
1

Tirgul 9

Hash Tables (continued)
Reminder
Examples

Hash Table
In a hash table, we allocate an array of size m, which
is much smaller than |U| (the set of keys).

We use a hash function h() to determine the entry of
each key.

The crucial point: the hash function should “spread”
the keys of U equally among all the entries of the
array.

The division method:
If we have a table of size m, we can use the hash
function () mkkh mod=

How to choose hash functions
The crucial point: the hash function should “spread”
the keys of U equally among all the entries of the
array.

Unfortunately, since we don’t know in advance the
keys that we’ll get from U, this can be done only
approximately.

Remark: the hash functions usually assume that the
keys are numbers. We’ll discuss next class what to
do if the keys are not numbers.

The division method
A good choice example:

if we have |U|=2000, and we want each search to
take (on average) 3 operations, we can choose
the closest primal number to 2000/3, m=701.

0 701,1402
1 702,1403
.
.
.
700 700…

The multiplication method
The disadvantage of the division method hash
function is:

It depends on the size of the table.
The way we choose m affect the performance of
the hash function.

The multiplication method hash function does not
depend on m as much as the division method hash
function.

The multiplication method
The multiplication method:

Multiply a constant 0<A<1 with k.
The fractional part of kA is taken,
and multiplied by m.
Formally,

The multiplication method does not depends as much
on m since A helps randomizing the hash function.

In this method the are better choices for A of
course…

() () 1modkAmkh =

2

The multiplication method
A bad choice of A, example:

if m = 100 and A=1/3, then
for k=10, h(k)=33,
for k=11, h(k)=66,
And for k=12, h(k)=99.
This is not a good choice of A, since we’ll have
only three values of h(k)...

The optimal choice of A depends on the keys
themselves.

Knuth claims that
is likely to be a good choice.

()5 1 / 2 0.6180339887...A ≈ − =

The multiplication method
A good choice of A, example:

if m = 1000
and , then
for k=61, h(k)=700,
for k=62, h(k)=318,
For k=63, h(k)=936
And for k=64, h(k)=554.

()5 1 / 2 0.6180339887...A ≈ − =

What if keys are not numbers?
The hash functions we showed only work for
numbers.

When keys are not numbers,we should first convert
them to numbers.

A string can be treated as a number in base 256.
Each character is a digit between 0 and 255.

The string “key” will be translated to

()() ()() ()()2 1 0int ' ' 256 int ' ' 256 int ' ' 256k e y× + × + ×

Translating long strings to numbers
The disadvantage of the method is:

A long string creates a large number.
Strings longer than 4 characters would exceed the
capacity of a 32 bit integer.

We can write the integer value of “word” as
(((w* 256 + o)*256 + r)*256 + d)

When using the division method the following facts
can be used:

(a+b) mod n = ((a mod n)+b) mod n
(a*b) mod n = ((a mod n)*b) mod n.

Translating long strings to numbers
The expression we reach is:

((((((w*256+o)mod m)*256)+r)mod m)*256+d)mod m

Using the properties of mod, we get the simple alg.:
int hash(String s, int m)
int h=s[0]
for (i=1 ; i<s.length ; i++)

h = ((h*256) + s[i])) mod m
return h

Notice that h is always smaller than m.

This will also improve the performance of the
algorithm.

Collisions
What happens when several keys have the same
entry?

clearly it might happen, since U is much larger
than m.

Collision.

Collisions are more likely to happen when the hash
table is almost full.

We define the “load factor” as
Where n is the number of keys in the hash table,
And m is the size of the table.

mn /=α

3

Chaining
There are two approaches to handle collisions:

Chaining.
Open Addressing.

Chaining:
Each entry in the table is a linked list.
The linked list holds all the keys that are mapped
to this entry.

Search operation on a hash table which applies
chaining takes time.)1(α+O

Chaining
This complexity is calculated under the assumption of
uniform hashing.

Notice that in the chaining method, the load factor
may be greater than one.

Open addressing
In this method, the table itself holds all the keys.

We change the hash function to receive two
parameters:

The first is the key.
The second is the probe number.

We first try to locate h(k,0) in the table.

If it fails we try to locate h(k,1) in the table, and so
on.

Open addressing
It is required that {h(k, 0),...,h(k,m-1)} will be a
permutation of {0,..,m-1}.

After m-1 probes we’ll definitely find a place to locate
k (unless the table is full).

Notice that here, the load factor must be smaller
than one.

There is a problem with deleting keys. What is it?

Open addressing
While searching key i and reaching an empty slot, we
don’t know if:

The key i doesn’t exist in the table.
Or, key i does exist in the table but at the time
key i was inserted this slot was occupied, and we
should continue our search.

We will discuss two ways to implement open
addressing:

linear probing
double hashing

Open addressing
Linear probing - h(k,i)=(h(k)+i) mod m

The problem: primary clustering.

If several consecutive slots are occupied, the next
free slot has high probability of being occupied.

Search time increases when large clusters are
created.

The reason for the primary clustering stems from
the fact that there are only m different probe
sequences.

4

Open addressing
Double hashing –

h(k,i)=(h1(k)+ih2(k)) mod m
Better than linear probing.
The problem can not have a
common divisor with m (besides 1).

different probe sequences!

()2h k

2m

Performance (without proofs)
Insertion and unsuccessful search of an element into
an open-address hash table requires probes
on average.

A successful search: the average number of probes is

For example:
If the table is 50% full then a search will take
about 1.4 probes on average.
If the table 90% full then the search will take
about 2.6 probes on average.

)1/(1 α−

αα −1
1ln1

Example for Open Addressing
A computer science geek goes to a sibyl.
She ask him to scramble the Tarot cards.
The geek does not trust the sibyl and he decides to
apply open addressing as scrambling technique.
The card numbers: 10, 22, 31, 4, 15, 28, 17, 88.
He tries Linear probing with m=11

and h1(k)=k mod m.

He gets primary clustering which known to be bad
luck…

[] [] [] [] [] [] [] [] [] [] []
0 1 2 3 4 5 6 7 8 9 10
22 88 4 15 28 17 31 10

Example for Open Addressing

Just before the sibyl looses her patience he tries
double hashing with m=11, h2(k)=1+(k mod (m-1)),
and h1(k)=k mod m.

[] [] [][][][][][][][][]
0 1 2 3 4 5 6 7 8 9 10
22 17 4 15 28 88 31 10

When should hash tables be used
Hash tables are very useful for implementing
dictionaries if we don’t have an order on the
elements, or we have order but we need only the
standard operations.

On the other hand, hash tables are less useful if we
have order and we need more than just the standard
operations.

For example, last(), or iterator over all elements,
which is problematic if the load factor is very low.

When should hash tables be used
We should have a good estimate of the number of
elements we need to store

For example, the huji has about 30,000 students
each year, but still it is a dynamic d.b.

Re-hashing: If we don’t know a-priori the number of
elements, we might need to perform re-hashing,
increasing the size of the table and re-assigning all
elements.

