
Chapter 0: The grand Tour 1

0. The Grand Tour1

“The true voyage of discovery consists not of going to new places,

but of having a new pair of eyes.”

(Marcel Proust, 1871-1922)

This book is a voyage of discovery. You are about to learn three things: how computers work,
how to break complex problems into manageable modules, and how to develop large-scale
hardware and software systems. None of these things will be taught explicitly. Instead, we will
engage you in the step-by-step creation of a complete computer system, from the ground up. The
lessons that we wish to impart, which are far more important than the computer itself, will be
gained as side effects of this activity. According to the psychologist Carl Rogers, “the only kind
of learning which significantly influences behavior is self-discovered or self-appropriated -- truth
that has been assimilated in experience.” After teaching computer science for 30 years combined,
we cannot agree more.

Computer systems are based on many layers of abstractions. Thus our voyage will consist of
going from one abstraction to the other. This can be done in two directions. The top-down route
shows how high-level abstractions (e.g. commands in an object-oriented language) can be
reduced into, or expressed by, simpler ones (e.g. operations on a virtual machine). The bottom-up
route shows how low-level abstractions (e.g. flip-flops) can be used to construct more complex
ones (e.g. memory chips). This book takes the latter approach: we’ll begin with the most basic
elements possible -- primitive logic gates -- and work our way upward, constructing a general-
purpose computer, equipped with an operating system and a Java-like language.

If building such a computer from scratch is like climbing the Everest, then planting a flag on the
mountain’s top is like having the computer run some non-trivial application programs. Since we
are going to ascend this mountain from the ground up, we wish to start with a preview that goes
in the opposite direction -- from the top down. Thus, the Grand Tour presented in this chapter
will start at the end of our journey, by demonstrating an interactive video game running on the
complete target computer. Next, we will drill through the main software and hardware
abstractions that make this application work, all the way down to the bare bone transistors level.

The resulting tour will be casual. Instead of stopping to analyze each hardware and software
abstraction thoroughly, we will descend quickly from one layer to the other, presenting a holistic
picture that ignores many details. In short, the purpose of this chapter is to “cut through” the
layers of abstraction discussed in the book, providing a high-level map into which all the other
chapters can be placed.

1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd

Chapter 0: The grand Tour 2

0. Background

The World Below

We assume that readers of this book are familiar with writing and debugging computer programs.
Did you ever stop to think about the hardware and software systems that facilitate this art? Let’s
take a look. Suppose that we are developing some application using an object-oriented language.
Typically, the process starts by abstracting the application using a set of classes and methods.
Now, if we implement this design using a language like Java or C#, then the next step is to use a
compiler to translate our high-level program into an intermediate code, designed to run on a
virtual machine (VM). Next, if we want to actually see our program running, the VM abstraction
must be realized on some real computer. This can be done by a program called VM translator,
designed to convert VM code into the assembly language of the target computer. The resulting
code can then be translated into machine language, using yet another translator, called assembler.

Of course machine language is also an abstraction -- an agreed upon set of binary codes. In order
to make this abstract formalism do something for real, it must be realized by some hardware
architecture. And this architecture, in turn, is implemented by a certain chip set -- registers,
memory units, ALU, and so on. Now, every one of these hardware devices is constructed from
an integrated package of elementary logic gates. And these gates, in turn, are built from
primitive gates like Nand and Nor. Of course every one of these gates consists of several
switching devices, typically implemented by transistors. And each transistor is made of ... Well,
we won’t go further than that. Why? Because that’s where computer science ends and physics
starts, and this book is about computer science.

You may be thinking: “well, on my computer, compiling and running a program is much easier --
all I do is click some icons or write some commands!” Indeed, a modern computer system is like
an iceberg, and most people get to see only the top. Their knowledge of computing systems is
sketchy and superficial. If, however, you wish to go under the surface and investigate the systems
below, then Lucky You! There’s a fascinating world down there, below the GUI level and the OS
shell. An intimate understanding of this under-world is what separates naïve programmers from
professional developers -- people who can create not only end-user applications, but also new
hardware and software technologies. And the best way to understand how these technologies
work -- and we mean understand them in the marrow of your bones -- is to build a computer from
scratch. Our journey begins at the top of Figure 0.

Chapter 0: The grand Tour 3

the basic
theme

Human
Thought

Chips and
logic gates

Abstraction

Application or
System design

Compiler

VM Translator

Computer
Architecture

Gate Logic

Electrical
Engineering

Physics

Assembler

Chs. 8,11

Software
hierarchy

Hardware
hierarchy

Chs. 9-10

Chs. 6-7

Ch. 4

Ch. 5

Chs. 1-3

Abstraction

Hardware
Platform

Abstraction

Machine
Language

Abstraction

Assembly
Language

Abstraction

Virtual
Machine

Abstraction

High-Level
Language

&
Operating System

Built using /
Implementation

Abstraction

Abstraction

()

Reduced into:

FIGURE 0: The Grand Tour (showing major stops only)

Chapter 0: The grand Tour 4

Multiple Layers of Abstraction

This book walks you through the process of constructing a complete computer system: hardware,
software, and all their interfaces. You may wonder how it is possible. After all, a computer
system is an enormously complex enterprise! Well, we break the project into modules, and we
treat each module separately, in a stand-alone chapter. You might then wonder: how it is possible
to describe and construct these modules in isolation? Obviously they are all inter-related! As we
will show throughout the book, a good modular design implies just that: you can work on the
individual modules independently, while completely ignoring the rest of the problem. It turns out
that people are good at this strategy thanks to a unique human faculty: the ability to create and
use abstractions.

In computer science, an abstraction is simply a functional description of something. For
example, if we are asked to develop a digital camera chip that can detect close moving objects,
we can do it using low-level components like CCD chips and some routines written in the C
language. Importantly, we don’t have to worry about how these low-level hardware and software
modules are implemented -- we treat them as abstract artifacts with predictable and well-
documented behaviors. In a similar fashion, once built, our camera chip may end up being used
as a building block in a variety of Driver Assistance Systems (DAS) such as adaptive cruise
control, blind spot detection, lane departure warning, and so on. Now, the engineers who will
build these DAS applications will care little about how our camera chip works. They, too, will
want to use it as an off-the-shelf component with a predictable and well-documented behavior. In
general then, when we operate in a particular level of a complex design, it is best to focus on that
level only, “abstracting away” all the other parts of the system. This may well be the most
important design principle in building large-scale computing systems.

Clearly, the notion of abstraction is not unique to computer science -- it is central to all scientific
and engineering disciplines. In fact, the ability to deal with abstractions is often considered a
hallmark of human intelligence in general. Yet in computer science, we take the notion of
abstractions one step further. Looking “up” the construction hierarchy, the abstraction is viewed
as a functional description of a given system, aimed at the people who may want to use it in
constructing other, higher-level abstractions. Looking “down”, the same abstraction is viewed as
a complete system specification, aimed at the people who have to implement it. Therefore,
computer scientists take special pain to define their abstractions clearly and unambiguously.

Indeed, multi-layer abstractions can be found throughout computer science. For example, the
computer hardware is abstracted (read: “functionally described”) by its architecture – the set of
machine level commands that it recognizes. The operating system is abstracted by its system
calls – the set of services that it provides to other programs. Applications and software systems
are abstracted by their Application Program Interfaces -- the set of object and method signatures
that they support. Other levels of abstraction are defined and documented ad-hoc, at any given
design level, as the situation demands. In fact, the identification and description of abstract
components is the very first thing that we do when we set out to design a new hardware or
software system.

Chapter 0: The grand Tour 5

System design is a practical art, and one which is best acquired from experience. Therefore, in
this book we don’t expect you to engage in designing systems. Instead, we will present many
classical hardware and software abstractions, and ask you to build them, following our guidelines.
This is similar to saying that we don’t expect you to formulate new theorems, but rather to prove
the ones we supply. Continuing this analogy, you will start at the “bottom”, where two primitive
hardware gates will be given, not unlike axioms in mathematics. You will then gradually build
more and more complex hardware and software levels of abstraction, culminating in a full-scale
computer system. This will be an excellent example of an observation made by A.N. Whitehead
in 1911: “civilization progresses by increasing the number of operations that can be performed
without thinking about them”. Note that this sentence remains silent about who’s enabling the
progress. Well, that’s where you enter the picture.

In particular, as you’ll progress in our journey, each chapter will provide a stand-alone
intellectual unit: you need not remember the implementation details of previous systems, nor look
ahead to future ones. Instead, in each chapter you will focus on two things only: the design of the
current abstraction (a rich world of its own), and how it can be implemented using abstract
building blocks from the level below. Using this information, we will guide you in the
construction of the current abstraction, turning it into yet another “operation that we can use
without thinking about it”. As you push ahead, it will be rather thrilling to look back and
appreciate the computer that is gradually taking shape in the wake of your efforts.

1. The Journey Starts: High-Level Language Land

The term high-level is normally interpreted as “close to the human” (rather than low-level, which
is close to the machine). In this book, it means the layer at which one interacts with the computer
using an object-based programming language and an operating system. There are several reasons
why it is difficult to completely separate the discussion of these two subjects. First, modern
operating systems are themselves written in high-level languages. Second, a running program is
a collection of many routines; some come from the application, some from the OS, but from the
computer’s perspective they are all alike. Also, modern languages like Java include elaborate
software libraries and run-time environments. These language extensions perform GUI
management, multi-threading, garbage collection, and many other services that were traditionally
handled by the OS.

For all these reasons, our discussion of high-level languages in chapter 8 will include many side-
tours into the operating system, which will be discussed and built in chapter 11. The following is
a preview of some of the underlying ideas.

The Pong Game

Video games are challenging programs. They use the computer’s screen and input units
extensively, they require clever modeling of geometric objects and interactive events, and they
must execute efficiently. In short, video games pose a tough test to the hardware/software
platform on which they run. A simple yet non-trivial example is Pong -- the computer game
depicted in Fig. 1. In spite of its humble appearance, Pong is a historical celebrity: invented and
built in the early 1980’s, it was the first computer game that became massively popular -- a
success that gave rise to a thriving computer games industry.

Chapter 0: The grand Tour 6

Ball
abstraction

Bat
abstraction

FIGURE 1: The Pong Game (annotated screen shot from a real game session, running
on the Hack computer built in the book). A ball is moving on the screen randomly,
bouncing off the screen “walls”. The user can move a small bat horizontally by pressing
the keyboard’s left and right arrow keys. Each time the bat hits the ball, the user scores
a point and the bat shrinks a little, to make the game harder. If the user misses and the
ball hits the bottom horizontal line, the game is over.

If you will inspect the text and graphics of Fig. 1, you will have a clear understanding of what the
Pong game is all about, but you will know nothing about how it is actually built. Indeed, at this
point Pong will be merely an informal abstraction -- a theoretical artifact that exists only on
paper. The fact that it’s an abstraction, though, does not mean that we have to be informal about
its description. In particular, if we wish to implement Pong on some target computer platform,
we must think hard on how to specify it formally. A good abstract specification is by far the most
important deliverable in the life cycle of any application.

One reason why a formal specification is so important is because it forces us to articulate a
particular design for the given application. Normally, the design process begins by considering
various ways to break the application into lower-level abstract components. For example, a
Pong application will most likely benefit from components that abstract the behaviors of
graphical ball and bat objects. What should these components do? Well, the Bat component
should probably provide such services as drawing the bat on the screen and moving it left and
right. In a similar fashion, the Ball component should feature services for drawing the ball,
moving the ball in all directions, bouncing it off other objects, and so on.

Thus, if we implement the game in some object-based language, it will make sense to describe
the bat and ball objects as instances of abstract Bat and Ball classes. Next, the various
characteristics and operations of each object can be specified in terms of class properties and
method signatures, respectively. Taken together, these specifications will yield a document
called the Pong Game Application Program Interface. This API will be a complete specification
of the modules that make up Pong, aimed at people who have to either build these modules, or,
alternatively, use them in the context of other systems.

Chapter 0: The grand Tour 7

A Quick Look at the High-Level Language

Once an abstraction has been formally specified, it can be implemented in many different ways.
For example, Program 2 gives a possible Jack implementation of the bat abstraction, necessary
for building the Pong game (and, in fact, many other games involving graphical bats). This being
the first time that we encounter Jack in the book, a few words of introduction are in order. Jack is
a simple, Java-like language that has two important virtues. First, if you have any experience in
object-oriented programming, you can pick it up in just a few minutes. Second, the Jack syntax
was especially designed to simplify the construction of Jack compilers, as we will see shortly.

/** A Graphic Bat for a Pong Game */
class Bat {

 field int x, y; // screen location of the bat's top-left corner
 field int width, height; // bat's width & height

 // The class constructor and most of the class methods are omitted

 /** Draws (color=true) or erases (color=false) the bat */

 method void draw(boolean color) {
 do Screen.setColor(color);

 do Screen.drawRectangle(x,y,x+width,y+height);
 return;

 }

 /** Moves the bat one step (4 pixels) to the right. */
 method void moveR() {

 do draw(false); // erase the bat at the current location
 let x = x + 4; // change the bat's X-location

 // but don't go beyond the screen's right border
 if ((x + width) > 511) {

 let x = 511 - width;
 }

 do draw(true); // re-draw the bat in the new location
 return;

 }
}

A typical
call to an
operating
system
method

do Screen.drawRectangle(x,y,x+width,y+height);

PROGRAM 2: High-Level implementation of the bat abstraction,
written in the Jack programming language.

The code of Program 2 should be self-explanatory. The Bat class (implementing the bat
abstraction) encapsulates various bat-related services, implemented as methods. Two of these
methods are shown in the figure: a “draw” method by which a bat object draws itself on the
screen, and a “moveR” method by which a bat object moves itself one step to the right. Since the
Bat class will come to play in the context of some overall program, it is likely to assume that the
“drwaR” method will be invoked when the user presses the right arrow key on the keyboard.

Chapter 0: The grand Tour 8

However, this logic should not be part of the Bat class. Instead, it belongs to some other module
in the program, e.g. one that implements a game session abstraction.

We will illustrate the design of object-based languages in Chapter 8, by specifying the Jack
language and writing some sample applications in it. This will set the stage for chapters 9 and 10,
in which we discuss compilation techniques and build the Jack compiler.

Peeking Inside the Operating System

The computer platform that we will build in chapter 5, called Hack, features a black and white
screen consisting of 256 rows by 512 columns (similar to that of hand-held computers and
cellular telephones). High level languages like Jack are expected to provide high-level means for
interacting with this screen. Indeed, an inspection of Prog. 2 reveals two screen oriented method
calls: Screen.setColor and Screen.drawRectangle. The first method sets the default
screen color (i.e. the color that subsequent drawing operations will use), and the second method
draws a rectangle of given dimensions at a given screen location. These methods are part of a
class called Screen, which is part of a software layer that interfaces between the Jack language
and the Hack hardware. This software layer, called the Sack operating system, will be described
and built in Chapter 11.

Parts of the Screen class are shown in Program 3. Since the Sack OS is also written in Jack, the
code of the drawRectangle function should be self-explanatory: the rectangle is drawn using a
simple nested loop logic. What about the drawPixel function? In the Hack platform that we
will build in chapter 5, the computer’s screen will be memory-mapped. In other words, a certain
area in the computer’s random-access memory will be dedicated for representing the screen’s
contents, one bit per pixel. In addition, a refresh logic will be used to continuously re-draw the
physical screen according to the current contents of its memory map. Thus, when we tell
Screen.drawPixel to “draw” a pixel in a certain screen location, all it has to do is change the
corresponding bit in the screen memory map. In the next iteration of the refresh loop (which runs
several times each second), the change will be “automatically” reflected on the computer screen.

Because of their analog nature, input and output devices are always the clunkiest parts of digital
computer architectures. Therefore, it is best to abstract I/O devices away from programmers, by
encapsulating the operations that manipulate them in low-level OS routines. DrawPixel is a
good example of this practice, as it provides a clean screen drawing abstraction not only for user-
level programs, but also for other OS routines like drawRectangle.

Once again, we see the power of abstractions at work. Beginning at the top of the software
hierarchy (e.g. Pong), we find programmers who draw graphical images using abstract operations
like drawRectangle. This method signature is part of the Sack OS API, and thus one is free to
invoke it in programming languages that run on top of Hack/Sack platform. When we drill down
to the OS level, we see that the drawRectangle abstraction is implemented using the services
of drawPixel, which is yet another, lower-level abstraction. Indeed, the abstraction-
implementation interplay can run deep -- as deep as the designer wants.

Chapter 0: The grand Tour 9

/** An OS-level screen driver that abstracts the computer's physical screen */
class Screen {

 static boolean currentColor; // the current color

 // The Screen class is a collection of methods, each implementing one
 // abstract screen-oriented operation. Most of this code is omitted.

 /** Draws a single pixel in the current color. */

 function void drawPixel(int x, int y) {
 // Draws the pixel in screen location (x,y) by writing corresponding

 // bits in the screen memory map. The method code is omitted. }

 /** Draws a rectangle in the current color. */
 // the rectangle's top left corner is anchored at screen location (x0,y0)

 // and its width and length are x1 and y1, respectively.
 function void drawRectangle(int x0, int y0, int x1, int y1) {

 var int x, y;
 let x = x0;

 while (x < x1) {
 let y = y0;

 while(y < y1) {
 do Screen.drawPixel(x,y);

 let y = y+1;
 }

 let x = x+1;
 }

 }
}

PROGRAM 3: Code segment from the Sack operating system,
written in the Jack language. (In Jack, class-level methods that don’t
operate on any particular object are called “functions”.)

The screen driver discussed above is just a small part the Sack OS. The overall operating system
is an elaborate collection of software libraries, designed to manage the computer’s input, output,
and memory devices, as well as provide mathematical, string, and array processing services to
high-level languages. Like other modern operating systems, Sack itself is written in a high level
language (in our case, Jack). This may seem surprising to readers who are used to operate on top
of a proprietary operating system that gives no access to its source code. We will open the OS
black box in Chapter 11, where we present several geometric, arithmetic, and memory
management algorithms, each being a computer science gem. These algorithms will be discussed
in the context of building a Sack OS implementation.

Chapter 0: The grand Tour 10

2. The Journey Continues: the Road Down to Hardware Land

We now start crossing the great chasm between the high-level language abstraction and its low-
level implementation in hardware. Before a program can actually run and do something for real,
it must be translated into the machine language of some target computer. The translation process
-- known as compilation -- is often performed in two stages. In the first stage, a compiler
translates the high-level code into an intermediate abstraction called virtual machine. In the
second stage, the virtual machine abstraction is implemented on the target hardware platform(s).
We devote a third of the book for discussing these fundamental software engineering issues. The
following is a preview of some of the ideas involved.

The Compiler at a Glance

Think about the general challenge of translating a sentence from one language to another. The
first thing that you will do is use the grammar rules of the source language (perhaps implicitly) to
figure out the syntactic structure of the given sentence. The translation of programming languages
follows the same rationale. Each programming language has a well-documented grammar that
defines how valid statements and expressions are structured in the language. Using this grammar,
the compiler developer can write a program that converts the source code into some recursive
data structure, designed to represent the code in a convenient way for further processing. The
output of this syntax analyzer program (also called parser) can typically be described in terms of
a parse tree. For example, Fig. 4 illustrates the parse tree of a high-level expression taken from
Program 2.

Source code

(x+width)>511

Intermediate code

push x
push width
add
push 511
gt

code
generation

Syntax
Analysis

Semantic
Synthesis

parsing

widthx

+ 511

>

Abstraction ImplementationParse
Tree

FIGURE 4: Compilation example

Once the source code has been “understood,” i.e. parsed, it can be further translated into some
target language (this time, using the grammar rules of the latter) -- typically the machine language
of the target computer. However, the approach taken by modern compilers, e.g. those of Java and
C#, is to first break the parsed code into generic processing steps, designed to run on some
abstract “machine”. Importantly, the resulting intermediate code depends on neither the source of
the translation, nor on its final destination. Therefore, it is quite easy to compile it further into
multiple target platforms, as needed. Of course the exact specification of the “generic processing

Chapter 0: The grand Tour 11

steps” is a key design issue. In fact, this intermediate code form is important enough so that it is
often formalized as a stand-alone abstraction, called Virtual Machine or VM.

As it turns out, it is convenient to express the VM operations using a postfix format called (for
historical reasons) Right Polish Notation or RPN. For example, the source expression
“(x+width)>511” is expressed in infix notation, meaning that operators are written between
their operands, simply because that’s how human programmers are trained to think. In postfix
notation, operators are written after the operands, as in “x,width,+,511,>”. This parentheses-
free format is flattened and “un-nested”, and thus it lends itself nicely to low-level processing.
Therefore, one thing that we want our compiler to do is translate the original code into some
postfix language, as seen in the right of Fig. 4. How does the compiler achieve this translation
task?

An inspection of Fig. 4 suggests that the postfix target code can be generated by the following
algorithm:

� Perform a complete recursive depth-first processing of the parse tree;

� When reaching a terminal node x, generate the command “push x”;

� When backtracking to a an interim node from the right, generate the command which is
the node’s label.

One question that comes to mind is whether this algorithm scales up to compiling a complete
program rather than a single expression. The answer is yes. Any given program, no matter how
complex, can be expressed as a parse tree. The compiler will not necessarily hold the entire tree
in memory, but it will create and manipulate it using precisely the same techniques illustrated
above.

The theory and practice of compilation are normally covered in a full-semester course. This book
devotes two chapters to the subject, focusing on the most important ideas in syntax analysis and
code generation. In chapter 9, we will build a parser that translates Jack programs into parse
trees, expressed as XML files. In chapter 10, we will upgrade this parser into a compilation
engine that produces VM code. The result will be a full-scale Jack compiler.

Virtual Machine Preview

To reiterate, many modern compilers don’t generate machine code directly. Instead, they
generate intermediate code designed to run on an abstract computer called Virtual Machine.
There are several possible paradigms on which to base a virtual machine architecture. Perhaps
the cleanest and most popular one is the stack machine model, used in the Java Virtual Machine
as well in the VM that we build in this book.

A stack is an abstract data structure that supports two basic operations: push and pop. The push
operation adds an element to the “top” of the stack; the element that was previously on top is
pushed “below” the newly added element. The pop operation retrieves and removes the top
element off the stack; the element just “below” it moves up to the top position. The “add”
operation removes the top two elements and puts their sum at the top. In a similar fashion, the
“gt” operation (greater than) removes the top two elements. If the first is greater than the
second, it puts the constant true at the top; otherwise it puts the constant false.

Chapter 0: The grand Tour 12

To illustrate stack processing in action, consider the following high-level code segment, taken
from our bat implementation (Program 2):

if ((x+width)>511) {
 let x=511-width;
}

Fig. 5 shows how the semantics of this code can be expressed in a stack-based formalism.

// VM implementation of "if ((x+width)>511){let x=511-width;}"

 push x // s1: push the value of x to the stack top

 push width // s2: push the value of width to the stack top

 add // s3: pop the top two values, push their sum

 push 511 // s4: push the constant 511

 gt // s5: pop the top two values, if 1st>2nd push true

 if-goto L1 // s6: pop the top value, if it's true goto L1

 goto L2 // s7: skip the conditional code

L1:

 push 511 // s8: push the constant 511

 push width // s9: push the value of width to the stack top

 sub // s10: pop the top two values, push 1st-2nd

 pop x // s11: pop the top value into x

L2:

...

75
450

sp

525
511

sp

1
sp

511
450

sp

61
sp

s2 s4 s5 s9 s10memory (before)

450

...

x

width

75

...

...

450

...

x

width

61

...

...

memory (after)

PIGURE 5: Virtual Machine code segment (top) and run-time scenario (bottom). To connect
the two figures, we have annotated the VM commands and the stack images with state markers. (In
stack diagrams, the next available slot is typically marked by the label sp, for stack pointer.
Following convention, the stack is drawn upside down, as if it grows downward.)

The VM language and its impact on the stack are explained in the program’s comments. This
basic language, which provides stack arithmetic and control flow capabilities, will be developed
and implemented in Chapter 6. Next, in Chapter 7, we will extend it into a more powerful
abstraction, capable of handling multi-method and object-based programs as well. The resulting
language will be modeled after the Java Virtual Machine (JVM) paradigm.

Chapter 0: The grand Tour 13

There is no need to delve further into the VM world here. Rather, it is sufficient to appreciate the
general idea, which is as follows: instead of translating high level programs directly into the
machine language of a specific computer, we first compile them into an intermediate code that
runs on a virtual machine. The flip-side of this strategy is that in order to run the abstract VM
programs for real, we must implement the VM on some real computer platform.

VM Implementation: One way to implement VM programs on a target hardware platform is to
translate the VM code into the platform’s native code. The program that carries out the
translation -- VM translator -- is a stand-alone module which is based of two interfaces: the
specification of the source VM language, and the specification of the target machine language.
Yet in the larger picture of our grand tour, the VM translator can also be seen as the backend
module of a two-stage compiler. First, the compiler described in the previous section translates
the high level program into an intermediate VM code. Next, the VM translator translates the VM
code into the native code of the target computer. This two-stage compilation model has many
virtues, in particular code portability. Indeed, virtual machines and VM translators are becoming
a common layer in modern software hierarchies, Java and .NET being two well-known examples.

In addition to its practical relevance, the study of virtual machine implementations is an excellent
way to get acquainted with several classical computer science topics. These include program
translation, push-down automata, and implementation of stack-based data structures. We will
spend chapters 6 and 7 explaining these ideas and techniques, while building a VM
implementation for the Hack platform. Of course Hack is just one possibility. The same VM can
be realized on personal computers, cellular telephones, game machines, and so on. This cross-
platform compatibility will require the development of different VM translators, one for each
target platform.

Low-Level Programming Sampler

Every hardware platform is equipped with a native instruction set that comes in two flavors:
machine language and assembly language. The former consists of binary instructions that
humans (unlike machines) find difficult to read and write. The latter is a symbolic version of the
former, designed to bring low-level programming closer to human comprehension. Yet the
assembly extension is mainly a syntactical upgrade, and writing and reading assembly programs
remains an obscure art. As Fig. 6 illustrates, Hack programming is no exception.

Chapter 0: The grand Tour 14

...

 push x

 push width

 add

 push 511

 gt

 if-goto L1

 goto L2

L1:

 push 511

 push width

 sub

 pop x

L2:

...

// push 511

@511

D=A // D=511

@SP

A=M

M=D // *SP=D

@SP

M=M+1 // SP++

Virtual machine program

Assembly program

0000000000000000

1110110010001000

Machine Language
Program

VM translator

Assembler

push 511

@SP
M=M+1 // SP++

PROGRAM 6: From VM to assembly to binary code. There is no need
to understand the code segments. Instead, it is enough to appreciate the
big picture, which depicts a cascading translation process.

When we translate a high-level program into machine language, each high-level command is
implemented as several low-level instructions. If the translator generates this code in assembly,
the code has to be further translated into machine language. This translation is carried out by a
program called assembler.

In order to read low-level code, one must have an abstract understanding of the underlying
hardware platform -- in our case Hack. The Hack computer is equipped with two registers named
D and A and a Random Access Memory unit consisting of 32K memory locations. The hardware
is wired in such a way that the RAM chip always selects the location whose address is the current
value of the A-register. The selected memory location -- RAM[A] -- is denoted M. With this
notation in mind, Hack assembly commands are designed to manipulate three registers named A,
D, and M. For example, if we want to add the value stored in memory location 75 to the D-
register, we can issue the two commands “set A to 75” and “set D to D+M”. The Hack assembly
language expresses these commands as “@75” and “D=D+M”, respectively. The rationale behind
this syntax will become clear when we will build the Hack chips-set in chapters 2 and 3.

One extension that makes assembly languages rather powerful is the ability to refer to memory
locations using user-defined labels rather than fixed numeric addresses. For example, let us
assume that we can somehow tell the assembler that in this program, the symbol “sp” stands for
memory location 0. This way, a high-level command like “sp++” could be translated into the two
assembly instructions “@sp” and “M=M+1”. The first instruction will cause the computer to select
RAM[0], and the second to add 1 to the contents of RAM[0].

Chapter 0: The grand Tour 15

We end this section with Fig. 7, which describes the semantics of Program 6. This discussion is
optional, and readers can skip it without losing the thread of the chapter.

0
1

RAM

...
2

256 17
257 7035

...

258

sp 0
1

RAM

...
2

256 17
257 7035
258 511

sp

259
...

259

// push 511

@511

D=A // D=511

@SP

A=M

M=D // *SP=D

@SP

M=M+1 // SP++

push 511

sp

Stack
VM code

Assembly code

VM abstraction

Implementation on the Hack platform

Before After

17
7035
511sp

Stack

17
7035

258 259

FIGURE 7: A typical abstract VM operation and its equivalent implementation on
the Hack platform. The Hack code was created by the VM translator. We assume that
the stack contains two arbitrary values (17 and 7035), and we track the pushing of 511
to the stack’s top. Note that among other things, the VM translator maps the stack-base
and the stack-pointer on RAM[256] and RAM[0], respectively.

Exploring the Assembly and the Machine languages

Although assembly is a low-level language that operates only a notch above the hardware, it is
also an abstraction. After all, an assembly program is simply a bunch of symbols written on
paper, or stored on disk. In order to turn these symbols into an executable program, we must
translate them into binary instructions. This can be done rather easily, since the relationships
between the machine’s binary and symbolic codes is readily available from the hardware
specification.

For example, the Hack computer uses two types of 16-bit instructions. The left-most bit indicates
which instruction we’re in: “0” for an address instruction and “1” for a compute instruction. In
the case of an address instruction, the remaining 15 bits specify a number which is typically
interpreted as an address. Thus, according to the language definition, the binary instruction

Chapter 0: The grand Tour 16

“0000000000010111”, whose agreed-upon assembly code is “@23”, implies the operation “set
the A-register to 23” (10111 in binary is 23 in decimal). In a similar fashion, if the symbol “sp”
happens to point to address 0 in the RAM, the assembly instruction “@sp” will be equivalent to
“@0”, yielding “0000000000000000” in binary, which means “set the A-register to 0”.

The second Hack instruction, called compute, has the assembly format “dest=comp;jump”.
This specification answers three questions: what to compute (comp), where to store the computed
value (dest), and what to do next (jump). Altogether, the language specification includes 28
comp, 8 dest, and 8 jump directives, and each one of them can be specified using either a binary
code or a symbolic mnemonic. For example, the comp directive “compute M-1” is coded as
“0110010” in binary and as “M-1” in assembly. The dest directive “store the result in M” is
coded as “001” in binary and as “M” in assembly. The jump directive “no jump” is coded as
“000” in binary and as a null instruction field in assembly. Finally, the language specification
says how the comp, dest, and jump fields should be mapped on the 16-bit machine instruction.
Assembling all these codes together, we get the example shown in Fig. 8.

Machine language syntax
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 1 0 0 01 1 1 0 1 1 1

Instruction code
(0=address inst.) Address

ALU
operation code

(M-1)

Destination
Code

(M)

Jump
Code

(no jump)

Semantics, as interpreted by the Hack hardware platform

Instruction code
(1=compute inst.)

0000000000000000

1111110111001000
@0

M=M-1

FIGURE 8: Instruction semantics in the Hack platform (example, focusing on
two sample instructions). Note that the second and third most-significant bits in
the compute instruction are not used, and are set to 1 as a language convention.

We see that the relationship between assembly and binary codes is a simple syntactical contract.
Thus, if we are given a program written in assembly, we can convert each symbolic mnemonic to
its respective binary code, and then assemble the resulting codes into complete binary
instructions. This straightforward text processing task can be easily automated, and thus we can
write a computer program to do it -- an assembler. The design of assembly languages, symbol
tables and assemblers is the subject of Chapter 4. As the chapter progresses, we will build an
assembler for the Hack platform.

We have reached a landmark in our Grand Tour -- the bottom of the software hierarchy. The next
step down the abstraction-implementation route will take us into a new territory -- the top of the

Chapter 0: The grand Tour 17

hardware hierarchy. The linchpin that connects these two worlds is the hardware architecture,
designed to realize the semantics of the machine language software.

3. The Journey ends: Hardware Land

Let us pause for a moment to appreciate where we stand in our journey. A program written in a
high level language, represented in an intermediate VM code, has been translated to binary code,
which should now run on a computer platform. Somehow, these various hardware/software
modules (that in reality may well come from different companies) must work together flawlessly,
delivering the intended program functionality. The key to success in building this remarkable
complex is modular design, based on a series of contract-based, local, abstraction-implementation
steps. And the most profound step in this journey is the descent from machine language to the
machine itself -- the point where software finally meets hardware. One such hardware platform is
seen in Diagram 9. Why did we choose this particular architecture?

Computer Architecture Tour

Almost all digital computers are built today according to a classical framework known as the Von
Neumann model. Thus, if you want to understand computer architectures without taking a full
semester course on the subject, your best bet is to study the main features of this fundamental
model. In that respect, our Hack computer strikes a good balance between power and simplicity.
On the one hand, Hack is a simple Von Neumann computer that a student can build in one or two
days of work, using the chips-set that we will build in chapters 1-3. On the other hand, Hack is
sufficiently general to illustrate the key operating principles and hardware elements of any digital
computer.

Data
Memory

(M)

A
LUInstruction

Memory

instruction

A

D

M

Program
Counter

address of next
instruction

data in

data out

RAM(A)

DIAGRAM 9: The Hack computer platform (overview), focusing on main chips
and main data and instruction busses. To minimize clutter, the diagram does not
show the control logic, the connection between the A-register and the data memory,
and the connection between the A-register and the Program Counter.

Chapter 0: The grand Tour 18

The Hack computer is based on two memory units with separate address spaces, an ALU
(Arithmetic Logic Unit), two registers, and a program counter. The centerpiece of the
architecture is the ALU -- a “calculator” chip that can compute many functions of interest on its
inputs. The Instruction Memory, containing the instructions of the current program, is designed to
emit the value of the memory location whose address is the current value of the Program
Counter. The Data Memory, containing the data on which the program operates, is designed to
select, and emit the value of, the memory location whose address is the current value of the A-
register. The overall computer operation, known as the fetch-execute cycle, is as follows.

Execute: first, the instruction that emerged from the instruction memory is simultaneously fed to
both the A-register and the ALU. If it’s an address instruction (most significant bit = 0), the A-
register is set to the instruction’s 15-bit value and the instruction execution is over. If it’s a
compute instruction (MSB=1), then the 7 bits of the instruction’s comp field tell the ALU which
function to compute. For example, as a convention, the code “0010011” instructs the ALU to
compute the function “D-A” (the Hack ALU can compute 28 different functions on subsets of
A,D, and M). The ALU output is then simultaneously routed to A, D, and M. Each one of these
registers is equipped with a “load bit” that enables/disables it to incoming data. These bits, in
turn, are connected to the 3 dest bits of the current instruction. For example, the dest code
“101” causes the machine to enable A, disable D, and enable M to the ALU output.

Fetch: What should the machine do next? this question is determined by a simple control logic
unit that probes the ALU output and the 3 jump bits of the current instruction. Taken together,
these inputs determine if a jump should materialize. If so, the Program Counter is set to the value
of the A-register (effecting a jump to the instruction pointed at by A). If no jump should occur,
the Program Counter increments by 1 (no jump). Next, the instruction that the program counter
points at emerges from the instruction memory, and the cycle continues.

Confused? Not to worry. We will spend all of chapter 5 explaining and building this
architecture, one hardware module at a time. Further, you’ll be able to test your chips separately,
making the overall computer construction surprisingly simple. The actual construction of all the
hardware elements will be done using Hardware Description Language (HDL) and a hardware
simulator, as we now turn to describe.

Gate Logic Appetizer

An inspection of the computer architecture from Diagram 9 reveals two types of hardware
elements: memory devices (registers, memories, counters), and processing devices (the ALU). As
it turns out, all these devices can be abstracted by Boolean functions, and these functions, in turn,
can be realized using logic gates. The general subject of logic design, also called digital design,
is typically covered by a full-semester course. We devote a quarter of the book to this subject
(chapters 1-3), discussing the essentials of Boolean functions, combinational logic, and sequential
logic. The following is a preview of some of the ideas involved.

Memory devices: A storage device, also called register, is a time-based abstraction consisting of
a data input, a data output, and an input bit called load. The register is built in such a way that its
output emits the same value over time, unless the load bit has been asserted, in which case the
output is set to a new input value. In most computer architectures, this abstraction is implemented

Chapter 0: The grand Tour 19

using a primitive gate called D-flip-flop, which is capable of “remembering” a single bit over
time. More complex registers are then built on top of this gate, as seen in Fig. 10.

32
DFF outin Bit out

load

in . . .Bit Bit Bit

32-bit register

out

load

binary cell (Bit)D-Flip-Flop

in 32

FIGURE 10: From flip-flop gates to multi-bit registers. A single-bit binary cell (also
called Bit gate) is essentially a D-flip-flop with a loading capability. A multi-bit register of
width w can be built from w Bit gates. (time-based chips are denoted by a small triangle,
representing the clock input.)

What about Random-Access Memories? Well, a RAM device of length n and width w can be
constructed as an array of n w-bit registers, equipped with direct-access logic. Indeed, all the
memory devices of the computer -- registers, memories, and counters -- can be built by recursive
ascent from D-Flip-Flops. These construction methods will be discussed in Chapter 3, where we
use them to build all the memory chips of the Hack platform.

Processing devices: All the arithmetic operations of the ALU, e.g. A+D, M+1, D-A, and so on, are
based on addition. Thus if you know how to add two binary numbers, you can build an ALU.
How then do we add two binary numbers? Well, we can do it exactly the same way we learned
to add decimal numbers in elementary school: we add the digits in each position, right to left,
while propagating the carry to the left. Fig. 11 gives a Boolean logic implementation of this
algorithm.

(Example) (Definition)
a: 1 0 0 1 (9) a b Sum(a,b) Carry(a,b)
b: 0 1 0 1 (5) 0 0 0 0

carry bit: 0 0 0 1 0 1 1 0
shifted carry bit: 0 0 0 1 0 1 0 1 0

sum bit: 1 1 0 0 1 1 0 1
a+b: 1 1 1 0 (14)

Note: a+b = Sum(shifted carry bit, sum bit)

FIGURE 11: Binary addition by Boolean logic

We see that binary addition can be viewed as a Boolean function, defined in terms of two simpler
Boolean functions: Sum and Carry. Said otherwise, the addition operation can be implemented
by an Adder chip, based on two lower-level chips: Sum and Carry. We note in passing that the
adder chip and the ALU know nothing about “adding numbers”, neither do they know anything
about “numbers” to begin with. Rather, they simply manipulate Boolean functions in a way that
effects an addition operation (ideally, as quickly as possible).

Chapter 0: The grand Tour 20

Continuing in our reductive descent, how then should we implement the lower-level Sum and
Carry abstractions? For brevity, let us focus on Sum. An inspection of this function’s truth table
reveals that it is identical to that of the standard exclusive-or function, denoted Xor. This function
returns 1 when its two inputs have opposing values and 0 otherwise. The next section shows how
the Xor abstraction can be implemented using Hardware Description Language.

Chip Design in a Nutshell

Like all the other artifacts encountered in our long journey, a chip can be described in two
different ways. The chip abstraction -- also called interface -- is the set of inputs, outputs, and
input-output transformations that the chip exposes to the outside world. The chip implementation,
on the other hand, is a specification of a possible internal structure, designed to realize the chip
interface. This dual view is depicted in Diagram 12.

Chip Abstraction (interface) Possible chip Implementation

Xor
a

b
out

0 0 0
0 1 1
1 0 1
1 1 0

a b out

And

And
 Not

Or out

a

b

 Not

DIAGRAM 12: Chip design, using Xor as an example. The shown design is based on
the Boolean function Xor(a,b)=(a And Not(b)) Or (Not(a) And b). Other Xor
implementations are possible, some involving less gates and connections.

As usual, the chip abstraction is the right level of detail for people who want to use the chip as an
off-the-shelf, black box component. For example, the designers of the adder chip described in the
previous section need not know anything about the internal structure of Xor. All they need to
know is the chip interface, as shown on the left side of Diagram 12. At the same time, the people
who have to build the Xor chip must be given some building plan, and this information is
contained in the chip implementation diagram. Note that this implementation is based on
connecting interfaces of lower level abstractions -- those of the Not, And, and Or gates.

Hardware Description Language: How can we turn a chip Diagram into an actual chip? This
task is commonly done today using a design tool called Hardware Description Language. HDL
is a formalism used to define and test chips: objects whose interfaces consist of input and output
pins that carry Boolean signals, and whose bodies are composed of inter-connected collections of
other, lower level, chips. Program 13 gives an example.

Chapter 0: The grand Tour 21

CHIP Xor {
 IN a,b;

 OUT out;
 PARTS:

 Not(in=a,out=Nota);
 Not(in=b,out=Notb);

 And(a=a,b=Notb,out=aNotb);
 And(a=Nota,b=b,out=bNota);

 Or(a=aNotb,b=bNota,out=out);
}

PROGRAM 13: Typical HDL program, describing the Xor
implementation from Diagram 12. The labels Nota, Notb, aNotb
and bNota define the connections of the lower-level gates.

The HDL program gives a complete logical specification of the chip topology, describing all the
lower-level components and connections of the chip architecture. This program can be simulated
by a hardware simulator, to ensure that the structure that it implies delivers the required chip
functionality. If necessary, the HDL program can be debugged and improved. Further, it can be
fed into an optimizer program, in an attempt to create a functionally equivalent chip geometry
that includes as few gates and wire crossovers as possible. Finally, the verified and optimized
HDL program can be given to a fabrication facility that will stamp it in silicon.

The reader may wander how HDL scales up to deal with realistically complex chips. Well, the
Hack hardware platform consists of some 20 chips, and every one of them can be described in
less than one page of HDL code. As usual, this parsimony is facilitated by modular design.

The Nand Gate: An inspection of Program 13 raises the question: And what about lower-level
gates like And, Or, and Not? Well, they, too, can be constructed in HDL from more primitive
gates. Clearly, this recursive descent must stop somewhere, and in this book it stops at the Nand
level.

a b Nand(a,b)
0 0 1
0 1 1
1 0 1

out
a

b
NAND

 1 1 0

DIAGRAM 14: Nand gate (Last stop of our Grand Tour)

The Nand gate, implementing the trivial Boolean function depicted above, has two important
properties. First, it can be modeled in silicon directly and efficiently, using 4 transistors. Second,
as we will show in Chapter 1, any logic gate, and thus any conceivable chip, can be constructed
recursively from (possibly many) Nand gates. Thus, Nand gates provide the cement from which
all hardware systems can be built.

Chapter 0: The grand Tour 22

The Last Stop: Physics

Our Grand Tour has ended. In this book, the lowest level of abstraction that we reach is the Nand
gate, which is viewed as primitive. Thus we descend no further, accepting the Nand
implementation as given. Well, if we do want to peek downward, Diagram 15 shows an
implementation of a Nand gate using CMOS (complementary metal-oxide semiconductor)
technology. Drilling one layer lower, we reach the realm of solid-state physics, where we see
how MOS transistors are constructed.

DIAGRAM 15: CMOS implementation of a Nand gate (left), based
on 4 transistor abstractions. A possible MOS implementation of
these transistors is shown on the right.

Asking how Nand gates are built is clearly an important question, and one that leads to many
levels of additional abstractions. However, this journey will take us out of the synthetic worlds
created by computer scientists, and into the natural world studied by statistical physics and
quantum mechanics.

* * *

Back to the Mountain’s Foot

This marks the end of our Grand Tour preview -- the descent from the high level regions of
object-based software, all the way down to the bricks and mortar of the underlying hardware. In
the remainder of the book we will do precisely the opposite. Starting with elementary logic gates
(chapter 1), we will go bottom up to combinational and sequential chips (chapters 2-3), through
the design of computer architectures (chapters 4-5) and software hierarchies (chapters 6-7), up to
implementing modern compilers (chapter 9-10), high level programming languages (chapter 8),
and operating systems (chapter 11). We hope that the reader has gained a general idea of what
lies ahead, and is eager to push forward on this grand tour of discovery. So, assuming that you
are ready and set, let the count down start: 1, 0, Go!

