q Tirgul 9

Hash Tables (continued)
Reminder
Examples

} Hash Table

= In a hash table, we allocate an array of size m, which
is much smaller than |U| (the set of keys).

= We use a hash function h() to determine the entry of
each key.

The crucial point: the hash function should “spread”
the keys of U equally among all the entries of the
array.

= The division method:

= If we have a table of size m, we can use the hash
function Alk )=k mod m

{ How to choose hash functions

= The crucial point: the hash function should “spread”
the keys of U equally among all the entries of the
array.

= Unfortunately, since we don’t know in advance the
keys that we’ll get from U, this can be done only
approximately.

= Remark: the hash functions usually assume that the
keys are numbers. We’ll discuss next class what to
do if the keys are not numbers.

} The division method

= A good choice example:
= if we have |U|=2000, and we want each search to
take (on average) 3 operations, we can choose
the closest primal number to 2000/3, m=701.

0 |701,1402
1 ]702,1403
700 | 700...

The multiplication method

= The disadvantage of the division method hash
function is:
= It depends on the size of the table.
= The way we choose m affect the performance of
the hash function.

= The multiplication method hash function does not
depend on m as much as the division method hash
function.

} The multiplication method

= The multiplication method:
= Multiply a constant 0<A<1 with k.
= The fractional part of kA is taken,
= and multiplied by m.
= Formally, h(k) =|m (kA mod l)J

= The multiplication method does not depends as much
on m since A helps randomizing the hash function.

= In this method the are better choices for A of
course...




{ The multiplication method
= A bad choice of A, example:

= if m = 100 and A=1/3, then

= for k=10, h(k)=33,

= for k=11, h(k)=66,

= And for k=12, h(k)=99.

= This is not a good choice of A, since we’ll have
only three values of h(k)...

= The optimal choice of A depends on the keys
themselves.

« Knuth claims that 4 = \/5—1)/2 =0.6180339887...

is likely to be a good choice.

The multiplication method

= A good choice of A, example:
« if m = 1000
«and 4 :(\6—1)/2 =0.6180339887... , then
« for k=61, h(k)=700,
« for k=62, h(k)=318,
= For k=63, h(k)=936
« And for k=64, h(k)=554.

{ What if keys are not numbers?

= The hash functions we showed only work for
numbers.

= When keys are not numbers,we should first convert
them to numbers.

= A string can be treated as a number in base 256.
= Each character is a digit between 0 and 255.

= The string “key” will be translated to
((int)'%") 256> +((int)'e’) x256' +((int)'y") x256°

} Translating long strings to numbers
= The disadvantage of the method is:

= A long string creates a large number.

= Strings longer than 4 characters would exceed the
capacity of a 32 bit integer.

= We can write the integer value of “word” as
(((w* 256 + 0)*256 + r)*256 + d)

= When using the division method the following facts
can be used:

= (a+b) mod n = ((@a mod n)+b) mod n
= (a*b) mod n = ((@a mod n)*b) mod n.

{ Translating long strings to numbers
= The expression we reach is:
= ((((((w*256+0)mod m)*256)+r)mod m)*256+d)mod m

= Using the properties of mod, we get the simple alg.:
int hash(String s, int m

int h=s[0]

for (i=1; i<s.length ; i++)
h = ((h*256) + s[i])) nod m

return h

= Notice that h is always smaller than m.

= This will also improve the performance of the
algorithm.

} Collisions

= What happens when several keys have the same
entry?

= clearly it might happen, since U is much larger
than m.

= Collision.

= Collisions are more likely to happen when the hash
table is almost full.

= We define the “load factor’as @ =n/m
= Where n is the number of keys in the hash table,
= And m is the size of the table.




{ Chaining

= There are two approaches to handle collisions:
= Chaining.
= Open Addressing.

= Chaining:
= Each entry in the table is a linked list.

= The linked list holds all the keys that are mapped
to this entry.

= Search operation on a hash table which applies
chaining takes O (1 + ) time.

Chaining

= This complexity is calculated under the assumption of
uniform hashing.

= Notice that in the chaining method, the load factor
may be greater than one.

{ Open addressing

= In this method, the table itself holds all the keys.

= We change the hash function to receive two
parameters:

= The first is the key.
= The second is the probe number.

= We first try to locate h(k,0) in the table.

» If it fails we try to locate h(k,1) in the table, and so
on.

Open addressing

= Itis required that {h(k, 0),...,h(k,m-1)} will be a
permutation of {0,..,m-1}.

= After m-1 probes we’ll definitely find a place to locate
k (unless the table is full).

= Notice that here, the load factor must be smaller
than one.

= There is a problem with deleting keys. What is it?

{ Open addressing

= While searching key i and reaching an empty slot, we
don’t know if:

= The key i doesn’t exist in the table.

= Or, key i does exist in the table but at the time
key i was inserted this slot was occupied, and we
should continue our search.

= We will discuss two ways to implement open
addressing:

= linear probing
= double hashing

} Open addressing
= Linear probing - Ak, i)=(h(k)+i) mod m
= The problem: primary clustering.

= If several consecutive slots are occupied, the next
free slot has high probability of being occupied.

= Search time increases when large clusters are
created.

= The reason for the primary clustering stems from
the fact that there are only m different probe
sequences.




Open addressing
= Double hashing —
h(k i)=(h,(k)+ihy(k)) mod m
= Better than linear probing.

= The problem #, (k) can not have a
common divisor with m (besides 1).

« m’ different probe sequences!

} Performance (without proofs)

= Insertion and unsuccessful search of an element into
an open-address hash table requires 1/(1—a) probes
on average.

= A successful search: the average number of probes is
1 1
“ln——
a l-a

= For example:
= If the table is 50% full then a search will take
about 1.4 probes on average.

= If the table 90% full then the search will take
about 2.6 probes on average.

Example for Open Addressing

= A computer science geek goes to a sibyl.
= She ask him to scramble the Tarot cards.

= The geek does not trust the sibyl and he decides to
apply open addressing as scrambling technique.

= The card numbers: 10, 22, 31, 4, 15, 28, 17, 88.
= He tries Linear probing with m=11
and h1(k)=k mod m.

2llss 1 J[s)zs]07L i o)

= He gets primary clustering which known to be bad
luck...

} Example for Open Addressing

= Just before the sibyl looses her patience he tries
double hashing with m=11, h2(k)=1+(k mod (m-1)),
and h1(k)=k mod m.

200 ) TSl i i)

{ When should hash tables be used

= Hash tables are very useful for implementing
dictionaries if we don’t have an order on the
elements, or we have order but we need only the
standard operations.

= On the other hand, hash tables are less useful if we
have order and we need more than just the standard
operations.
= For example, last(), or iterator over all elements,
which is problematic if the load factor is very low.

} When should hash tables be used

= We should have a good estimate of the number of
elements we need to store
= For example, the huji has about 30,000 students
each year, but still it is a dynamic d.b.

= Re-hashing: If we don’t know a-priori the number of
elements, we might need to perform re-hashing,
increasing the size of the table and re-assigning all
elements.




