit 
     to locate a free block in freeList 

  2. return the base address of that block 

// De-allocate the memory space of a given object: 
deAlloc(object):  

    Append the object to the freeList 

 
ALGORITHM 6-b: Improved Memory Allocation Scheme (with memory recycling) 

 
After a while, dynamic memory allocation schemes like Algorithm 6-b may create a block 
fragmentation problem.  Hence, some kind of “defrag” operation should be considered, i.e. 
merging memory segments that are physically consecutive in memory but logically split into 
different blocks in the freeList.  The defragmentation operation can be done each time an object is 
de-allocated, or when alloc() cannot find an appropriate block, or according to some other 
intermediate or ad-hoc condition. 
 
1.4 Variable length arrays and Strings 
 
The memory allocation operations considered above allocate fixed length memory blocks. This is 
exactly appropriate for arrays in high level programming languages.  Most programming 
languages also provide data-types that have variable length – most commonly strings.  Strings 
contain arrays of characters, whose length may vary.  String objects are usually provided by the 
standard library of the programming language (e.g. the String and StringBuffer classes in Java 
or the strXXX functions in C).  
 
Indeed, the implementation of variable length strings can be done by creating a String class that 
provides the string abstraction and related services.  The standard data structure used in this 
context typically contains an array of characters that holds the string contents, and the current 
length of the string.  Array locations beyond the current length are not considered part of the 
string contents.  When such a data structure is first constructed, some maximum possible length 
must be defined for it, and the array is allocated to be in this size. 
 
1.5 Input/Output Management 
 
An important part of the functionality of an operating system is handling the various I/O devices 
connected to the computer, encapsulating the details of interfacing them, and providing 
convenient access to their basic functionality.  We will describe only the very basic elements of 
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handling the I/O devices available in Hack: a screen and a keyboard.  We will divide the issue of 
handling the screen into two logically separate steps: handling graphics, and handling character 
output. 
 
1.5.1 Graphics output 
 
Pixel drawing: Most computers today use raster, also called bitmap, display technologies.  The 
only primitive operation that can be physically performed in such an output device is that of 
drawing a single pixel (a pixel refers to a single “dot” on the screen). Pixels are specified using 
(column, row) coordinates.  The usual convention is that columns are numbered from left to right 
(like the x-axis in high school) while rows are numbered from the top down (opposite of the y-
axis in high school).  Thus the top left pixel is located in screen location (0,0). 
 
The low level drawing of a single pixel is a hardware-specific operation that depends on the 
particular interface of the screen or the underlying graphics card.  If the screen interface is based 
on a memory map, then drawing a pixel is achieved by writing the proper value into the RAM 
location that represents the required pixel in memory. 
 

drawPixel (x,y): 
// Hardware-specific.  Assuming a memory mapped screen: 

   Write a pre-determined value in the RAM 
    location corresponding to screen location (x,y). 

 
ALGORITHM 7: Drawing a pixel. 

 
Now that we know how to draw a single pixel, we turn to describe how to draw lines and circles.    
 
Line drawing: Recall that the only elementary drawing operation supported by computers is that 
of drawing a single pixel. Hence, when asked to draw a line between two screen locations, the 
best that we can possibly do is approximate the line by drawing a series of pixels along the 
imaginary line that connects the two points.  Note that the “pen” that we use can move in four 
directions only: up, down, left, and right.  Thus the drawn line is bound to be jagged, and the only 
way to make it look good is to use a high-resolution screen.  Since the receptor cells in the human 
eye’s retina also form a grid of “biological pixels,” there is a limit to the image granularity that 
the human eye can resolve.  Thus, high-resolution screens and printers can fool the human eye to 
believe that the lines drawn by pixels or printed dots are actually smooth.  In fact they are always 
jagged. 
 
The procedure for drawing a line from location (x1,y1) to location (x2,y2) starts by drawing the 
(x1,y1) pixel, and then zigzagging in the direction of the (x2,y2) pixel, until it is reached.  See 
Algorithm 8a for the details. 
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drawLine(x,y,x+dx,y+dy): 
// Assuming 0, ≥dydx . 

initialize )0,0(),( =ba  

while dxa ≤  or dyb ≤ do  

          drawPixel ), byax( ++  

          if dybdx //a <  then a++ else b++ 

 
ALGORITHM 8-a: Line Drawing 

 
Algorithm 8-a is applicable only for .  To extend it into a general-purpose line drawing 
routine, one also has to take care of the three other possibilities: , , and 

.   

0, ≥dydx
0, pdydx 0,0 pf dydx

0,0 fp dydx
 
An annoying feature of this algorithm is the use of division operations (a/dx, b/dy) in each loop 
iteration.  This division operation is not only time-consuming -- it also requires floating point 
operations rather than simple integer arithmetic.  A possible solution is to replace the a/dx<b/dy 
condition with the equivalent a*dy<b*dx, which requires only integer multiplication.  Further, 
careful inspection reveals that this latter condition may be checked without using any 
multiplication.  As shown in Algorithm 8-b, this may be done by maintaining a variable that 
updates the value of a*dy-b*dx each time either a or b are modified.   
 

// To test whether dybdxa // < ,  
// maintain a variable adyMinusbdx, and test whether adyMinusbdx<0: 

    Initialization: set adyMinusbdx=0 
When a++ is performed: set adyMinusbdx = adyMinusbdx + dy 

When b++ is performed: set adyMinusbdx = adyMinusbdx - dx 

 
ALGORITHM 8-b: Testing whether dybdxa // <  
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Circle drawing: There are several ways to draw circles on a bitmap screen.  We present an 
algorithm that uses three routines already implemented in this chapter: multiplication, square root 
computation, and line drawing. 

 
Point (0,0) is assumed
to be at the the top left
corner.  Thus x grows
from left to right and
y grows from top
to bottom.

point

r dy
22 dyr −

),( yx

rdy =

2=dy

1=dy

0=dy

1−=dy

2−=dy

rdy −=

),( 22 dyydyrxa +−−= point ),( 22 dyydyrxb +−+=

a b

 
 

drawCircle(x,y,r): 

for each rrK−∈dy do 

  drawLine from ),( 22 dyydyrx +−−  to ),22 dyydyrx +−+(  

 
ALGORITHM 9: Circle Drawing 

 
 
The algorithm is based on drawing a series of horizontal lines (like the typical line ab in the 
figure), one for each row in the range ry −  to ry + .  Since r is specified in pixels, the algorithm 
ends up drawing a line in every screen row along the circle’s north-south diameter, and thus the 
resulting circle is completely filled.  A trivial version of this algorithm can yield an empty circle 
as well. 
 
1.5.2 Character Output 
 
All the output that we described so far was graphical: pixels, lines, and circles.  We now turn to 
describe how characters are printed on the screen.  Well, pixel by pixel.  The first step before 
writing characters on a screen is to divide the physical pixel-oriented screen into a logical 
character-oriented screen suitable for drawing complete characters.  For example, consider a 
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physical 256 rows by 512 columns screen.  If we allocate a grid of 11*8 pixels for drawing a 
single character (11 rows, 8 columns), then our screen can show 23 lines, each holding 64 
characters (with 3 extra rows of pixels left unused).  Note that this calculation accounts for the 
requisite spacing, since the 11*8 allocation includes a 1-pixel space between adjacent lines and a 
2-pixels space between adjacent characters. 
 
Now, for each character that we want to display on the screen, we have to design a suitable 
bitmap.  For example, Figure 10 gives a possible bitmap for the letter “A”. 
 

        
        
        
        
        
        
        
        
        
        
        

 
FIGURE 10: Character bitmap of the letter “a”. 

 
Characters are usually drawn on the screen one after the other, from left to right.  For example, 
the two commands print(”a”) and print(”b”) probably mean that the programmer wants to 
see the image “ab” drawn on the screen.  Thus the character-writing package must maintain a 
“cursor” object that keeps track of the screen location where the next character should be drawn 
on the logical “character screen”.  The cursor information consists of “line” and “column” counts.  
For example, the character screen described in the previous paragraph is characterized (excuse 
the pun) by 0 ≤ line ≤22 and 0≤column≤63.  Drawing a single character at location (line, column) 
is achieved by writing the bitmap of the character onto the box of pixels at rows line*11 … 
line*11 + 10, and columns column*8 … column*8+7.  After a character is drawn, the cursor 
should be moved one step to the right (i.e. column is increased by 1), and when a new line is 
requested, row is increased by 1 and column is reset to 0.  When the bottom of the screen is 
reached, there is a question of what to do next, the common solution being to effect a  “scrolling” 
operation.  Another possibility is erasing the screen and staring over from the top left corner (i.e. 
setting the cursor to (0,0).) 
 
To conclude, we know how to write characters on the screen.  Writing other types of data is now 
easy: strings are written character by character; numbers are written by first converting them to 
strings, and so on. 
 
1.5.3 Keyboard Handling 
 
Handling user-supplied character input is more involved than meets the eye.  When interacting 
with a computer, a human user presses a key on the keyboard for some variable duration of time.  
Yet the program that manages the interaction with the user wants to accept this single character 
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input independently of the time that elapsed between the “key press” and “key release” events..  
Further, we usually want to give some feedback to the user.  First, we typically want to display 
some graphical cursor at the screen  location where the input “goes”.  Second, we typically want 
to echo the actual input by displaying it on the screen at that point.   
 
In the “raw” form of keyboard access, the program gets direct data from the keyboard indicating 
which key is currently pressed by the user.  The access to this raw data depends on the specifics 
of the keyboard interface.  For example, if the keyboard is represented using a memory map, we 
can simply inspect the contents of the relevant RAM area to determine which key is presently 
pressed.  The details of this inspection can then be incorporated into the implementation of 
Algorithm 11. 
 

keyPressed (x,y): 
// Depends on the specifics of the keyboard interface. 
if a key is pressed on the keyboard 
    return the ASCII value of the key 
else 
   return 0 

 
ALGORITHM 11: Capturing (“raw”) keyboard input. 

 
Usually, an input typed by the user is considered final only after the “enter” key has been pressed, 
yielding the new-line character.  Further, users may backspace and erase their previously entered 
characters until this event takes place.  These requirements, along with the “raw” input form 
supplied by the keyPressed routine, can be used to implement the “cooked” form of character 
input expected by human users.  The details are shown in Algorithms 12 and 13. 
 
// Read and echo a single character. 
readChar(): 
     display the cursor 
     while no key is pressed on the keyboard 
          do nothing  // wait till the user presses a key 
      c = code of currently pressed key 
      while a key is pressed 
               do nothing // wait for the user to let go 
      print c at the current cursor location 

        move the cursor one position to the right 

        return c 

      

 // Read a “line” (until new-line). 
readLine(): 
    s = empty string 
    repeat  
         c = readChar() 
         if c == new-line character 
              print new-line 
              return s 
         else if c == backspace character 
              remove last character from s 
              move the cursor 1 pos. back 
         else 
              s = s.append(c) 
     return s 
 

 
ALGORITHMS 12-13: Capturing (“cooked”) keyboard input. 
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2. The Sack OS Specification 
 
This section duplicates “The Jack Standard Library” section from Chapter 9.  The various 
services of the Sack operating system are organized in eight modules, as follows: 
  

� Math:  Provides basic mathematical operations; 

� String: Implements the String type and basic string-related operations; 

� Array:  Defines the Array type and allows construction and disposal of arrays; 

� Output: Handles text based output; 

� Screen: Handles graphic screen output; 

� Keyboard: Handles user input from the keyboard; 

� Memory: Handles memory operations; 

� Sys:  Provides some execution-related services. 
 
This section specifies the subroutines that are supposed to be in these classes. 
 
Math 
 
This class enables various mathematical operations. 
� Function void init(). 

� Function int abs(int x): Returns the absolute value of x. 

� Function int multiply(int x, int y): Returns the product of x and y. 

� Function int divide(int x, int y): Returns the integer part of the x/y. 

� Function int min(int x, int y): Returns the minimum of x and y. 

� Function int max(int x, int y): Returns the maximum of x and y. 

� Function int sqrt(int x): Returns the integer part of the square root of x. 
 
String 
 
This class implements the String data type and various string-related operations. 
� Constructor String new(int maxLength): Constructs a new empty string (of length zero) 

that can contain at most maxLength characters. 

� Method void dispose(): Disposes this string. 

� Method int length(): Returns the length of this string. 

� Method char charAt(int j): Returns the character at location j of this string. 

� Method void setCharAt(int j, char c): Sets the j’th element of this string to c. 

� Method String appendChar(char c): Appends c to this string and returns this string. 

� Method void eraseLastChar(): Erases the last character from this string. 
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� Method int intValue(): Returns the integer value of this string (or at least of the prefix 

until a non numeric character is found). 

� Method void setInt(int j): Sets this string to hold a representation of j. 

� Function char backSpace(): Returns the backspace character. 

� Function char doubleQuote(): Returns the double quote (“) character. 

� Function char newLine(): Returns the newline character. 

 
Array 
 
This class enables the construction and disposal of arrays. 
� Function Array new(int size): Constructs a new array of the given size. 

� Method void dispose(): Disposes this array.  
 
Output 
 
This class allows writing text on the screen.   
� Function void init(). 

� Function void moveCursor(int i, int j): Moves the cursor to the j’th column of the i’th 
row, and erases the character located there. 

� Function void printChar(char c): Prints c at the cursor location and advances the cursor 
one column forward. 

� Function void printString(String s): Prints s starting at the cursor location, and 
advances the cursor appropriately. 

� Function void printInt(int i): Prints i starting at the cursor location, and advances the 
cursor appropriately. 

� Function void println(): Advances the cursor to the beginning of the next line. 

� Function void backSpace(): Moves the cursor one column back. 
 
Screen 
 
This class allows drawing graphics on the screen. Column indices start at 0 and are left-to-right.  
Row indices start at 0 and are top-to-bottom.  The screen size is hardware-dependant (over 
HACK: 256 rows * 512 columns). 
� Function void init(). 

� Function void clearScreen(): Erases the entire screen. 

� Function void setColor(boolean b): Sets the screen color (white=false, black=true) to be 
used for all further drawXXX commands. 

� Function void drawPixel(int x, int y): Draws the (x,y) pixel. 
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� Function void drawLine(int x1, int y1, int x2, int y2): Draws a line from pixel (x1,y1) to 

pixel (x2,y2). 

� Function void drawRectangle(int x1, int y1, int x2, int y2): Draws a filled rectangle 
where the top left corner is (x1, y1) and the bottom right corner is (x2,y2). 

� Function void drawCircle(int x, int y, int r): Draws a filled circle of radius r<=181 
around (x,y). 

 
Keyboard 
 
This class allows reading inputs from the keyboard.   
� Function void init(). 

� Function char keyPressed(): Returns the character of the currently pressed key on the 
keyboard; if no key is currently pressed, returns 0. 

� Function char readChar(): Waits until a key is pressed on the keyboard and released, and 
then echoes the key to the screen and returns the character of the pressed key. 

� Function String readLine(String message): Prints the message on the screen, reads the 
next line (until a newline character) from the keyboard, echoes the line to the screen, and 
returns its value.  This method handles user backspaces. 

� Function int readInt(String message): Prints the message on the screen, reads the next 
line (until a newline character) from the keyboard, echoes the line to the screen, and 
returns the integer until the first non numeric character in the line.  This method handles 
user backspaces. 

 
Memory 
 
This class allows direct access to the main memory.   
� Function void init(). 

� Function int peek(int address): Returns the value of the main memory at this address. 

� Function void poke(int address, int value): Sets the value of the main memory at this 
address to the given value. 

� Function Array alloc(int size): Allocates the specified space on the heap and returns a 
reference to it. 

� Function void deAlloc(Array o): De-allocates the given object and frees its memory 
space. 

 
Sys 
 
This class supports some execution-related services. 
� Function void init(): Calls the init functions of the other OS classes (where appropriate) and 

then calls the Main.main() method. 

� Function void halt(): Halts the program execution. 
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� Function void error(int errorCode): Prints the error code on the screen and halts. 

� Function void wait(int duration): Waits approximately duration milliseconds and returns.  
 
 
3. Implementation 
 
This section provides some hints and suggestions for implementing the various classes of the 
Sack OS using Jack over the Hack platform. 
 
Initialization: In each OS class that requires class-level initialization, the class-level initialization 
code is embedded in a single init routine.  This routine is then called (once) by the OS’s 
Sys.init routine, as part of the “booting” process.  This is explained further below, in the Sys 
class implementation tips.  
 
Math: The multiplication and division algorithms 1 and 2 are designed for natural (non-negative) 
numbers only. A simple way of handling negative numbers is doing all calculations on absolute 
values and then setting the sign appropriately.   For the multiplication algorithm, this is not really 
needed since it turns out that if the input numbers are given in 2’s complement then the results 
will be correct with no further ado.   

 
Note that in each iteration j of the multiplication Algorithm 1, the jth bit of the second number is 
extracted.  We suggest to encapsulate this operation as follows: 
 

bit(x,j): Returns true if the jth bit of the integer x is 1 and false otherwise. 
 

The bit(x,j) function can be easily implemented using shifting operations.  Alas, Jack does not 
support shifting.  Instead, to speed up this function implementation in Jack, it may be convenient 
to define a fixed static array of length 16, say twoToThe[j], whose jth location holds the value 2 
to the power of j.  This array may be initialized once (in Math.init), and then used, via bitwise 
Boolean operations, in the implementation of bit(x,j). 
 
In the division Algorithm 2 we multiply y by a factor of 2 until y>x.  A detail that needs to be 
taken into account is that y can overflow.  This overflow can be detected by noting when y 
becomes negative. 

 
For computing the square root (Algorithm 3), notice that 123276733124 152 −=>=182 , and 
thus the binary search can be limited to the range 0..181. 
 

String: The ASCII codes of newline, backspace and doubleQuote are 128, 129 and 34 
respectively. 

Array: Note that the “new” function is not really a constructor, despite the fact that it looks like 
one.  Therefore, memory space for a new array should be explicitly allocated using a call to 
Memory.alloc().   Similarly, de-allocation must be done explicitly. 
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Output: We suggest using character maps of 11*8, leading to 23 lines of 64 characters each.  
Since building character maps of all ASCII characters is quite a burden, we supply such maps for 
you (except for one or two characters which are left as an exercise).  In particular, we supply Jack 
code that gives for each printable ASCII character an array that holds its bit map (using a “font” 
that we created).  The array holds 11 entries, each corresponding to a row of pixels.  Each row is 
given as a binary number whose bits represent the 8 pixels in the row.   
 
There is no need to implement scrolling. 
 
Memory: The peek and poke functions should provide direct access to the underlying memory. 
As it turns out, the Jack language includes a trapdoor that enables the programmer to gain 
complete control of the computer’s memory.  This hacking trick can be exploited to enable the 
implementation of peek and poke using plain Jack programming.  The trick is based on an 
anomalous use of reference variables (pointers).  Specifically, the Jack language does not prevent 
the programmer from assigning a constant to a reference variable.  This constant can then be 
treated as an absolute memory address.  In particular, when the reference variable happens to be 
an array, this trick can give convenient and direct access to the entire computer memory: 
 

// To create a Jack-level "proxy" of the RAM: 
var Array memory; 

let memory=0; 

// From this point on we can use code like: 
let x = memory[j]  // where j is any RAM address    
let memory[j] = y  // where j is any RAM address    

 
PROGRAM 14: A trapdoor enabling complete control of the RAM from Jack. 

 
Following the first two lines of Program 14, the base of the memory array points to the first 
address in the computer's RAM.  To set or get the value of the RAM location whose physical 
address is j, all we have to do is manipulate the array entry memory[j].  This will cause the 
compiler to manipulate the RAM location whose address is 0+j, which is precisely what we want 
to do.  
 
Recall that in Jack, arrays are not allocated space on the heap at compile-time, but rather at run-
time, when the array's new method is called.  Here, however, a new initialization will defeat the 
purpose, since the whole idea is to anchor the array in a particular address rather then let the OS 
allocate it to an address in the heap that we don't control.  In short, this hacking trick works 
because we use the array variable without initializing it "properly", as we would do in normal 
usage of arrays. 
 
The higher level functions alloc and deAlloc manipulate the heap.  Recall that the standard 
implementation of the VM over the Hack platform specified that the heap resides at RAM 
locations 2048-16383. 
 
Screen: Drawing a pixel on the screen is done by directly accessing its memory map using 
Memory.peek() and Memory.poke().  Recall that the memory map of the screen on the hack 
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platform specifies that the pixel at column c and row r (0≤c≤511, 0≤r≤255) is mapped to the 
c%16 bit of memory location 16384 + r*32 + c/16.  Notice that drawing a single pixel requires 
changing a single bit in the accessed word, a task that can be achieved in Jack using bit-wise 
operations. 
 
The only tricky element in the other graphic operations here is avoiding overflow.  Overflow in 
the line drawing Algorithm 8 will not occur if you use the suggested efficient implementation for 
determining whether a/dx<b/dy.   
 
The specification of the drawCircle routine limits circle radiuses to be at most 181.  This 
eliminates the possibility of overflow when using the suggested circle drawing Algorithm 9. 
 
Keyboard: Recall that the memory map of the keyboard on the Hack platform is at memory 
location 24576.   The method keyPressed() provides “raw” access to this memory location and 
can be implemented easily using Memory.peek().  The other methods provide the required 
“cooking”. 
 
Sys: An application program written in Jack is a collection of classes. One class must be named 
Main, and this class must include a method named main.  In order to start running the application 
program, the Main.main() method should be invoked.  Now, it should be understood that the 
operating system is itself a program.  Thus, when the computer boots up, we want to start running 
the operating system program first, and then we want the OS to start running the application 
program.  Indeed, the VM specification states a bootstrap code that automatically invokes a VM 
function called Sys.init().  This Sys.init() function, which is part of the OS’s Sys class, 
should then call the init() methods of the other OS classes (libraries), and then call the 
Main.main() method of the application program. 
 
The Sys.wait function can be implemented pragmatically, under the limitations of the Hack 
platform.  In particular, you can use a loop that runs approximately n milliseconds before it (and 
the method) returns. You will have to time your specific computer to obtain a one millisecond 
wait (this constant varies from one CPU to another).  As a result, your Sys.wait() function will 
not be portable, but that's life. 
 
The Sys.halt function can be implemented by entering an infinite loop. 
 
4.Perspective 

 
The standard class library presented in this chapter was given the name “operating system” due to 
its main conceptual goal: encapsulation of the gory hardware details, omissions, and 
idiosyncrasies in a clean software packaging.   However, the gap between what we called here an 
operating system and an “industrial strength” operating system is rather large.   
 
Our “operating system” completely lacks some of the very basic components most closely 
associated with operating systems.  The Hack/Jack system supports no multi-threading or multi-
processing; in contrast the very kernel of most operating systems is devoted to exactly that.  The 
Hack/Jack system has no mass storage devices; in contrast the main information kept and handled 
by operating systems is the file system.  The Hack/Jack system has neither a textual user interface 
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(as in a Unix shell or a DOS window), nor a graphical one (windows, mouse, icons, etc.); in 
contrast this is the operating system aspect that users expect to see and interact with.   Numerous 
other services commonly found in operating systems are not present here: security, 
communication, and more. 
 
A central feature of most operating systems is that their code is somehow more “privileged” than 
user code – the hardware platform forbids non-system code to perform various operation that are 
allowed to OS code.   Consequently, access to operating system services requires a mechanism 
that is more elaborate than a simple function call.  Further, programming languages usually wrap 
these OS services in regular functions or methods.  In our case there is no difference between 
normal code and OS code, and OS system services run in the same “user mode” as that of the 
application program. 
 
Our operating system does however include some of the most fundamental OS services, e.g. 
managing memory, driving I/O, handling initialization, as well as supplying mathematical 
functions not implemented in hardware.  Additionally, our operating system supplies some 
services that are normally found in the standard libraries of programming languages, e.g. the 
String abstraction.  Consistent with the spirit of this book, all these OS services are described and 
implemented in the simplest possible way, but not simpler. 
 
The algorithms that we presented for multiplication and division are very standard.  However, in 
most cases these algorithms, or a variant thereof, are implemented in hardware rather than in 
software.  The running time of the presented multiplication and division algorithms is O(n) 
addition operations.  Since adding two n-bit numbers requires O(n) bit operations (gates in 
hardware), multiplication and division require O(n^2) bit operations.  There are algorithms whose 
running time is asymptotically significantly faster.  For a large number of bits, these algorithms 
are more efficient. 
 
 
5. Build It 
 
This project describes a modular implementation of the entire Sack operating system.  The OS is 
implemented as a collection of eight classes.  Each of these classes can be implemented in 
isolation. Further, the classes may be developed and incrementally tested in any particular order.  
 
Objective: Implement the Sack operating system and test it by executing application programs 
that use OS services. 
 
Resources: The main tool that you need in this project is Jack -- the language in which you have 
to develop the OS. This implies that you will also need the supplied Jack compiler, to compile 
your OS implementation as well as the supplied test programs.  In order to facilitate partial 
testing of the OS, you will also need the supplied OS, consisting of 8 .vm files (one for each OS 
class).  Finally, you will need the supplied VM Emulator.  This program will be used as the 
platform on which the actual test takes place.  In order to start the project on the right foot, we 
also supply skeletal Jack files for each OS class. 
 
Contract: Write the OS implementation and test it by running all the test programs and testing 
scenarios described below. 
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Recommended Testing Strategy 
 
Here are the project materials: 
 
• Skeletal OS classes: We supply one Jack file for each OS class.  This file includes the 

“signatures” (interfaces) of all the functions and methods that should be implemented, with 
empty implementations. Your job is to provide the missing implementations according to the 
class API and the suggested algorithms. 

 
• Test programs: For each OS class, we supply a separate test program written in Jack. In 

addition, we supply the Jack code of the Pong game as a “master” test. 
 
We suggest that each class be developed and unit-tested in isolation.  This can be done by 
compiling the OS class that you write and then putting the resulting .vm file in a directory that 
contains the other 7 .vm OS files and the .vm files of the respective test program.  In particular, 
after implementing an OS class, you may follow these steps: 
 

1) Copy your implemented OS class (Jack file) into the directory that contains the 
corresponding supplied test program (a collection of one or more Jack files); 

2) Compile the entire directory using the supplied Jack Compiler; 

3) Copy all the supplied OS .vm files (except the one that you have just compiled) 
into the directory. 

4) At this point the directory should contain an executable program consisting of the 
eight .vm files related to the OS and one .vm file for each class in the test program; 

5) Execute this program by opining the entire directory in the VM Emulator; 

6) Proceed to test if the OS services are working properly according to the guidelines 
given below for each OS class. 

 
After testing successfully each OS class in isolation, test your entire OS implementation using the 
Pong game.  Put all your OS .jack files in the Pong directory, compile the directory, and execute 
the game in the VM Emulator.  If the game works, that’s pretty good. 
 
Testing 
 
Memory, Array, Math: In addition to the requisite .jack files, the test materials for each of 
these classes also include a .tst test script and a compare .cmp file for execution on the VM 
Emulator. To test your implementation of each one of these three OS classes, execute the given 
test scripts on the VM Emulator and make sure that the comparison ends successfully. Note that 
Memory.alloc and Memory.deAlloc are not fully tested, since a full test depends on internal 
implementation details not visible in user-level testing. Thus it is recommended to test these two 
methods using step-by-step debugging in the VM Emulator. 
 
The remaining test programs do not include test scripts. They should be compiled and executed 
on the VM Emulator as is. 
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String: Execution of the corresponding test program should yield the following output: 
  
new,appendChar: abcde 
setInt: 12345 
setInt: -32767 
length: 12 
charAt[2]: 99 
setCharAt(2,'-'): ab-de 
eraseLastChar: ab-d 
intValue: 456 
intValue: -32123 
backSpace: 129 
doubleQuote: 34 
newLine: 128 
 
 
 
 
Output: Execution of the corresponding test program should yield the following output: 
 
A                                                              B 
 
0123456789 
ABCDEFGHIJKLMNOPQRSTUVWXYZ abcdefghijklmnopqrstuvwxyz 
!#$%&'()*+,-./:;<=>?@[\]^_`{|}~ 
-12346789 
 
 
 
 
 
 
 
 
 
C                                                              D 
 
 

Screen: Execution of the corresponding test program should yield the following output: 
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Keyboard: This OS class is tested using a test program that effects some program-user 
interaction. For each function in the Keyboard class (keyPressed, readChar, readLine, 
readInt) the program requests the user to press particular keys on the keyboard. If the function is 
implemented correctly and the correct keys are pressed, the program prints the text “ok” and 
proceeds to test the next function. If not, the program repeats the request for the same function. If 
all requests end successfully, the program prints ‘Test ended successfully’, at which point the 
screen may look as follows: 
 
keyPressed test: 
Please press the 'Page Down' key 
ok 
readChar test: 
(Verify that the pressed character is echoed to the screen) 
Please press the number '3': 
ok 
readLine test: 
(Verify echo and usage of 'backspace') 
Please type 'JACK' and press enter: 
ok 
readInt test: 
(Verify echo and usage of 'backspace') 
Please type '-32123' and press enter: "); 
ok 
 
Test completed successfully 
 
 
 

Sys: Only two functions in this class can be tested: Sys.init and Sys.wait. The supplied test 
program tests the Sys.wait function by requesting the user to press any key, waiting for two 
seconds (using Sys.wait) and then printing another message on the screen. The time that elapses 
from the moment the key is released until the next message is printed should be two seconds. 
 
The Sys.init function is not tested explicitly.  However, recall that it performs all the necessary 
OS initializations and then -- by definition -- calls the Main.main function of each test program.  
Therefore, we can assume that nothing would work properly unless Sys.init is implemented 
correctly.  A simple way to test Sys.init in isolation is to run Pong using your Sys.vm file. 


