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10. The Compiler I: Syntax Analysis1 

 
”Neither can embellishments of language be found  
without arrangement and expression of thoughts,  

nor can thoughts be made to shine without the light of language.” 
  

Cicero (106 BC - 43 BC) 
 
 

This chapter is work in progress.  In this chapter we start the process of building a compiler for the 
Jack high-level language.   The process of compilation is usually partitioned into two conceptual 
parts: syntactic understanding of the program structure, and semantic generation the compiled code.  
This chapter deals with the first issue, that of parsing a program written in the Jack language as to 
“understand its structure”.  The second part, code generation, is the subject of chapter 11.   
 
The concept of “understanding the structure” of a program needs some explanation.   When humans 
reads a program, they immediately see the “structure” of the program: where classes and methods 
begin and end, what are declarations, what are statements, what are expressions and how they are 
built, and so on.  Notice that this is a complex nested structure: classes contain methods that contain 
statements that contain expressions, etc.  The allowable structure of programs may be formalized, 
and programming languages today have formal syntax rules, usually given as a “context free 
language”.   
 
Parsing a program that was written according to these rules means determining the exact 
correspondence between the program and the syntax rules.  This correspondence is usually 
hierarchal, and may be specified by a “derivation tree” for the program.  Compilers often keep an 
explicit data structure that corresponds to this tree and use this data structure for code generation. 
Alternatively, they may generate this information implicitly and use it on the fly for code generation.   
Since in this chapter we do not generate any code yet, we have chosen to explicitly output the parsed 
structure in a particular format, specifically in XML.  This will demonstrate the correct parsing of the 
program, in a way that is easily displayed in any web browser.  In the next chapter we will simply 
replace the parts of the current program that output the parsing in XML with parts that do actual code 
generation. 
 
It is worthwhile to note that the same types of syntax rules used for specifying programming 
languages are also used for specifying the syntax of many other types of files.   While most 
programmers will never need to write a real compiler, it is very likely that they will often need to 
parse files of some other type with a complex syntax.  This parsing will be done in the same way that 
the parsing of a programming language is done.   
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
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1. Background 
 
Lexical Analysis 
 
In its plainest syntactic form, a program is simply a sequence of characters, stored in a text file.  The 
first step in the syntax analysis of the program is to group the characters into words, also called 
tokens, while ignoring white space and comments.  This step is usually called “lexical analysis,” 
“scanning,” or “tokenizing”.  Once a program has been tokenized, the tokens (rather than the 
characters) are viewed as its basic atoms.  Thus the tokens stream becomes the main input of the 
compiler.  Program 1 illustrates the tokenizing of a typical code fragment, taken from a Java or C 
program.  
 

Code fragment  Tokens 
while (count<=100) { /** demonstration */  while 

      count++;  ( 

      // body of while continues  count 

      ...  <= 

  100 

  ) 

  { 

  count 

  ++ 

  ; 

  ... 

 
PROGRAM 1: Lexical Analysis, also called tokenizing, converts the input 
text into a list of tokens.  These tokens are then taken to be the elementary 
atoms from which the program is made. 

 
As Program 1 illustrates, there are several distinct types of tokens: while is a keyword; count is an 
identifier; <= is an operator, 100 is a constant, and so on.  Also notice that white space (blanks and 
newline characters) is eliminated in the tokenizing process, and so are comments. 
 
In general, each programming language specifies the types of tokens it allows, as well as the exact 
syntax rules for combining them into programmatic structures.  For example, some languages may 
specify that “++” is an operator, while other languages may not.  In the latter case, an expression 
containing two consecutive + operators will be considered invalid. 
 
Context Free Languages 
 
Once we have lexically analyzed a program into a stream of tokens, we are now faced with the main 
challenge of parsing it into its formal structure.  We first need to consider how the formal syntax of 
languages is specified.  There is a rich theory called “formal languages” that discusses many types of 
languages, including the formalisms used to specify them.  Almost all programming languages, as 
well as most other formal languages used for describing the syntax of complex files types, use a 
formalism known as “context free grammars”.   

tokenizer 
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A context free grammar is a specification of allowable syntactic elements, and rules for composing 
them from other syntactic elements.  For example, the grammar of the Java language allow us to 
combine the atoms 100,count, and <= into the pattern count<=100.  In a similar fashion, we can 
observe that according to the Java grammar, the input pattern  count<=100 is valid, i.e. it is 
consistent with the language’s rules.   Indeed, every language has a dual perspective. From a 
constructive standpoint, the grammar specifies allowable ways to combine words, also called 
terminals, into higher-level syntactic elements, called non-terminals.  From an analytic standpoint, 
the grammar is also a prescription for doing the reverse: decomposing a given input pattern into non-
terminals, lower-level non-terminals, and eventually into terminals that cannot be decomposed 
further. These terminals correspond to the tokens of the lexical analysis phase.   
 
The syntactic structure of the language -- the context free grammar -- is a set of rules that specify 
how non-terminals can be derived from other non-terminals and terminals.  The grammar may be 
recursive.  There may be more than one possible rule for deriving any particular non-terminal, and 
the different alternatives are usually indicated using the “|” notation.  Grammar 2 gives an example 
of a small part of the context-free grammar of the C-language. 
 

... 

statement:      whileStatement 
           | ifStatement 
           |   ...                 // other statement possibilities follow 
           |   ‘{’ statementSequence ‘}’                       
 
whileStatement:  ‘while’ ‘(‘ expression ‘)’ statement  
 
ifStatement: ...        // if definition comes here 
 
statementSequence:  ‘’      // null, i.e. the empty sequence 
                                         | statement ‘;’ statementSequence 

expression: ...    // definition of an expression comes here 

...                              // more definitions follow 

 
GRAMMAR 2: A Context Free Grammar is a set of rules that describes the syntactic 
structure of a language.  Here we see part of the C language grammar. 

 
What does Grammar 2 mean?  First, the grammar implies that statement, whileStatement, 
ifStatement, expression, and statementSequence are non-terminals, whereas “while”, ‘{‘, ‘}’, and 
‘;’ are terminals.  Further, the grammar implies that a statement in the C language may be one of 
several forms, including a while statement, an if statement, other possibilities not shown here for lack 
of space, and any sequence of statements enclosed in curly brackets.  The resulting grammar is 
highly recursive, allowing nested structures like the following example: 



Chapter 10: The Compiler I: Syntax Analysis                                                                                               4     
              

 

 
while (some expression) { 

   some statement; 

   some statement; 

   while (some expression) { 

      while (some expression)  

             some statement; 

      some statement; 

   } 

} 

 
 
Parsing: The act of checking whether a grammar “accepts” an input text as valid (according to the 
grammar rules) is called parsing. As a side effect of the parsing process, the entire syntactic structure 
of the input text is uncovered.  Since the grammar rules are hierarchical, the result is a tree-oriented 
data structure, called parse tree or derivation tree (weather the tree is stored in memory or 
recognized on-line is a different issue that will be addressed later).  For example, if we apply 
Grammar 2 to the tokenized version of Program 1, we will obtain the parse tree depicted in Figure 3. 
 
 

while . . .( )count <= 100 { count ++

statement

whileStatement

expression

statementSequence

statement

;

statement statementSequence

Input Text:

while (count<=100) {
/** demonstration */
      count++;
      // ...

Tokenized:

while
(
count
<=
100
)
{
count
++
;
...

 
 

FIGURE 3: Parse tree of Program 1 according to Grammar 2.  Solid 
triangles represent lower-level parse trees. The input of the parsing process 
is the tokenized version of the program. 
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Recursive Descent Parsing 
 
The last section ended with a description of a parse tree.  We now turn to describe the algorithms 
that can be used to construct such trees from given input programs, according to the syntax rules of a 
given language.  There are general algorithms that can do that for any context free language.  The 
general algorithms are not efficient enough for practical use on very long programs, and there are 
more efficient parsing algorithms that apply to certain restricted classes of context free languages, 
classes that contain the syntax rules of essentially all program languages.  These more efficient 
algorithms usually run “online” – they parse the input as they read it, and do not have to keep the 
entire input program in memory.  There are essentially two types of strategies for this parsing.  The 
simple strategy works top-down, and this is the one we present here.  The more advanced algorithms 
work bottom-up, and are not described here since they require a non-trivial elaboration of theory. 
 
The top-down approach to parsing, also called recursive descent parsing, parses the input stream 
recursively, using the nested structure prescribed by the language grammar.  Let us consider how a 
parser program that implements this strategy can be constructed.  For every non-terminal building 
block of the language, we can equip the parser with a recursive procedure designed to parse that non-
terminal.  If the non-terminal consists of terminal atoms only, the procedure will simply read them.  
Otherwise, for every non-terminal building block, the procedure will recursively call the procedure 
designed to parse the non-terminal.  The process will continue recursively, until all the terminal 
atoms have been reached and read.  
 
For example, suppose we have to write a recursive descent parser that implements Grammar 2. Since 
the grammar has five derivation rules, the parser implementation can consist of five major 
procedures: parseStatement(), parseWhileStatement(), parseIfStatement(), 
parseStatementSequence(),  and parseExpression().  The parsing logic of these 
procedures should follow the syntactic patterns found in the corresponding grammar rules.  Thus 
parseStatement() should probably start its processing by determining what is the first token.  
Having established the token’s identity, the procedure could determine which statement we are in, 
and then call the parsing procedure associated with this statement type. 
 
For example, if the input stream were Program 1, the procedure will establish that the first token is 
while, and then call the procedure parseWhileStatement().  According to the corresponding 
grammar rule, this procedure should next attempt to read the terminals “while” and “(“, and then 
call parseExpression() to parse the non-terminal expression.  After parseExpression() 
would return (having read and parsed the “count<=100” sequence in our example), the grammar 
dictates that parseWhileStatement()should continue parsing the remainder of the while 
statement.  In particular, the grammar states that it should attempt to read the terminal “)” and then 
recursively call parseStatement() to parse the non-terminal statement.  This call would continue 
recursively, until at some point only terminal atoms are read. 
 
LL(0) grammars: Recursive parsing algorithms are simple and elegant.  If you will think about 
them, you will realize that the only thing that complicates matters is the existence of several 
alternatives for parsing non-terminals.  For example, when parseStatement() attempts to parse a 
statement, it does not know in advance whether this statement is a while-statement, an if-statement, a 
curly-bracket enclosed statement list, and so on.  The span of possibilities is determined by the 
underlying grammar, and in some cases it is easy to tell which alternative we are in.  For example, 
consider Grammar 2.  If the first token is “while”, it is clear that we are faced with a while 
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statement, since this is the only alternative that starts with a “while” token.  This observation can be 
generalized as follows: whenever a non-terminal has several alternative derivation rules, the first 
token specifies without ambiguity which rule to use.  Grammars that have this property are called 
LL(0) grammars, and they can be handled simply and neatly by recursive descent algorithms. 
 
When the first token does not suffice to resolve the element’s type, it is possible that a “look ahead” 
to the next token will settle the dilemma.  Such parsing can obviously be done, but as we need to 
look ahead at more and more tokens down the stream, things start getting complicated.  The Jack 
language grammar, which we now turn to present, is “almost” LL(0), and thus it can be handled 
rather simply by a recursive descent algorithm.  The only exception is the parsing of expressions, 
where just a little look ahead is necessary. 
 
2. Specification 
 
In this chapter we will write a syntax analyzer for the Jack programming language.  In the next 
chapter we will add the functionality of code generation to the syntax analyzer, and obtain a full 
compiler.   The main purpose of the syntax analyzer is to read a Jack program and “understand” its 
structure according to the Jack language syntax specification.  The meaning of “understanding” is 
that the program “knows” at each point the meaning of what it is reading: an expression, a statement, 
a variable name, etc.  It has to have this knowledge in a complete recursive sense.  This is what will 
be needed for later enabling the code generation.   
 
One way to demonstrate that the analyzer has “understood” the programmatic structure of the input 
is to have it print the text in a way that provides a visual image of the program structure.  Therefore, 
while syntax analyzers are normally not stand-alone programs, we define our syntax analyzer as 
having a specific output: an XML description of the program.  Thus the syntax analyzer you build 
here will output an XML file whose structure reflects the structure of the underlying program.  In the 
next chapter you will replace the parts of the program that output the XML code with software that 
generates executable VM code instead. 
 
Usage: The Jack syntax analyzer accepts a single command line argument that specifies either a file 
name or a directory name: 
 

prompt> JackCompiler source 

 
If source is a file name of the form Xxx.jack, the analyzer compiles it into a file named Xxx.xml, 
created in the same folder in which the input Xxx.jack is located. If source is a directory name, all 
the .jack files located in this directory are compiled. For each Xxx.jack file in the directory, a 
corresponding Xxx.xml file is created in the same directory. 
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Jack Language Syntax 
 
The functional specification of the Jack language was given in chapter 9.  We now turn to give a 
formal specification of the Jack language syntax, using a context free grammar.  The grammar is 
based on the following conventions: 

! 'xxx'  quoted boldface is used for characters that appear verbatim (“terminals”) 
! xxx  regular typeface is used for names of language constructs (“non-terminals”) 
! ( )  parentheses are used for grouping of language constructs 
! x | y  means that either x or y can appear 
! x?  means that x appears 0 or 1 times   
! x*  means that x appears 0 or more times 

 
Input: The input to the Jack syntax analyzer is simply a stream of characters.  This stream should be 
tokenized into a stream of tokens according to the rules specifying the lexical elements in the table. 
These tokens may be separated by an arbitrary amount of white space (space and newline characters) 
and comments, which are ignored.  Comments are of the standard formats  /* comment until 
closing */ , /** API comment */, and  // comment to end of line. 
 
The complete language grammar is given in Grammar 4. 



Chapter 10: The Compiler I: Syntax Analysis                                                                                               8     
              

 

 
Lexical elements There are five types of lexical elements in the Jack language: 
keyword: 'class' | 'constructor' | 'function' | 'method' | 'field' | 'static' |  

'var' | 'int' | 'char' | 'boolean' | 'void' | 'true' | 'false' | 'null' | 'this' |  
'let' | 'do' | 'if' | 'else' | 'while' | 'return' 

symbol: '{' | '}' | '(' | ')' | '[' | ']' | '. ' | ', ' | '; ' | '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' |  '~' 
integerConstant: a decimal number in the range 0 .. 32767 
stringConstant '"' sequence of ASCII characters not including double quote or newline '"' 
identifier: sequence of letters, digits, and underscore ( '_' ) not starting with a digit 

Program structure: A program is a collection of classes, each appearing in a separate file.  The compilation 
unit is a class, and is given by the following context free syntax: 

class: 'class' className '{' classVarDec*  subroutineDec* '}' 
classVarDec: ('static' | 'field' ) type varName (',' varName)*  ';' 
type: 'int' | 'char' | 'boolean' | className 
subroutineDec: ('constructor' | 'function' | 'method')  ('void' | type) subroutineName '(' 

parameterList ')' subroutineBody 
parameterList: ( (type varName)  (',' type varName)*)? 
subroutineBody: '{' varDec* statements '}' 
varDec: 'var' type varName (',' varName)* ';' 
className: Identifier 
subroutineName: Identifier 
varName: Identifier 

Statements  
statements: statement* 
statement: letStatement | ifStatement | whileStatement | doStatement | returnStatement  
letStatement: 'let'  varName ('[' expression ']')? '=' expression ';' 
ifStatement: 'if' '(' expression ')' '{' statements '}'  ( 'else' '{' statements '}' )? 
whileStatement: 'while' '(' expression ')' '{' statements '}' 
doStatement: 'do'  subroutineCall ';' 

returnStatement 'return'  expression? ';' 

Expressions:  
expression: term (op term)* 
term: integerConstant | stringConstant | keywordConstant | varName | varName '[' expression 

']' | subroutineCall  | '(' expression ')' | unaryOp term 
subroutineCall: subroutineName '(' expressionList ')' | ( className | varName) '.' subroutineName  '(' 

expressionList ')' 
expressionList: (expression (',' expression)* )? 
op: '+' | '-' | '*' | '/' | '&' | '|' | '<' | '>' | '=' 
unaryOp: '-' | '~'  
keywordConstant: 'true' | 'false' | 'null' | 'this' 

 
GRAMMAR 4: Complete grammar of the Jack language 
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XML Output Format 
 
The output of the syntax analyzer should be an XML description of the program.  Figure 5 gives a 
detailed example. Basically, the analyzer has to recognize two major types of language constructs: 
terminal elements, and non-terminal elements.  These constructs are handled as follows. 
  
Non-terminals:  Whenever a non-terminal element of type xxx of the language is encountered, the 
analyzer should generate the output: 
 

<xxx> 
           recursive code for the body of the xxx element 
</xxx> 

 
Where xxx is one of the following (and only the following) non-terminals of the Jack grammar: 
 

• class, classVarDec, subroutineDec, parameterList, subroutineBody, varDec 
• statements, whileSatement, ifStatement, returnStatement, letStatement, doStatement  
• expression, term, expressionList 

 
Terminals: Whenever a terminal element of type xxx of the grammar is encountered, the following 
output should be generated: 
 

 <xxx> terminal </xxx> 
 
Where xxx is one of the five terminals specified in the “lexical elements” part of the Jack grammar: 
keyword, symbol, integerConstant, stringConstant, identifier. 
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 Class Bar { 
   method Fraction foo(int y) { 
       var int temp; // a variable 
       let temp = (xxx+12)*-6 ; 
       ... 

 
 
<class> 
  <keyword> class </keyword> 
  <identifier> Bar </identifier> 
  <symbol> { </symbol> 
  <subroutineDec> 
    <keyword> method </keyword> 
    <identifier> Fraction </identifier> 
    <identifier> foo </identifier> 
    <symbol> ( </symbol> 
    <parameterList> 
      <keyword> int </keyword> 
      <identifier> y </identifier> 
    </parameterList> 
    <symbol> ) </symbol> 
    <subroutineBody> 
      <symbol> { </symbol> 
      <varDec> 
        <keyword> var </keyword> 
        <keyword> int </keyword> 
        <identifier> temp </identifier> 
        <symbol> ; </symbol> 
      </varDec> 
      <statements> 
        <letStatement> 
          <keyword> let </keyword> 
          <identifier> temp </identifier> 
          <symbol> = </symbol> 
          <expression> 
            <term> 
              <symbol> ( </symbol> 
              <expression> 
                <term> 
                  <identifier> xxx </identifier> 
                </term> 
                <symbol> + </symbol> 
                <term> 
                  <integerConstant> 12 </integerConstant> 
                </term> 
              </expression> 
              <symbol> ) </symbol> 
            </term> 
            <symbol> * </symbol> 
            <term> 
              <symbol> - </symbol> 
              <term> 
                <integerConstant> 6 </integerConstant> 
              </term> 
            </term> 
          </expression> 
         <symbol> ; </symbol> 
       </letStatement> 
         ... 

 
FIGURE 5: Analyzer input (top) and output (bottom) 
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3. Implementation 
 
We suggest to arrange the implementation of the syntax analyzer in three modules: 
 
! JackAnalyzer:    a main driver that organizes and invokes everything; 
! JackTokenizer:    a tokenizer; 
! CompilationEngine:  a recursive top-down syntax analyzer. 
 
These modules handle the syntax of the language. In the next chapter we will extend this 
implementation with two additional modules that handle the language’s semantics: a symbol table 
and a VM-code writer.  This will complete the construction of a full compiler for the Jack language. 
 
JackAnalyzer 
 
The analyzer program operates on a given source.  If source is a file name of the form Xxx.jack, 
the analyzer compiles it into a file named Xxx.xml, created in the same folder in which the input 
Xxx.jack is located. If source is a directory name, all the .jack files located in this directory are 
compiled. For each Xxx.jack file in the source directory, the analyzer creates a corresponding 
Xxx.xml file in the same directory.  The logic is as follows: 
 
For each source Xxx.jack file: 
 

1. Create a tokenizer from the Xxx.jack file 
2. Open an Xxx.xml file and prepare it for writing 
3. Compile(INPUT: tokenizer, OUTPUT: output file) 

 
Where output file refers to the Xxx.xml file. 
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JackTokenizer 
 
 

The tokenizer removes all comments and white space from the input stream and breaks it into Jack-
language tokens, as specified in the Jack grammar. 

Routine Arguments Returns Function 

Constructor 
 

input file / 
stream 

-- Opens the input file/stream and gets ready 
to tokenize it 

hasMoreTokens -- Boolean do we have more tokens in the input? 

advance -- -- gets the next token from the input and 
makes it the current token.  This method 
should only be called if hasMoreTokens() 
is true.  Initially there is no current token.. 

tokenType -- KEYWORD, SYMBOL, 
IDENTIFIER, 
INT_CONST, 
STRING_CONST 

returns the type of the current token 

keyWord -- CLASS, METHOD, 
FUNCTION, 
CONSTRUCTOR, 
INT, BOOLEAN, CHAR, 
VOID, VAR, STATIC, 
FIELD, LET, DO, IF, 
ELSE, WHILE, 
RETURN, TRUE, 
FALSE, NULL, THIS 

returns the keyword which is the current 
token.  Should be called only when 
tokenType() is KEYWORD. 

symbol -- char returns the character which is the current 
token.  Should be called only when 
tokenType() is SYMBOL. 

identifier -- string returns the identifier which is the current 
token.   Should be called only when 
tokenType() is IDENTIFIER 

intVal  int returns the integer value of the current 
token.  Should be called only when 
tokenType() is INT_CONST 

stringVal  string returns the string value of the current 
token, without the double quotes.  Should 
be called only when tokenType() is 
STRING_CONST. 
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CompilationEngine 
 

This module effects the actual compilation into XML form.  It gets its input from a JackTokenizer and 
writes its parsed XML structure into an output file/stream.  This is done by a series of compilexxx() 
methods, where xxx is a corresponding syntactic element of the Jack grammar.  The contract between these 
methods is that each compilexxx() method should read the syntactic construct xxx from the input, 
advance() the tokenizer exactly beyond xxx, and output the XML parsing of xxx.  Thus, 
compilexxx()may only be called if indeed xxx is the next syntactic element of the input.  

In the next chapter, this module will be modified to output the compiled code rather than XML. 

Routine Arguments Returns Function 

Constructor 
 

Input 
stream/file 

Output 
stream/file 

-- creates a new compilation engine with 
the given input and output.  The next 
method called must be 
compileClass(). 

 

CompileClass 

 

-- -- compiles a complete class. 
 

CompileClassVarDec 

 

-- -- compiles a static declaration or a field  
declaration. 
 

CompileSubroutine 

 

-- -- compiles a complete method, function, 
or constructor. 
 

compileParameterList -- -- compiles a (possibly empty) parameter 
list, not including the enclosing “()”. 
 

compileVarDec -- -- compiles a var declaration. 
 

compileStatements -- -- compiles a sequence of statements, not 
including the enclosing “{}”. 

compileDo -- -- Compiles a do statement 

compileLet -- -- Compiles a let statement 

compileWhile -- -- Compiles a while statement 

compileReturn -- -- compiles a return statement. 
 

compileIf -- -- compiles an if statement, possibly 
with a trailing else clause. 
 

CompileExpression -- -- compiles an expression. 
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CompileTerm -- -- compiles a term.  This method is faced 
with a slight difficulty when trying to 
decide between some of the alternative 
rules.  Specifically, if the current token 
is an identifier, it must still distinguish 
between a variable, an array entry, and 
a subroutine call. The distinction can be 
made by looking ahead one extra token.  
A single look-ahead token, which may 
be one of “[“, “(“, “.”,  suffices to 
distinguish between the three 
possibilities.  Any other token is not 
part of this term and should not be 
advanced over. 
 

CompileExpressionList -- -- compiles a (possibly empty) comma-
separated list of expressions. 

 
 
4. Perspective 
 
In this chapter we have side-stepped almost all of the formal language theory studied in a typical 
compilation course.  We were able to do this by choosing a very simple syntax for Jack that could be 
easily compiled using recursive descent techniques.  In particular, our grammar for expressions did 
not mandate the usual operator precedence (e.g. of multiplication over addition). This avoided the 
need for bottom-up parsing of “LR” languages, usually used in other programming languages.   
 
In reality, programmers rarely write syntax analyzers by hand.  Instead, they use, so called, 
“compiler-compilers” (such as “yacc”) utilities.  These programs receive as input a context free 
grammar, and produce as output a syntax analysis code for this grammar.  Following the “show me” 
spirit of this book, we have chosen not to use such black boxes in the implementation of our 
compiler. 
 
5. Build it 
 
In this project you will build a syntactic analyzer for the Jack language.  In the next chapter, we will 
extend this analyzer into a full-scale Jack compiler. 
 
Objective: Develop a syntactic analyzer that parses Jack programs according to the Jack grammar.  
The output of the analyzer should be written in XML format, following the example given in Figure 
5. 
 
Resources: The main tool that you need is the programming language in which you will implement 
the analyzer.  You will also need the supplied TextComparer utility, which allows comparing the 
output files generated by your analyzer to the compare files supplied by us.  If you want to inspect 
the XML code generated by the analyzer, you will also need an XML viewer (any standard Web 
browser should do the job).  
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Contract: Write the Jack analyzer program in two stages, as described below.  Use it to parse all the 
.jack files mentioned below. For each source .jack file, your analyzer should generate an .xml 
output file.  The generated files should be identical to the supplied .xml  compare-files. 
 
Test Programs 
 
We supply three test programs, as follows. 
 
Square Dance  A simple interactive game that will be used to test your compiler in both projects 10 
and 11.  Although the details of the game are irrelevant to the compilation process, we describe it 
briefly.  Square Dance is a trivial “game” that enables moving a black square around the screen 
using the keyboard’s four arrow keys.  While moving, the size of the square can be increased and 
decreased by pressing the “z” and “x” keys, respectively.   To quit the game, press the “q” key.  The 
game implementation is organized in three classes: 

! Class Main:  Initializes a new game and starts it; 

! Class Square:  Implements an animated square. A square object has a screen 
                                    location and size properties, and methods for drawing, erasing, 
                                    moving, and size changing; 

! Class SquareGame:  Runs the game according to the game rules. 
 
We provide three sets of test files for this program: 

! Input source code:                           Main.jack, Square.jack, SquareGame.jack 
! Tokenizer output (compare files):   MainT.xml, SquareT.xml, SquareGameT.xml 
! Analyzer output (compare files):     Main.xml, Square.xml, SquareGame.xml 

 
Expressionless Square Dance: An identical copy of the Square Dance game, except that each 
expression in the latter is replaced with a single identifier (a variable name in scope). This version of 
the program is especially useful in the project’s second stage, in which it is advised to first 
implement a Parser that handles everything except expressions. The replacement of the expressions 
with variables required the introduction of some illegal variable castings into the source code, and so 
this version of the game cannot be compiled using the Jack Compiler. Still, it follows all the Jack 
grammar rules.  The provided test files have the same names as those of the Square Dance program. 
 
Array test: A single-class Jack program that computes the average of a user-supplied sequence of 
integers. This program uses some array notation not used in the Square Dance program, and 
therefore it is recommended to test it only after successful testing of the latter.  The provided test 
files include the source code (Main.jack), the compare file for the Tokenizer output (MainT.xml) 
and the compare file for the Parser output (Main.xml). 
 
Implementation Tips 
 
! Since the output files that your tokenizer and analyzer will generate will have the same names 

and extensions as those of the supplied compare files, we suggest putting them in separate 
directories. 
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! Since each one of the test programs focuses on different aspects of the Jack language, it is 
recommended to perform the tests in the following order: Expressionless Square Dance, then 
Square Dance, then Array test. 

! All the source test files are written in Jack.  If you want, you can compile the Square and Array 
programs using the supplied Jack compiler, and then run them on the supplied VM emulator.  
These activities are completely irrelevant to the analyzer implementation, but they serve to 
highlight the fact that the test programs are not just plain text (although this is perhaps the best 
way to think about them in the context of this project). 

  
Stage 1: Tokenizer 
 
First, implement a Jack tokenizer.  In order to test this stage, have your tokenizer output an XML file 
describing the list of the parsed tokens. When applied to a text file containing Jack code, the 
tokenizer should produce a list of tokens, each printed in a separate line along with its classification: 
symbol, keyword, identifier, integer constant, or string constant.  The classification should be 
recorded using XML tags.  For example, consider the text:  
 

let x=5+yy; let city=”Paris”;  
 
This input should generate the following output: 
 

<keyword> let </keyword> 
<identifier> x </identifier> 
<symbol> = </symbol> 
<integerConstant> 5 </integerConstant> 
<symbol> + </symbol> 
<identifier> yy </identifier> 
<symbol> ; </symbol> 
<keyword> let </keyword> 
<identifier> city </identifier> 
<symbol> = </symbol> 
<stringConstant> Paris </stringConstant> 
<symbol> ; </symbol> 

 
Note that the tokenizer throws away the double quote characters.  That’s OK. 
 
A slight difficulty, and a solution: Four of the symbols used in the Jack language (<, >, ", &) are 
also used for XML markup, and thus they cannot appear as data in XML files.  To solve the problem, 
have your tokenizer output these tokens as &lt;, &gt;, &quot;, and &amp;, respectively.  For 
example, in order for the text “<symbol> & </symbol>” to be displayed in an XML viewer, the 
source XML should be written as “<symbol> &amp; </symbol>”.  
 
Testing: For each source file Xxx.jack, have your tokenizer give the output file the name 
XxxT.xml.  For each one of the three test programs, apply your tokenizer to every class file in the 
test program. This should generate an .xml output file for each one of the source .jack files. Next, 
use the supplied TextComparer utility to compare the generated output to the supplied .xml 
compare files.  
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Stage 2: Parser 
 
Next, implement the Compilation Engine (also referred to as Parser). Write each method of the 
engine, as specified in the API, and make sure that it emits the correct XML output. 
 
Implementation tips: 
 
! The indentation of XML code is only for readability.  XML viewers and the supplied 

TextComparer utility ignore white space. 

! Note that conceptually speaking, the output of the tokenizer is embedded within the XML output.  
In other words, the parser builds the language “super structure” on top of the terminal tokens. 

! You may want to start by writing a parser that can handle everything except expressions.  For 
example, assume that the only expressions that the input source code can contain may be single 
identifiers, and handle everything else.  Next, extend the parser to handle expressions as well. 

 
Testing: For each source file Xxx.jack, have your parser give the output file the name Xxx.xml.  
For each one of the three test programs, apply your parser to every class file in the test program. This 
should generate an .xml output file for each one of the source .jack files. Next, use the supplied 
TextComparer utility to compare the generated output to the supplied .xml compare files.  
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