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0. The Grand Tour1 

 
“The true voyage of discovery consists not of going to new places, 

but of having a new pair of eyes.” 

(Marcel Proust, 1871-1922) 
  

 
This book is a voyage of discovery.  You are about to learn three things: how computers work, 
how to break complex problems into manageable modules, and how to develop large-scale 
hardware and software systems.  None of these things will be taught explicitly.  Instead, we will 
engage you in the step-by-step creation of a complete computer system, from the ground up.  The 
lessons that we wish to impart, which are far more important than the computer itself, will be 
gained as side effects of this activity.  According to the psychologist Carl Rogers, “the only kind 
of learning which significantly influences behavior is self-discovered or self-appropriated -- truth 
that has been assimilated in experience.”  After teaching computer science for 30 years combined, 
we cannot agree more. 
  
Computer systems are based on many layers of abstractions.  Thus our voyage will consist of 
going from one abstraction to the other.  This can be done in two directions.  The top-down route 
shows how high-level abstractions (e.g. commands in an object-oriented language) can be 
reduced into, or expressed by, simpler ones (e.g. operations on a virtual machine).  The bottom-up 
route shows how low-level abstractions (e.g. flip-flops) can be used to construct more complex 
ones (e.g. memory chips).  This book takes the latter approach: we’ll begin with the most basic 
elements possible -- primitive logic gates -- and work our way upward, constructing a general-
purpose computer, equipped with an operating system and a Java-like language. 
 
If building such a computer from scratch is like climbing the Everest, then planting a flag on the 
mountain’s top is like having the computer run some non-trivial application programs.  Since we 
are going to ascend this mountain from the ground up, we wish to start with a preview that goes 
in the opposite direction -- from the top down.  Thus, the Grand Tour presented in this chapter 
will start at the end of our journey, by demonstrating an interactive video game running on the 
complete target computer.  Next, we will drill through the main software and hardware 
abstractions that make this application work, all the way down to the bare bone transistors level. 
 
The resulting tour will be casual.  Instead of stopping to analyze each hardware and software 
abstraction thoroughly, we will descend quickly from one layer to the other, presenting a holistic 
picture that ignores many details.  In short, the purpose of this chapter is to “cut through” the 
layers of abstraction discussed in the book, providing a high-level map into which all the other 
chapters can be placed. 
 
 

                                                 
1 From The Elements of Computing Systems, Nisan & Schocken, MIT Press, forthcoming in 2003, www.idc.ac.il/csd 
 

 



Chapter 0: The grand Tour                                                                                                                      2     
              
0. Background 
 
The World Below 
 
We assume that readers of this book are familiar with writing and debugging computer programs.  
Did you ever stop to think about the hardware and software systems that facilitate this art? Let’s 
take a look.  Suppose that we are developing some application using an object-oriented language.  
Typically, the process starts by abstracting the application using a set of classes and methods.  
Now, if we implement this design using a language like Java or C#, then the next step is to use a 
compiler to translate our high-level program into an intermediate code, designed to run on a 
virtual machine (VM).  Next, if we want to actually see our program running, the VM abstraction 
must be realized on some real computer.  This can be done by a program called VM translator, 
designed to convert VM code into the assembly language of the target computer.  The resulting 
code can then be translated into machine language, using yet another translator, called assembler.   
 
Of course machine language is also an abstraction -- an agreed upon set of binary codes. In order 
to make this abstract formalism do something for real, it must be realized by some hardware 
architecture. And this architecture, in turn, is implemented by a certain chip set -- registers, 
memory units, ALU, and so on.  Now, every one of these hardware devices is constructed from 
an integrated package of elementary logic gates.  And these gates, in turn, are built from 
primitive gates like Nand and Nor.  Of course every one of these gates consists of several 
switching devices, typically implemented by transistors.  And each transistor is made of ... Well, 
we won’t go further than that.  Why?  Because that’s where computer science ends and physics 
starts, and this book is about computer science. 
 
You may be thinking: “well, on my computer,  compiling and running a program is much easier -- 
all I do is click some icons or write some commands!”  Indeed, a modern computer system is like 
an iceberg, and most people get to see only the top.  Their knowledge of computing systems is 
sketchy and superficial. If, however, you wish to go under the surface and investigate the systems 
below, then Lucky You! There’s a fascinating world down there, below the GUI level and the OS 
shell.  An intimate understanding of this under-world is what separates naïve programmers from 
professional developers -- people who can create not only end-user applications, but also new 
hardware and software technologies. And the best way to understand how these technologies 
work -- and we mean understand them in the marrow of your bones -- is to build a computer from 
scratch.  Our journey begins at the top of Figure 0. 
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Multiple Layers of Abstraction 
 
This book walks you through the process of constructing a complete computer system: hardware, 
software, and all their interfaces.  You may wonder how it is possible.  After all, a computer 
system is an enormously complex enterprise!  Well, we break the project into modules, and we 
treat each module separately, in a stand-alone chapter.  You might then wonder: how it is possible 
to describe and construct these modules in isolation? Obviously they are all inter-related!  As we 
will show throughout the book, a good modular design implies just that: you can work on the  
individual modules independently, while completely ignoring the rest of the problem. It turns out 
that people are good at this strategy thanks to a unique human faculty: the ability to create and 
use abstractions. 
 
In computer science, an abstraction is simply a functional description of something.  For 
example, if we are asked to develop a digital camera chip that can detect close moving objects, 
we can do it using low-level components like CCD chips and some routines written in the C 
language.  Importantly, we don’t have to worry about how these low-level hardware and software 
modules are implemented -- we treat them as abstract artifacts with predictable and well-
documented behaviors.  In a similar fashion, once built, our camera chip may end up being used 
as a building block in a variety of Driver Assistance Systems (DAS) such as adaptive cruise 
control, blind spot detection, lane departure warning, and so on.  Now, the engineers who will 
build these DAS applications will care little about how our camera chip works.  They, too, will 
want to use it as an off-the-shelf component with a predictable and well-documented behavior.  In 
general then, when we operate in a particular level of a complex design, it is best to focus on that 
level only, “abstracting away” all the other parts of the system.  This may well be the most 
important design principle in building large-scale computing systems. 
 
Clearly, the notion of abstraction is not unique to computer science -- it is central to all scientific 
and engineering disciplines.  In fact, the ability to deal with abstractions is often considered a 
hallmark of human intelligence in general. Yet in computer science, we take the notion of 
abstractions one step further.  Looking “up” the construction hierarchy, the abstraction is viewed 
as a functional description of a given system, aimed at the people who may want to use it in 
constructing other, higher-level abstractions.  Looking “down”, the same abstraction is viewed as 
a complete system specification, aimed at the people who have to implement it. Therefore, 
computer scientists take special pain to define their abstractions clearly and unambiguously.   
 
Indeed, multi-layer abstractions can be found throughout computer science.  For example, the 
computer hardware is abstracted (read: “functionally described”) by its architecture – the set of 
machine level commands that it recognizes.  The operating system is abstracted by its system 
calls – the set of services that it provides to other programs.  Applications and software systems 
are abstracted by their Application Program Interfaces -- the set of object and method signatures 
that they support. Other levels of abstraction are defined and documented ad-hoc, at any given 
design level, as the situation demands. In fact, the identification and description of abstract 
components is the very first thing that we do when we set out to design a new hardware or 
software system. 
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System design is a practical art, and one which is best acquired from experience.  Therefore, in 
this book we don’t expect you to engage in designing systems.  Instead, we will present many 
classical hardware and software abstractions, and ask you to build them, following our guidelines.  
This is similar to saying that we don’t expect you to formulate new theorems, but rather to prove 
the ones we supply.  Continuing this analogy, you will start at the “bottom”, where two primitive 
hardware gates will be given, not unlike axioms in mathematics. You will then gradually build 
more and more complex hardware and software levels of abstraction, culminating in a full-scale 
computer system.  This will be an excellent example of an observation made by A.N. Whitehead 
in 1911: “civilization progresses by increasing the number of operations that can be performed 
without thinking about them”. Note that this sentence remains silent about who’s enabling the 
progress.  Well, that’s where you enter the picture.  
 
In particular, as you’ll progress in our journey, each chapter will provide a stand-alone 
intellectual unit: you need not remember the implementation details of previous systems, nor look 
ahead to future ones. Instead, in each chapter you will focus on two things only: the design of the 
current abstraction (a rich world of its own), and how it can be implemented using abstract 
building blocks from the level below.  Using this information, we will guide you in the 
construction of the current abstraction, turning it into yet another “operation that we can use 
without thinking about it”.  As you push ahead, it will be rather thrilling to look back and 
appreciate the computer that is gradually taking shape in the wake of your efforts.   
 
1. The Journey Starts: High-Level Language Land 
 
The term high-level is normally interpreted as “close to the human” (rather than low-level, which 
is close to the machine). In this book, it means the layer at which one interacts with the computer 
using an object-based programming language and an operating system. There are several reasons 
why it is difficult to completely separate the discussion of these two subjects.  First, modern 
operating systems are themselves written in high-level languages.  Second, a running program is 
a collection of many routines; some come from the application, some from the OS, but from the 
computer’s perspective they are all alike.  Also, modern languages like Java include elaborate 
software libraries and run-time environments. These language extensions perform GUI 
management, multi-threading, garbage collection, and many other services that were traditionally 
handled by the OS. 
 
For all these reasons, our discussion of high-level languages in chapter 8 will include many side-
tours into the operating system, which will be discussed and built in chapter 11.  The following is 
a preview of some of the underlying ideas.  
 
The Pong Game 
 
Video games are challenging programs. They use the computer’s screen and input units 
extensively, they require clever modeling of geometric objects and interactive events, and they 
must execute efficiently.  In short, video games pose a tough test to the hardware/software 
platform on which they run.  A simple yet non-trivial example is Pong -- the computer game 
depicted in Fig. 1.  In spite of its humble appearance, Pong is a historical celebrity: invented and 
built in the early 1980’s, it was the first computer game that became massively popular -- a 
success that gave rise to a thriving computer games industry. 
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FIGURE 1: The Pong Game (annotated screen shot from a real game session, running 
on the Hack computer built in the book).  A ball is moving on the screen randomly, 
bouncing off the screen “walls”.  The user can move a small bat horizontally by pressing 
the keyboard’s left and right arrow keys.  Each time the bat hits the ball, the user scores 
a point and the bat shrinks a little, to make the game harder.  If the user misses and the 
ball hits the bottom horizontal line, the game is over. 

 
If you will inspect the text and graphics of Fig. 1, you will have a clear understanding of what the 
Pong game is all about, but you will know nothing about  how it is actually built.  Indeed, at this 
point Pong will be merely an informal abstraction -- a theoretical artifact that exists only on 
paper.  The fact that it’s an abstraction, though, does not mean that we have to be informal about 
its description.  In particular, if we wish to implement Pong on some target computer platform, 
we must think hard on how to specify it formally.  A good abstract specification is by far the most 
important deliverable in the life cycle of any application.  
 
One reason why a formal specification is so important is because it forces us to articulate a 
particular design for the given application.  Normally, the design process begins by considering 
various ways to break the application into lower-level abstract components.   For example, a 
Pong application will most likely benefit from components that abstract the behaviors of 
graphical ball and bat objects.  What should these components do?  Well, the Bat component 
should probably provide such services as drawing the bat on the screen and moving it left and 
right.  In a similar fashion, the Ball component should feature services for drawing the ball, 
moving the ball in all directions, bouncing it off other objects, and so on. 
 
Thus, if we implement the game in some object-based language, it will make sense to describe 
the bat and ball objects as instances of abstract Bat and Ball classes.  Next, the various 
characteristics and operations of each object can be specified in terms of class properties and 
method signatures, respectively.  Taken together, these specifications will yield a document 
called the Pong Game Application Program Interface.  This API will be a complete specification 
of the modules that make up Pong, aimed at people who have to either build these modules, or, 
alternatively, use them in the context of other systems. 
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A Quick Look at the High-Level Language 
 
Once an abstraction has been formally specified, it can be implemented in many different ways.  
For example, Program 2 gives a possible Jack implementation of the bat abstraction, necessary 
for building the Pong game (and, in fact, many other games involving graphical bats).  This being 
the first time that we encounter Jack in the book, a few words of introduction are in order.  Jack is 
a simple, Java-like language that has two important virtues.  First, if you have any experience in 
object-oriented programming, you can pick it up in just a few minutes.  Second, the Jack syntax 
was especially designed to simplify the construction of Jack compilers, as we will see shortly. 
 

/** A Graphic Bat for a Pong Game */
class Bat {

    field int x, y;            // screen location of the bat's top-left corner
    field int width, height;   // bat's width & height

    // The class constructor and most of the class methods are omitted

    /** Draws (color=true) or erases (color=false) the bat */

    method void draw(boolean color) {
       do Screen.setColor(color);

       do Screen.drawRectangle(x,y,x+width,y+height);
       return;

    }

    /** Moves the bat one step (4 pixels) to the right. */
    method void moveR() {

       do draw(false);  // erase the bat at the current location
       let x = x + 4;   // change the bat's X-location

       // but don't go beyond the screen's right border
        if ((x + width) > 511) {

           let x = 511 - width;
       }

       do draw(true);  // re-draw the bat in the new location
       return;

    }
}

A typical
call to an
operating
system
method

do Screen.drawRectangle(x,y,x+width,y+height);

 
PROGRAM 2: High-Level implementation of the bat abstraction, 
written in the Jack programming language.  

 
The code of Program 2 should be self-explanatory.  The Bat class (implementing the bat 
abstraction) encapsulates various bat-related services, implemented as methods.  Two of these 
methods are shown in the figure: a “draw” method by which a bat object draws itself on the 
screen, and a “moveR” method by which a bat object moves itself one step to the right.  Since the 
Bat class will come to play in the context of some overall program, it is likely to assume that the 
“drwaR” method will be invoked when the user presses the right arrow key on the keyboard.  
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However, this logic should not be part of the Bat class.  Instead, it belongs to some other module 
in the program, e.g. one that implements a game session abstraction.  
 
We will illustrate the design of object-based languages in Chapter 8, by specifying the Jack 
language and writing some sample applications in it.  This will set the stage for chapters 9 and 10, 
in which we discuss compilation techniques and build the Jack compiler. 
 
Peeking Inside the Operating System 
 
The computer platform that we will build in chapter 5, called Hack, features a black and white 
screen consisting of 256 rows by 512 columns (similar to that of hand-held computers and 
cellular telephones).  High level languages like Jack are expected to provide high-level means for 
interacting with this screen. Indeed, an inspection of Prog. 2  reveals two screen oriented method 
calls: Screen.setColor and Screen.drawRectangle.  The first method sets the default 
screen color (i.e. the color that subsequent drawing operations will use), and the second method 
draws a rectangle of given dimensions at  a given screen location.  These methods are part of a 
class called Screen, which is part of a software layer that interfaces between the Jack language 
and the Hack hardware. This software layer, called the Sack operating system, will be described 
and built in Chapter 11. 
 
Parts of the Screen class are shown in Program 3.  Since the Sack OS is also written in Jack, the 
code of the drawRectangle function should be self-explanatory: the rectangle is drawn using a 
simple nested loop logic.  What about the drawPixel function?  In the Hack platform that we 
will build in chapter 5, the computer’s screen will be memory-mapped.  In other words, a certain 
area in the computer’s random-access memory will be dedicated for representing the screen’s 
contents, one bit per pixel.  In addition, a refresh logic will be used to continuously re-draw the 
physical screen according to the current contents of its memory map.  Thus, when we tell 
Screen.drawPixel to “draw” a pixel in a certain screen location, all it has to do is change the 
corresponding bit in the screen memory map.  In the next iteration of the refresh loop (which runs 
several times each second), the change will be “automatically” reflected  on the computer screen. 
 
Because of their analog nature, input and output devices are always the clunkiest parts of digital 
computer architectures. Therefore, it is best to abstract I/O devices away from programmers, by 
encapsulating the operations that manipulate them in low-level OS routines. DrawPixel is a 
good example of this practice, as it provides a clean screen drawing abstraction not only for user-
level programs, but also for other OS routines like drawRectangle.  
 
Once again, we see the power of abstractions at work.  Beginning at the top of the software 
hierarchy (e.g. Pong), we find programmers who draw graphical images using abstract operations 
like drawRectangle.  This method signature is part of the Sack OS API, and thus one is free to 
invoke it in programming languages that run on top of Hack/Sack platform.  When we drill down 
to the OS level, we see that the drawRectangle abstraction is implemented using the services 
of drawPixel, which is yet another, lower-level abstraction.  Indeed, the abstraction-
implementation interplay can run deep -- as deep as the designer wants. 
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/** An OS-level screen driver that abstracts the computer's physical screen */
class Screen {

     static boolean currentColor;  // the current color

     // The Screen class is a collection of methods, each implementing one
     // abstract screen-oriented operation.  Most of this code is omitted.

     /** Draws a single pixel in the current color. */

     function void drawPixel(int x, int y) {
         // Draws the pixel in screen location (x,y) by writing corresponding

         // bits in the screen memory map. The method code is omitted.     }

     /** Draws a rectangle in the current color. */
     // the rectangle's top left corner is anchored at screen location (x0,y0)

     // and its width and length are x1 and y1, respectively.
     function void drawRectangle(int x0, int y0, int x1, int y1) {

         var int x, y;
         let x = x0;

         while (x < x1) {
             let y = y0;

             while(y < y1) {
                do Screen.drawPixel(x,y);

                let y = y+1;
             }

             let x = x+1;
         }

     }
}

 
PROGRAM 3: Code segment from the Sack operating system, 
written in the Jack language.  (In Jack, class-level methods that don’t 
operate on any particular object are called “functions”.) 

 
 
The screen driver discussed above is just a small part the Sack OS. The overall operating system 
is an elaborate collection of software libraries, designed to manage the computer’s input, output, 
and memory devices, as well as provide mathematical, string, and array processing services to 
high-level languages. Like other modern operating systems, Sack itself is written in a high level 
language (in our case, Jack).  This may seem surprising to readers who are used to operate on top 
of a proprietary operating system that gives no access to its source code. We will open the OS 
black box in Chapter 11, where we present several geometric, arithmetic, and memory 
management algorithms, each being a computer science gem. These algorithms will be discussed 
in the context of building a Sack OS implementation. 
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2. The Journey Continues: the Road Down to Hardware Land 
 
We now start crossing the great chasm between the high-level language abstraction and its low-
level implementation in hardware.  Before a program can actually run and do something for real, 
it must be translated into the machine language of some target computer.  The translation process 
-- known as compilation -- is often performed in two stages.  In the first stage, a compiler 
translates the high-level code into an intermediate abstraction called virtual machine.  In the 
second stage, the virtual machine abstraction is implemented on the target hardware platform(s).   
We devote a third of the book for discussing these fundamental software engineering issues.  The 
following is a preview of some of the ideas involved. 
 
The Compiler at a Glance 
 
Think about the general challenge of translating a sentence from one language to another.  The 
first thing that you will do is use the grammar rules of the source language (perhaps implicitly) to 
figure out the syntactic structure of the given sentence. The translation of programming languages 
follows the same rationale.  Each programming language has a well-documented grammar that 
defines how valid statements and expressions are structured in the language.  Using this grammar, 
the compiler developer can write a program that converts the source code into some recursive 
data structure, designed to represent the code in a convenient way for further processing.  The 
output of this syntax analyzer program (also called parser) can typically be described in terms of 
a parse tree.  For example, Fig. 4 illustrates the parse tree of a high-level expression taken from 
Program 2. 
  

Source code

(x+width)>511

Intermediate code

push x
push width
add
push 511
gt

code
generation

Syntax
Analysis

Semantic
Synthesis

parsing

widthx

+ 511

>

Abstraction ImplementationParse
Tree

 
 

FIGURE 4: Compilation example 
 
Once the source code has been “understood,” i.e. parsed, it can be further translated into some 
target language (this time, using the grammar rules of the latter) -- typically the machine language 
of the target computer.  However, the approach taken by modern compilers, e.g. those of Java and 
C#, is to first break the parsed code into generic processing steps, designed to run on some 
abstract “machine”.  Importantly, the resulting intermediate code depends on neither the source of 
the translation, nor on its final destination.  Therefore, it is quite easy to compile it further into 
multiple target platforms, as needed. Of course the exact specification of the “generic processing 
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steps” is a key design issue.  In fact, this intermediate code form is important enough so that it is 
often formalized as a stand-alone abstraction, called  Virtual Machine or VM. 
 
As it turns out, it is convenient to express the VM operations using a postfix format called (for 
historical reasons) Right Polish Notation or RPN.  For example, the source expression 
“(x+width)>511” is expressed in infix notation, meaning that operators are written between 
their operands, simply because that’s how human programmers are trained to think.  In postfix 
notation, operators are written after the operands, as in “x,width,+,511,>”. This parentheses-
free format is flattened and “un-nested”, and thus it lends itself nicely to low-level processing.  
Therefore, one thing that we want our compiler to do is translate the original code into some 
postfix language, as seen in the right of Fig. 4.  How does the compiler achieve this translation 
task?  
 
An inspection of Fig. 4 suggests that the postfix target code can be generated by the following 
algorithm:  

� Perform a complete recursive depth-first processing of the parse tree; 

� When reaching a terminal node x, generate the command “push x”; 

� When backtracking to a an interim node from the right, generate the command which is 
the node’s label.  

 
One question that comes to mind is whether this algorithm scales up to compiling a complete 
program rather than a single expression.  The answer is yes.  Any given program, no matter how 
complex, can be expressed as a parse tree.  The compiler will not necessarily hold the entire tree 
in memory, but it will create and manipulate it using precisely the same techniques illustrated 
above. 
 
The theory and practice of compilation are normally covered in a full-semester course.  This book 
devotes two chapters to the subject, focusing on the most important ideas in syntax analysis and 
code generation.  In chapter 9, we will build a parser that translates Jack programs into parse 
trees, expressed as XML files.  In chapter 10, we will upgrade this parser into a compilation 
engine that produces VM code. The result will be a full-scale Jack compiler. 
 
Virtual Machine Preview 
 
To reiterate, many modern compilers don’t generate machine code directly.  Instead, they 
generate intermediate code designed to run on an abstract computer called Virtual Machine.  
There are several possible paradigms on which to base a virtual machine architecture.  Perhaps 
the cleanest and most popular one is the stack machine model, used in the Java Virtual Machine 
as well in the VM that we build in this book. 
 
A stack is an abstract data structure that supports two basic operations: push and pop.  The push 
operation adds an element to the “top” of the stack; the element that was previously on top is 
pushed “below” the newly added element.  The pop operation retrieves and removes the top 
element off the stack; the element just “below” it moves up to the top position. The “add” 
operation removes the top two elements and puts their sum at the top. In a similar fashion, the 
“gt” operation (greater than) removes the top two elements.  If the first is greater than the 
second, it puts the constant true at the top; otherwise it puts the constant false. 

 



Chapter 0: The grand Tour                                                                                                                      12     
              
 
To illustrate stack processing in action, consider the following high-level code segment, taken 
from our bat implementation (Program 2): 
 

if ((x+width)>511) { 
   let x=511-width; 
} 

 
Fig. 5 shows how the semantics of this code can be expressed in a stack-based formalism.  
 

// VM implementation of "if ((x+width)>511){let x=511-width;}"

   push x       // s1: push the value of x to the stack top

   push width   // s2: push the value of width to the stack top

   add          // s3: pop the top two values, push their sum

   push 511     // s4: push the constant 511

   gt           // s5: pop the top two values, if 1st>2nd push true

   if-goto L1   // s6: pop the top value, if it's true goto L1

   goto L2      // s7: skip the conditional code

L1:

   push 511     // s8: push the constant 511

   push width   // s9: push the value of width to the stack top

   sub          // s10: pop the top two values, push 1st-2nd

   pop x        // s11: pop the top value into x

L2:

...
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PIGURE 5: Virtual Machine code segment (top) and run-time scenario (bottom). To connect 
the two figures, we have annotated the VM commands and the stack images with state markers. (In 
stack diagrams, the next available slot is typically marked by the label sp, for stack pointer. 
Following convention, the stack is drawn upside down, as if it grows downward.) 

 
The VM language and its impact on the stack are explained in the program’s comments.  This 
basic language, which provides stack arithmetic and control flow capabilities,  will be developed 
and implemented in Chapter 6. Next, in Chapter 7, we will extend it into a more powerful 
abstraction, capable of handling multi-method and object-based programs as well.  The resulting 
language will be modeled after the Java Virtual Machine (JVM) paradigm. 

 



Chapter 0: The grand Tour                                                                                                                      13     
              
 
There is no need to delve further into the VM world here.  Rather, it is sufficient to appreciate the 
general idea, which is as follows: instead of translating high level programs directly into the 
machine language of a specific computer, we first compile them into an  intermediate code that 
runs on a virtual machine.  The flip-side of this strategy is that in order to run the abstract VM 
programs for real, we must implement the VM on some real computer platform. 
 
VM Implementation: One way to implement VM programs on a target hardware platform is to 
translate the VM code into the platform’s native code.  The program that carries out the 
translation --  VM translator -- is a stand-alone module which is based of two interfaces: the 
specification of the source VM language, and the specification of the target machine language.  
Yet in the larger picture of our grand tour, the VM translator can also be seen as the backend 
module of a two-stage compiler.  First, the compiler described in the previous section translates 
the high level program into an intermediate VM code.  Next, the VM translator translates the VM 
code into the native code of the target computer.  This two-stage compilation model has many 
virtues, in particular code portability.  Indeed, virtual machines and VM translators are becoming 
a common layer in modern software hierarchies, Java and .NET being two well-known examples. 
 
In addition to its practical relevance, the study of virtual machine implementations is an excellent 
way to get acquainted with several classical computer science topics.  These include program 
translation, push-down automata, and implementation of stack-based data structures.  We will 
spend chapters 6 and 7 explaining these ideas and techniques, while building a VM 
implementation for the Hack platform.  Of course Hack is just one possibility.  The same VM can 
be realized on personal computers, cellular telephones, game machines, and so on. This cross-
platform compatibility will require the development of different VM translators, one for each 
target platform. 
 
Low-Level Programming Sampler 
 
Every hardware platform is equipped with a native instruction set that comes in two flavors: 
machine language and assembly language.  The former consists of binary instructions that 
humans (unlike machines) find difficult to read and write. The latter is a symbolic version of the 
former, designed to bring low-level programming closer to human comprehension.  Yet the 
assembly extension is mainly a syntactical upgrade, and writing and reading assembly programs 
remains an obscure art. As Fig. 6 illustrates, Hack programming is no exception. 
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...

   push x

   push width

   add

   push 511

   gt

   if-goto L1

   goto L2

L1:

   push 511

   push width

   sub

   pop x

L2:

...

// push 511

@511

D=A   // D=511

@SP

A=M

M=D   // *SP=D

@SP

M=M+1 // SP++

Virtual machine program

Assembly program

0000000000000000

1110110010001000

Machine Language
Program

 
VM translator

 
Assembler

push 511

@SP
M=M+1 // SP++

 
PROGRAM 6: From VM to assembly to binary code. There is no need 
to understand the code segments.  Instead, it is enough to appreciate the 
big picture, which depicts a cascading translation process. 

 
When we translate a high-level program into machine language, each high-level command is 
implemented as several low-level instructions.  If the translator generates this code in assembly, 
the code has to be further translated into machine language.  This translation is carried out by a 
program called assembler. 
 
In order to read low-level code, one must have an abstract understanding of the underlying 
hardware platform -- in our case Hack.  The Hack computer is equipped with two registers named 
D and A and a Random Access Memory unit consisting of 32K memory locations.  The hardware 
is wired in such a way that the RAM chip always selects the location whose address is the current 
value of the A-register.  The selected memory location -- RAM[A] -- is denoted M.  With this 
notation in mind, Hack assembly commands are designed to manipulate three registers named A, 
D, and M.  For example, if we want to add the value stored in memory location 75 to the D-
register,  we can issue the two commands “set A to 75” and “set D to D+M”.  The Hack assembly 
language expresses these commands as “@75” and “D=D+M”, respectively. The rationale behind 
this syntax will become clear when we will build the Hack chips-set in chapters 2 and 3. 
 
One extension that makes assembly languages rather powerful is the ability to refer to memory 
locations using user-defined labels rather than fixed numeric addresses.  For example, let us 
assume that we can somehow tell the assembler that in this program, the symbol “sp” stands for 
memory location 0. This way, a high-level command like “sp++” could be translated into the two 
assembly instructions “@sp” and “M=M+1”.  The first instruction will cause the computer to select 
RAM[0], and the second to add 1 to the contents of RAM[0]. 
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We end this section with Fig. 7, which describes the semantics of Program 6.  This discussion is 
optional, and readers can skip it without losing the thread of the chapter. 
 

0
1

RAM

...
2

256 17
257 7035

...

258

sp 0
1

RAM

...
2

256 17
257 7035
258 511

sp

259
...

259

// push 511

@511

D=A   // D=511

@SP

A=M

M=D   // *SP=D

@SP

M=M+1 // SP++

push 511

sp

Stack
VM code

Assembly  code

VM abstraction

Implementation on the Hack platform

Before After

17
7035
511sp

Stack

17
7035

258 259

 
 

FIGURE 7: A typical abstract VM operation and its equivalent implementation on 
the Hack platform. The Hack code was created by the VM translator. We assume that 
the stack contains two arbitrary values (17 and 7035), and we track the pushing of 511 
to the stack’s top. Note that among other things, the VM translator maps the stack-base 
and the stack-pointer on RAM[256] and RAM[0], respectively. 

 
 
Exploring the Assembly and the Machine languages  
 
Although assembly is a low-level language that operates only a notch above the hardware, it is 
also an abstraction.  After all, an assembly program is simply a bunch of symbols written on 
paper, or stored on disk.  In order to turn these symbols into an executable program, we must 
translate them into binary instructions. This can be done rather easily, since the relationships 
between the machine’s binary and symbolic codes is readily available from the hardware 
specification.   
 
For example, the Hack computer uses two types of 16-bit instructions.  The left-most bit indicates 
which instruction we’re in: “0” for an address instruction and “1” for a compute instruction.  In 
the case of an address instruction, the remaining 15 bits specify a number which is typically 
interpreted as an address.  Thus, according to the language definition, the binary instruction 
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“0000000000010111”, whose agreed-upon assembly code is “@23”, implies the operation “set 
the A-register to 23” (10111 in binary is 23 in decimal).  In a similar fashion, if the symbol “sp” 
happens to point to address 0 in the RAM, the assembly instruction “@sp” will be equivalent to 
“@0”, yielding “0000000000000000” in binary, which means “set the A-register to 0”. 
 
The second Hack instruction, called compute, has the assembly format “dest=comp;jump”. 
This specification answers three questions: what to compute (comp), where to store the computed 
value (dest), and what to do next (jump).  Altogether, the language specification includes 28 
comp, 8 dest, and 8 jump directives, and each one of them can be specified using either a binary 
code or a symbolic mnemonic.  For example, the comp directive “compute M-1” is coded as 
“0110010” in binary and as “M-1” in assembly.  The dest directive “store the result in M”  is 
coded as “001” in binary and as “M” in assembly.  The jump directive “no jump”  is coded as 
“000” in binary and as a null instruction field in assembly.  Finally, the language specification 
says how the comp, dest, and jump fields should be mapped on the 16-bit machine instruction.  
Assembling all these codes together, we get the example shown in Fig. 8. 
 

Machine language syntax
0 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0

1 1  1 0  0  1 0  0  01  1  1  0  1  1  1

Instruction code
(0=address inst.) Address

ALU
operation code

(M-1)

Destination
Code

(M)

Jump
Code

(no jump)

Semantics, as interpreted by the Hack hardware platform

Instruction code
(1=compute  inst.)

0000000000000000

1111110111001000
@0

M=M-1

 
FIGURE 8: Instruction semantics in the Hack platform (example, focusing on 
two sample instructions).  Note that the second and third most-significant  bits in 
the compute instruction are not used, and are set to 1 as a language convention. 

 
We see that the relationship between assembly and binary codes is a simple syntactical contract.  
Thus, if we are given a program written in assembly, we can convert each symbolic mnemonic to 
its respective binary code, and then assemble the resulting codes into complete binary 
instructions.  This straightforward text processing task can be easily automated, and thus we can 
write a computer program to do it -- an assembler.   The design of assembly languages, symbol 
tables and assemblers is the subject of Chapter 4.  As the chapter progresses, we will build an 
assembler for the Hack platform. 
 
We have reached a landmark in our Grand Tour -- the bottom of the software hierarchy.  The next 
step down the abstraction-implementation route will take us into a new territory -- the top of the 

 



Chapter 0: The grand Tour                                                                                                                      17     
              
hardware hierarchy.  The linchpin that connects these two worlds is the hardware architecture, 
designed to realize the semantics of the machine language software. 
 
3. The Journey ends: Hardware Land 
 
Let us pause for a moment to appreciate where we stand in our journey. A program written in a 
high level language, represented in an intermediate VM code, has been translated to binary code, 
which should now run on a computer platform. Somehow, these various hardware/software 
modules (that in reality may well come from different companies) must work together flawlessly, 
delivering the intended program functionality.  The key to success in building this remarkable 
complex is modular design, based on a series of contract-based, local, abstraction-implementation 
steps.  And the most profound step in this journey is the descent from machine language to the 
machine itself -- the point where software finally meets hardware.  One such hardware platform is 
seen in Diagram 9. Why did we choose this particular architecture? 
 
Computer Architecture Tour 
 
Almost all digital computers are built today according to a classical framework known as the Von 
Neumann model. Thus, if you want to understand computer architectures without taking a full 
semester course on the subject, your best bet is to study the main features of this fundamental 
model.  In that respect, our Hack computer strikes a good balance between power and simplicity.  
On the one hand, Hack is a simple Von Neumann computer that a student can build in one or two 
days of work, using the chips-set that we will build in chapters 1-3. On the other hand, Hack is 
sufficiently general to illustrate the key operating principles and hardware elements of any digital 
computer. 

Data
Memory

(M)

A
LUInstruction

Memory

instruction

A

D

M

Program
Counter

address of next
instruction

data in

data out

RAM(A)

 
DIAGRAM 9: The Hack computer platform (overview), focusing on main chips 
and main data and instruction busses.  To minimize clutter, the diagram does not 
show the control logic, the connection between the A-register and the data memory, 
and the connection between the A-register and the Program Counter. 
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The Hack computer is based on two memory units with separate address spaces, an ALU 
(Arithmetic Logic Unit), two registers, and a program counter.  The centerpiece of the 
architecture is the ALU -- a “calculator” chip that can compute many functions of interest on its 
inputs. The Instruction Memory, containing the instructions of the current program, is designed to 
emit the value of the memory location whose address is the current value of the Program 
Counter.  The Data Memory, containing the data on which the program operates, is designed to 
select, and emit the value of, the memory location whose address is the current value of the A-
register.  The overall computer operation, known as the fetch-execute cycle, is as follows. 
 
Execute: first, the instruction that emerged from the instruction memory is simultaneously fed to 
both the A-register and the ALU.  If it’s an address instruction (most significant bit = 0), the A-
register is set to the instruction’s 15-bit value and the instruction execution is over. If it’s a 
compute instruction (MSB=1), then the 7 bits of the instruction’s comp field tell the ALU which 
function to compute.  For example, as a convention, the code “0010011” instructs the ALU to 
compute the function “D-A” (the Hack ALU can compute 28 different functions on subsets of 
A,D, and M). The ALU output is then simultaneously routed to A, D, and M.  Each one of these 
registers is equipped with a “load bit” that enables/disables it to incoming data.  These bits, in 
turn, are connected to the 3 dest bits of the current instruction.  For example, the dest code 
“101” causes the machine to enable A, disable D, and enable M to the ALU output. 
 
Fetch: What should the machine do next? this question is determined by a simple control logic 
unit that probes the ALU output and the 3 jump bits of the current instruction.  Taken together, 
these inputs determine if a jump should materialize.  If so, the Program Counter is set to the value 
of the A-register (effecting a jump to the instruction pointed at by A).  If no jump should occur, 
the Program Counter increments by 1 (no jump).  Next, the instruction that the program counter 
points at emerges from the instruction memory, and the cycle continues. 
 
Confused?  Not to worry.  We will spend all of chapter 5 explaining and building this 
architecture, one hardware module at a time.  Further, you’ll be able to test your chips separately, 
making the overall computer construction surprisingly simple.  The actual construction of all the 
hardware elements will be done using Hardware Description Language (HDL) and a hardware 
simulator, as we now turn to describe. 
 
Gate Logic Appetizer 
 
An inspection of the computer architecture from Diagram 9 reveals two types of hardware 
elements: memory devices (registers, memories, counters), and processing devices (the ALU).  As 
it turns out, all these devices can be abstracted by Boolean functions, and these functions, in turn, 
can be realized using logic gates.  The general subject of logic design, also called digital design, 
is typically covered by a full-semester course.  We devote a quarter of the book to this subject 
(chapters 1-3), discussing the essentials of Boolean functions, combinational logic, and sequential 
logic.  The following is a preview of some of the ideas involved. 
 
Memory devices: A storage device, also called register, is a time-based abstraction consisting of 
a data input, a data output, and an input bit called load. The register is built in such a way that its 
output emits the same value over time, unless the load bit has been asserted, in which case the 
output is set to a new input value. In most computer architectures, this abstraction is implemented 
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using a primitive gate called D-flip-flop, which is capable of “remembering” a single bit over 
time.  More complex registers are then built on top of this gate, as seen in Fig. 10. 
 

32
DFF outin Bit out

load

in . . .Bit Bit Bit

32-bit register

out

load

binary cell (Bit)D-Flip-Flop

in 32

 
FIGURE 10:  From flip-flop gates to multi-bit registers.  A single-bit binary cell (also 
called Bit gate) is essentially a D-flip-flop with a loading capability.  A multi-bit register of 
width w can be built from w Bit gates.  (time-based chips are denoted by a small triangle, 
representing the clock input.)  

 
What about Random-Access Memories?  Well, a RAM device of length n and width w can be 
constructed as an array of n w-bit registers, equipped with direct-access logic. Indeed, all the 
memory devices of the computer -- registers, memories, and counters -- can be built by recursive 
ascent from D-Flip-Flops. These construction methods will be discussed in Chapter 3, where we 
use them to build all the memory chips of the Hack platform. 
 
Processing devices: All the arithmetic operations of the ALU, e.g. A+D, M+1, D-A, and so on, are 
based on addition.  Thus if you know how to add two binary numbers, you can build an ALU.  
How then do we add two binary numbers?  Well, we can do it exactly the same way we learned 
to add decimal numbers in elementary school: we add the digits in each position, right to left, 
while propagating the carry to the left.  Fig. 11 gives a Boolean logic implementation of this 
algorithm.  
 

(Example)  (Definition) 
a:  1 0 0 1  (9) a b Sum(a,b) Carry(a,b) 
b:  0 1 0 1  (5) 0 0 0 0 

carry bit:  0 0 0 1  0 1 1 0 
shifted carry bit: 0 0 0 1 0  1 0 1 0 

sum bit:  1 1 0 0  1 1 0 1 
a+b:  1 1 1 0 (14)     

Note: a+b = Sum(shifted carry bit, sum bit) 
 

FIGURE 11:  Binary addition by Boolean logic  
 
We see that binary addition can be viewed as a Boolean function, defined in terms of two simpler 
Boolean functions: Sum and Carry.  Said otherwise, the addition operation can be implemented 
by an Adder chip, based on two lower-level chips: Sum and Carry.  We note in passing that the 
adder chip and the ALU know nothing about “adding numbers”, neither do they know anything 
about “numbers” to begin with. Rather, they simply manipulate Boolean functions in a way that 
effects an addition operation (ideally, as quickly as possible).  
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Continuing in our reductive descent, how then should we implement the lower-level Sum and 
Carry abstractions?  For brevity, let us focus on Sum.  An inspection of this function’s truth table 
reveals that it is identical to that of the standard exclusive-or function, denoted Xor.  This function 
returns 1 when its two inputs have opposing values and 0 otherwise.  The next section shows how 
the Xor abstraction can be implemented using Hardware Description Language. 
 
Chip Design in a Nutshell 
 
Like all the other artifacts encountered in our long journey, a chip can be described in two 
different ways.  The chip abstraction -- also called interface -- is the set of inputs, outputs, and 
input-output transformations that the chip exposes to the outside world. The chip implementation, 
on the other hand, is a specification of a possible internal structure, designed to realize the chip 
interface.  This dual view is depicted in Diagram 12. 
 
 

Chip Abstraction (interface) Possible chip Implementation 

Xor
a

b
out

0     0       0
0     1       1
1     0       1
1     1       0

a     b      out

 

And

And
          Not

Or out

a

b

          Not

 
 

DIAGRAM 12: Chip design, using Xor as an example.  The shown design is based on 
the Boolean function Xor(a,b)=(a And Not(b)) Or (Not(a) And b). Other Xor 
implementations are possible, some involving less gates and connections. 

 
As usual, the chip abstraction is the right level of detail for people who want to use the chip as an 
off-the-shelf, black box component.  For example, the designers of the adder chip described in the 
previous section need not know anything about the internal structure of Xor.  All they need to 
know is the chip interface, as shown on the left side of Diagram 12.  At the same time, the people 
who have to build the Xor chip must be given some building plan, and this information is 
contained in the chip implementation diagram.  Note that this implementation is based on 
connecting interfaces of lower level abstractions -- those of the Not, And, and Or gates.  
  
Hardware Description Language: How can we turn a chip Diagram into an actual chip?  This 
task is commonly done today using a design tool called Hardware Description Language.  HDL 
is a formalism used to define and test chips: objects whose interfaces consist of input and output 
pins that carry Boolean signals, and whose bodies are composed of inter-connected collections of 
other, lower level, chips.  Program 13 gives an example.  
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CHIP Xor {
   IN a,b;

   OUT out;
   PARTS:

   Not(in=a,out=Nota);
   Not(in=b,out=Notb);

   And(a=a,b=Notb,out=aNotb);
   And(a=Nota,b=b,out=bNota);

   Or(a=aNotb,b=bNota,out=out);
}

 
 

PROGRAM 13: Typical HDL program, describing the Xor 
implementation from Diagram 12.  The labels Nota, Notb, aNotb 
and bNota define the connections of the lower-level gates. 

 
The HDL program gives a complete logical specification of the chip topology, describing all the 
lower-level components and connections of the chip architecture.  This program can be simulated 
by a hardware simulator, to ensure that the structure that it implies delivers the required chip 
functionality. If necessary, the HDL program can be debugged and improved.  Further, it can be 
fed into an optimizer program,  in an attempt to create a functionally equivalent chip geometry 
that includes as few gates and wire crossovers as possible.  Finally, the verified and optimized 
HDL program can be given to a fabrication facility that will stamp it in silicon. 
 
The reader may wander how HDL scales up to deal with realistically complex chips.  Well, the 
Hack hardware platform consists of some 20 chips, and every one of them can be described in 
less than one page of HDL code.  As usual, this parsimony is facilitated by modular design. 
 
The Nand Gate: An inspection of Program 13 raises the question: And what about lower-level 
gates like And, Or, and Not?  Well, they, too, can be constructed in HDL from more primitive 
gates.  Clearly, this recursive descent must stop somewhere, and in this book it stops at the Nand 
level. 

a b Nand(a,b) 
0 0 1 
0 1 1 
1 0 1 

out
a

b
NAND

 1 1 0 
 

DIAGRAM  14: Nand gate (Last stop of our Grand Tour) 
 
The Nand gate, implementing the trivial Boolean function depicted above, has two important 
properties.  First, it can be modeled in silicon directly and efficiently, using 4 transistors.  Second, 
as we will show in Chapter 1, any logic gate, and thus any conceivable chip, can be constructed 
recursively from (possibly many) Nand gates.  Thus, Nand gates provide the cement from which 
all hardware systems can be built.  
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The Last Stop: Physics 
 
Our Grand Tour has ended.  In this book, the lowest level of abstraction that we reach is the Nand 
gate, which is viewed as primitive. Thus we descend no further, accepting the Nand 
implementation as given.  Well, if we do want to peek downward, Diagram 15 shows an 
implementation of a Nand gate using CMOS (complementary metal-oxide semiconductor) 
technology.  Drilling one layer lower, we reach the realm of solid-state physics, where we see 
how MOS transistors are constructed. 
 

 
 

 
DIAGRAM 15: CMOS implementation of a Nand gate (left), based 
on 4 transistor abstractions.  A possible MOS  implementation of 
these transistors is shown on the right.  

 
Asking how Nand gates are built is clearly an important question, and one that leads to many 
levels of additional abstractions.  However, this journey will take us out of the synthetic worlds 
created by computer scientists, and into the natural world studied by statistical physics and 
quantum mechanics. 
 

* * * 
 
Back to the Mountain’s Foot 
 
This marks the end of our Grand Tour preview -- the descent from the high level regions of 
object-based software, all the way down to the bricks and mortar of the underlying hardware.  In 
the remainder of the book we will do precisely the opposite.  Starting with elementary logic gates 
(chapter 1), we will go bottom up to combinational and sequential chips (chapters 2-3), through 
the design of computer architectures (chapters 4-5) and software hierarchies (chapters 6-7), up to 
implementing modern compilers (chapter 9-10), high level programming languages (chapter 8), 
and operating systems (chapter 11).  We hope that the reader has gained a general idea of what 
lies ahead, and is eager to push forward on this grand tour of discovery.  So, assuming that you 
are ready and set, let the count down start: 1, 0, Go!  


