
Chapter 5: Link Layer and Local Area Networks

In this chapter we examine the data link layer--its services, the principles
underlying its operation, and a number of important data link layer protocols. We
learn that the basic service of the data link layer is to move a network-layer
datagram from one node (host or router) to an adjacent node. We investigate the
different services a link layer protocol can provide in addition to this basic
service, including link access services, delivery services, flow control services
and transmission services. These differences are due in part to a wide variety of
link types over which data link protocols must operate. We examine error
detection and correction, services that are often present in link-layer protocols.
We investigate multiple access protocols, commonly used in LANs (local area
networks). We explore LAN addresses and how ARP (Address Resolution
Protocol) is used to translate between LAN and IP addresses. We then study in
some depth Ethernet, today's most prevalent LAN technology. We investigate
hubs, bridges and layer-2 switches, and compare their features. Additionally, we
cover wireless LANs and the IEEE 802.11 standard, PPP, ATM, X.25 and frame
relay in this chapter.
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5.1: The Data Link Layer: Introduction,
Services
In the previous chapter we learned that the network layer provides a
communication service between two hosts. As shown in Figure 5.1, this
communication path starts at the source host, passes through a series of
routers, and ends at the destination host. We'll find it convenient here to
refer to the hosts and the routers simply as nodes (since, as we'll see
shortly, we will not be particularly concerned whether a node is a router or a
host), and to the communication channels that connect adjacent nodes
along the communication path as links. In order to move a datagram from
source host to destination host, the datagram must be moved over each of
the individual links in the path. In this chapter, we focus on the data-link
layer, which is responsible for transferring a datagram across an individual
link. We'll first identify and study the services provided by the link layer. In
Sections 5.2 through 5.4, we'll then examine important principles behind the
protocols that provide these services (including the topics of error detection
and correction, so-called multiple access protocols that are used share a
single physical link among multiple nodes, and link-level addressing). We'll
see that many different types of link-level technology can be used to
connect two nodes. In Sections 5.5 through 5.10, we'll examine specific
link-level architectures and protocols in more detail.



Figure 5.1: The data-link layer

5.1.1: The Services Provided by the Link Layer
A link-layer protocol is used to move a datagram over an individual link. The
link-layer protocol defines the format of the units of data exchanged
between the nodes at the ends of the link, as well as the actions taken by
these nodes when sending and receiving these data units. Recall from
Chapter 1 that the units of data exchanged by a link-layer protocol are
called frames, and that each link-layer frame typically encapsulates one
network-layer datagram. As we shall see shortly, the actions taken by a
link-layer protocol when sending and receiving frames include error
detection, retransmission, flow control, and random access. Examples of
link-layer protocols include Ethernet, token ring, FDDI, and PPP; in many
contexts, ATM and frame relay can be considered link-layer protocols as
well. We'll cover these protocols in detail in the latter half of this chapter.
Whereas the network layer has the end-to-end job of moving transport-layer
segments from the source host to the destination host, a link-layer protocol
has the node-to-node job of moving a network-layer datagram over a single
link in the path. An important characteristic of the link layer is that a
datagram may be handled by different link-layer protocols on the different
links in the path. For example, a datagram may be handled by Ethernet on
the first link, PPP on the last link, and frame relay on all intermediate links.
It is important to note that the services provided by the different link-layer
protocols may be different. For example, a link-layer protocol may or may



not provide reliable delivery. Thus, the network layer must be able to
accomplish its end-to-end job in the face of a varying set of individual link-
layer services.
In order to gain insight to the link layer and how it relates to the network
layer, let's consider a transportation analogy. Consider a travel agent who is
planning a trip for a tourist traveling from Princeton, New Jersey, to
Lausanne, Switzerland. Suppose the travel agent decides that it is most
convenient for the tourist to take a limousine from Princeton to JFK airport,
then a plane from JFK airport to Geneva airport, and finally a train from
Geneva's airport to Lausanne's train station. Once the travel agent makes
the three reservations, it is the responsibility of the Princeton limousine
company to get the tourist from Princeton to JFK; it is the responsibility of
the airline company to get the tourist from JFK to Geneva; and it is the
responsibility of the Swiss train service to get the tourist from Geneva to
Lausanne. Each of the three segments of the trip is "direct" between two
"adjacent" locations. Note that the three transportation segments are
managed by different companies and use entirely different transportation
modes (limousine, plane, and train). Although the transportation modes are
different, they each provide the basic service of moving passengers from
one location to an adjacent location. In this transportation analogy, the
tourist is analogous to a datagram, each transportation segment is
analogous to a communication link, the transportation mode is analogous to
the link-layer protocol, and the travel agent who plans the trip is analogous
to a routing protocol.
Although the basic service of any link layer is to "move" a datagram from
one node to an adjacent node over a single communication link, the details
of service will depend on the specific link-layer protocol that is employed
over the link. Possible services that can be offered by a link-layer protocol
include:

·  Framing and link access. Almost all link-layer protocols encapsulate
each network-layer datagram within a link-layer frame before
transmission onto the link. A frame consists of a data field, in which
the network-layer datagram is inserted, and a number of header
fields. (A frame may also include trailer fields; however, we will refer
to both header and trailer fields as header fields.) A data-link
protocol specifies the structure of the frame, as well as a channel
access protocol that specifies the rules by which a frame is
transmitted onto the link. For point-to-point links that have a single
sender on one end of the link and a single receiver at the other end
of the link, the link-access protocol is simple (or non-existent)--the
sender can send a frame whenever the link is idle. The more
interesting case is when multiple nodes share a single broadcast
link--the so-called multiple access problem. Here, the channel
access protocol serves to coordinate the frame transmissions of the
many nodes; we cover multiple access protocols in detail in Section
5.3. We'll see several different frame formats when we examine



specific link-layer protocols in the second half of this chapter. In
Section 5.3, we'll see that frame headers also often include fields for
a node's so-called physical address, which is completely distinct
from the node's network layer (for example, IP) address.

·  Reliable delivery. When a link-layer protocol provides reliable-
delivery service, it guarantees to move each network-layer datagram
across the link without error. Recall that certain transport-layer
protocols (such as TCP) also provide a reliable-delivery service.
Similar to a transport-layer reliable-delivery service, a link-layer
reliable-delivery service is achieved with acknowledgments and
retransmissions (see Section 3.4). A link-layer reliable-delivery
service is often used for links that are prone to high error rates, such
as a wireless link, with the goal of correcting an error locally, on the
link where the error occurs, rather than forcing an end-to-end
retransmission of the data by a transport- or application-layer
protocol. However, link-layer reliable delivery can be considered an
unnecessary overhead for low bit-error links, including fiber, coax,
and many twisted-pair copper links. For this reason, many of the
most popular link-layer protocols do not provide a reliable-delivery
service.

·  Flow control. The nodes on each side of a link have a limited amount
of frame buffering capacity. This is a potential problem, as a
receiving node may receive frames at a rate faster than it can
process the frames over some time interval. Without flow control, the
receiver's buffer can overflow and frames can get lost. Similar to the
transport layer, a link-layer protocol can provide flow control in order
to prevent the sending node on one side of a link from overwhelming
the receiving node on the other side of the link.

·  Error detection. A node's receiver can incorrectly decide that a bit in
a frame is zero when it was transmitted as a one, and vice versa.
Such bit errors are introduced by signal attenuation and
electromagnetic noise. Because there is no need to forward a
datagram that has an error, many link-layer protocols provide a
mechanism to detect the presence of one or more errors. This is
done by having the transmitting node set error-detection bits in the
frame, and having the receiving node perform an error check. Error
detection is a very common service among link-layer protocols.
Recall from Chapters 3 and 4 that the transport layer and network
layers in the Internet also provide a limited form of error detection.
Error detection in the link layer is usually more sophisticated and
implemented in hardware.

·  Error correction. Error correction is similar to error detection, except
that a receiver cannot only detect whether errors have been
introduced in the frame but can also determine exactly where in the



frame the errors have occurred (and hence correct these errors).
Some protocols (such as ATM) provide link-layer error correction for
the packet header rather than for the entire packet. We cover error
detection and correction in Section 5.2.

·  Half-duplex and full-duplex. With full-duplex transmission, the nodes
at both ends of a link may transmit packets at the same time. With
half-duplex transmission, a node cannot both transmit and receive at
the same time.

As noted above, many of the services provided by the link layer have strong
parallels with services provided at the transport layer. For example, both
the link layer and the transport layer can provide reliable delivery. Although
the mechanisms used to provide reliable delivery in the two layers are
similar (see Section 3.4), the two reliable delivery services are not the
same. A transport protocol provides reliable delivery between two
processes on an end-to-end basis; a reliable link-layer protocol provides the
reliable-delivery service between two nodes connected by a single link.
Similarly, both link-layer and transport-layer protocols can provide flow
control and error detection; again, flow control in a transport-layer protocol
is provided on an end-to-end basis, whereas it is provided in a link-layer
protocol on a node-to-adjacent-node basis.

5.1.2: Adapters Communicating
For a given communication link, the link-layer protocol is, for the most part,
implemented in an adapter. An adapter is a board (or a PCMCIA card) that
typically contains RAM, DSP chips, a host bus interface, and a link
interface. Adapters are also commonly known as network interface cards
or NICs. As shown in Figure 5.2, the network layer in the transmitting node
(that is, a host or router) passes a network-layer datagram to the adapter
that handles the sending side of the communication link. The adapter
encapsulates the datagram in a frame and then transmits the frame into the
communication link. At the other side, the receiving adapter receives the
entire frame, extracts the network-layer datagram, and passes it to the
network layer. If the link-layer protocol provides error detection, then it is
the sending adapter that sets the error detection bits and it is the receiving
adapter that performs error checking. If the link-layer protocol provides
reliable delivery, then the mechanisms for reliable delivery (for example,
sequence numbers, timers, and acknowledgments) are entirely
implemented in the adapters. If the link-layer protocol provides random
access (see Section 5.3), then the random access protocol is entirely
implemented in the adapters.



Figure 5.2: The link-layer protocol for a communication link is implemented in the adapters
at the two ends of the link

An adapter is a semi-autonomous unit. For example, an adapter can
receive a frame, determine if a frame is in error and discard the frame
without notifying its "parent" node. An adapter that receives a frame only
interrupts its parent node when it wants to pass a network-layer datagram
up the protocol stack. Similarly, when a node passes a datagram down the
protocol stack to an adapter, the node fully delegates to the adapter the
task of transmitting the datagram across that link. On the other hand, an
adapter is not a completely autonomous unit. Although we have shown the
adapter as a separate "box" in Figure 5.3, the adapter is typically housed in
the same physical box as the rest of the node, shares power and busses
with the rest of the node, and is ultimately under the control of the node.

Figure 5.3: The adapter is a semi-autonomous unit
As shown in Figure 5.3, the main components of an adapter are the bus
interface and the link interface. The bus interface is responsible for
communicating with the adapter's parent node. It transfers data and control
information between the node and the NIC. The link interface is responsible
for implementing the link-layer protocol. In addition to framing and de-
framing datagrams, it may provide error detection, random access, and
other link-layer functions. It also includes the transmit and receive circuitry.
For popular link-layer technologies, such as Ethernet, the link interface is
implemented by chip set that can be bought on the commodity market. For
this reason, Ethernet adapters are incredibly cheap--often less than $30 for
10 Mbps and 100 Mbps transmission rates.
Adapter design has become very sophisticated over the years. One of the
critical issues in adapter performance has always been whether the adapter
can move data in and out of a node at the full line speed, that is, at the
transmission rate of the link. You can learn more about adapter architecture
for 10 Mbps Ethernet, 100 Mbps Ethernet, and 155 Mbps ATM by visiting
the 3Com adapter page [3Com 1999]. Data Communications magazine



provides a nice introduction to Gbps Ethernet adapters [GigaAdapter 2000].
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5.2: Error Detection and Correction
Techniques
In the previous section, we noted that bit-level error detection and
correction--detecting and correcting the corruption of bits in a data-link-
layer frame sent from one node to another physically connected
neighboring node--are two services often provided by the data-link layer.
We saw in Chapter 3 that error detection and correction services are also
often offered at the transport layer as well. In this section, we'll examine a
few of the simplest techniques that can be used to detect and, in some
cases, correct such bit errors. A full treatment of the theory and
implementation of this topic is itself the topic of many textbooks (for
example, [Schwartz 1980]), and our treatment here is necessarily brief. Our
goal here is to develop an intuitive feel for the capabilities that error
detection and correction techniques provide, and to see how a few simple
techniques work and are used in practice in the data link layer.

Figure 5.4 illustrates the setting for our study. At the sending node, data, D,
to be protected against bit errors is augmented with error-detection and
correction bits, EDC. Typically, the data to be protected includes not only
the datagram passed down from the network layer for transmission across
the link, but also link-level addressing information, sequence numbers, and
other fields in the data-link frame header. Both D and EDC are sent to the
receiving node in a link-level frame. At the receiving node, a sequence of
bits, D' and EDC' are received. Note that D' and EDC' may differ from the
original D and EDC as a result of in-transit bit flips.



Figure 5.4: Error detection and correction scenario

The receiver's challenge is to determine whether or not D' is the same as
the original D, given that it has only received D' and EDC'. The exact
wording of the receiver's decision in Figure 5.4 (we ask whether an error is
detected, not whether an error has occurred!) is important. Error-detection
and correction techniques allow the receiver to sometimes, but not always,
detect that bit errors have occurred. That is, even with the use of error-
detection bits there will still be a possibility that undetected bit errors will
occur, that is, that the receiver will be unaware that the received information
contains bit errors. As a consequence, the receiver might deliver a
corrupted datagram to the network layer, or be unaware that the contents of
some other field in the frame's header have been corrupted. We thus want
to choose an error-detection scheme so that the probability of such
occurrences is small. Generally, more sophisticated error-detection and
correction techniques (that is, those that have a smaller probability of
allowing undetected bit errors) incur a larger overhead--more computation
is needed to compute and transmit a larger number of error-detection and
correction bits.

Let's now examine three techniques for detecting errors in the transmitted
data--parity checks (to illustrate the basic ideas behind error detection and
correction), checksumming methods (which are more typically employed in
the transport layer) and cyclic redundancy checks (which are typically
employed in the data-link layer).

5.2.1: Parity Checks
Perhaps the simplest form of error detection is the use of a single parity
bit. Suppose that the information to be sent, D in Figure 5.4, has d bits. In
an even parity scheme, the sender simply includes one additional bit and
chooses its value such that the total number of 1s in the d + 1 bits (the
original information plus a parity bit) is even. For odd parity schemes, the
parity bit value is chosen such that there are an odd number of 1s. Figure
5.5 illustrates an even parity scheme, with the single parity bit being stored
in a separate field.



Figure 5.5: One-bit even parity
Receiver operation is also simple with a single parity bit. The receiver need
only count the number of 1s in the received d + 1 bits. If an odd number of
1-valued bits are found with an even parity scheme, the receiver knows that
at least one bit error has occurred. More precisely, it knows that some odd
number of bit errors have occurred.
But what happens if an even number of bit errors occur? You should
convince yourself that this would result in an undetected error. If the
probability of bit errors is small and errors can be assumed to occur
independently from one bit to the next, the probability of multiple bit errors
in a packet would be extremely small. In this case, a single parity bit might
suffice. However, measurements have shown that rather than occurring
independently, errors are often clustered together in "bursts." Under burst
error conditions, the probability of undetected errors in a frame protected by
single-bit-parity can approach 50 percent [Spragins 1991]. Clearly, a more
robust error-detection scheme is needed (and, fortunately, is used in
practice!). But before examining error-detection schemes that are used in
practice, let's consider a simple generalization of one-bit parity that will
provide us with insight into error-correction techniques.
Figure 5.6 shows a two-dimensional generalization of the single-bit parity
scheme. Here, the d bits in D are divided into i rows and j columns. A parity
value is computed for each row and for each column. The resulting i + j + 1
parity bits comprise the data-link frame's error-detection bits.



Figure 5.6: Two-dimensional even parity
Suppose now that a single bit error occurs in the original d bits of
information. With this two-dimensional parity scheme, the parity of both
the column and the row containing the flipped bit will be in error. The
receiver can thus not only detect the fact that a single bit error has
occurred, but can use the column and row indices of the column and row
with parity errors to actually identify the bit that was corrupted and correct
that error! Figure 5.6 shows an example in which the 1-valued bit in position
(2,2) is corrupted and switched to a 0--an error that is both detectable and
correctable at the receiver. Although our discussion has focused on the
original d bits of information, a single error in the parity bits themselves is
also detectable and correctable. Two-dimensional parity can also detect
(but not correct!) any combination of two errors in a packet. Other
properties of the two-dimensional parity scheme are explored in the
problems at the end of the chapter.
The ability of the receiver to both detect and correct errors is known as
forward error correction (FEC). These techniques are commonly used in
audio storage and playback devices such as audio CDs. In a network
setting, FEC techniques can be used by themselves, or in conjunction with
the ARQ techniques we examined in Chapter 3. FEC techniques are
valuable because they can decrease the number of sender retransmissions
required. Perhaps more importantly, they allow for immediate correction of
errors at the receiver. This avoids having to wait for the round-trip
propagation delay needed for the sender to receive a NAK packet and for
the retransmitted packet to propagate back to the receiver--a potentially



important advantage for real-time network applications [Rubenstein 1998].
Recent work examining the use of FEC in error-control protocols include
[Biersack 1992; Nonnenmacher 1998; Byers 1998; Shacham 1990].

5.2.2: Checksumming Methods
In checksumming techniques, the d bits of data in Figure 5.4 are treated as
a sequence of k-bit integers. One simple checksumming method is to
simply sum these k-bit integers and use the resulting sum as the error
detection bits. The so-called Internet checksum is based on this
approach--bytes of data are treated as 16-bit integers and their ones-
complement sum forms the Internet checksum. As discussed in Section
3.3.2, the receiver calculates the checksum over the received data and
checks whether it matches the checksum carried in the received packet.
RFC 1071 discusses the Internet checksum algorithm and its
implementation in detail. In the TCP/IP protocols, the Internet checksum is
computed over all fields (header and data fields included). In other
protocols, for example, XTP [Strayer 1992], one checksum is computed
over the header, with another checksum computed over the entire packet.
McAuley [McAuley 1994] describes improved weighted checksum codes
that are suitable for high-speed software implementation and Feldmeier
[Feldmeier 1995] presents fast software implementation techniques for not
only weighted check sum codes, but CRC (see below) and other codes as
well.

5.2.3: Cyclic Redundancy Check (CRC)
An error-detection technique used widely in today's computer networks is
based on cyclic redundancy check (CRC) codes. CRC codes are also
known as polynomial codes, since it is possible to view the bit string to be
sent as a polynomial whose coefficients are the 0 and 1 values in the bit
string, with operations on the bit string interpreted as polynomial arithmetic.
CRC codes operate as follows. Consider the d-bit piece of data, D, that the
sending node wants to send to the receiving node. The sender and receiver
must first agree on an r + 1 bit pattern, known as a generator, that we will
denote as G. We will require that the most significant (leftmost) bit of G be a
1. The key idea behind CRC codes is shown in Figure 5.7. For a given
piece of data, D, the sender will choose r additional bits, R, and append
them to D such that the resulting d + r bit pattern (interpreted as a binary
number) is exactly divisible by G using modulo 2 arithmetic. The process of
error checking with CRCs is thus simple: The receiver divides the d + r
received bits by G. If the remainder is nonzero, the receiver knows that an
error has occurred; otherwise the data is accepted as being correct.



Figure 5.7: CRC codes
All CRC calculations are done in modulo 2 arithmetic without carries in
addition or borrows in subtraction. This means that addition and subtraction
are identical, and both are equivalent to the bitwise exclusive-or (XOR) of
the operands. Thus, for example,
� � � � � ; 2 5 � � � � � �  � � � � �

� � � � � ; 2 5 � � � � � �  � � � � �

Also, we similarly have
� � � � � � � � � � � �  � � � � �

� � � � � � � � � � � �  � � � � �

Multiplication and division are the same as in base-2 arithmetic, except that
any required addition or subtraction is done without carries or borrows. As
in regular binary arithmetic, multiplication by 2k left shifts a bit pattern by k
places. Thus, given D and R, the quantity D • 2r XOR R yields the d + r bit
pattern shown in Figure 5.7. We'll use this algebraic characterization of the
d + r bit pattern from Figure 5.7 in our discussion below.
Let us now turn to the crucial question of how the sender computes R.
Recall that we want to find R such that there is an n such that

D • 2r XOR R = nG
That is, we want to choose R such that G divides into D • 2r XOR R without
remainder. If we exclusive-or (that is, add modulo 2, without carry) R to
both sides of the above equation, we get

D • 2r = nG XOR R
This equation tells us that if we divide D • 2r by G, the value of the
remainder is precisely R. In other words, we can calculate R as

R = remainder 
Figure 5.8 illustrates this calculation for the case of D = � � � � � � , d = 6 and
G = 1001, r = 3. The nine bits transmitted in this case are � � � � � � � � � � . You
should check these calculations for yourself and also check that indeed D •
2r = � � � � � �  • G XOR R.



Figure 5.8: An example CRC calculation
International standards have been defined for 8-, 12-, 16- and 32-bit
generators, G. An 8-bit CRC is used to protect the 5-byte header in ATM
cells. The CRC-32 32-bit standard, which has been adopted in a number of
link-level IEEE protocols, uses a generator of

GCRC-32 = � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

Each of the CRC standards can detect burst errors of less than r + 1 bits
and any odd number of bit errors. Furthermore, under appropriate
assumptions, a burst of length greater than r + 1 bits is detected with
probability 1 - 0.5r. The theory behind CRC codes and even more powerful
codes is beyond the scope of this text. The text [Schwartz 1980] provides
an excellent introduction to this topic.
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5.3: Multiple Access Protocols and LANs
In the introduction to this chapter, we noted that there are two
types of network links: point-to-point links, and broadcast links. A
point-to-point link consists of a single sender on one end of the
link, and a single receiver at the other end of the link. Many link-
layer protocols have been designed for point-to-point links; PPP
(the point-to-point protocol) and HDLC are two such protocols that
we'll cover later in this chapter. The second type of link, a
broadcast link, can have multiple sending and receiving nodes all
connected to the same, single, shared broadcast channel. The
term broadcast is used here because when any one node
transmits a frame, the channel broadcasts the frame and each of
the other nodes receives a copy. Ethernet is probably the most
widely deployed broadcast link technology; we'll cover Ethernet in
detail in Section 5.5. In this section we'll take a step back from
specific link-layer protocols and first examine a problem of central
importance to the data-link layer: how to coordinate the access of
multiple sending and receiving nodes to a shared broadcast
channel--the so-called multiple access problem. Broadcast
channels are often used in local area networks (LANs), networks
that are geographically concentrated in a single building (or on a
corporate or university campus). Thus, we'll also look at how
multiple access channels are used in LANs at the end of this
section.



We are all familiar with the notion of broadcasting, as television
has been using it since its invention. But traditional television is a
one-way broadcast (that is, one fixed node transmitting to many
receiving nodes), while nodes on a computer network broadcast
channel can both send and receive. Perhaps a more apt human
analogy for a broadcast channel is a cocktail party, where many
people gather together in a large room (the air providing the
broadcast medium) to talk and listen. A second good analogy is
something many readers will be familiar with--a classroom--where
teacher(s) and student(s) similarly share the same, single,
broadcast medium. A central problem in both scenarios is that of
determining who gets to talk (that is, transmit into the channel),
and when. As humans, we've evolved an elaborate set of protocols
for sharing the broadcast channel:

"Give everyone a chance to speak."
"Don't speak until you are spoken to."
"Don't monopolize the conversation."
"Raise your hand if you have a question."
"Don't interrupt when someone is speaking."
"Don't fall asleep when someone else is talking."

Computer networks similarly have protocols--so-called multiple
access protocols--by which nodes regulate their transmission
onto the shared broadcast channel. As shown in Figure 5.9,
multiple access protocols are needed in a wide variety of network
settings, including both wired and wireless local area networks,
and satellite networks. Figure 5.10 takes a more abstract view of
the broadcast channel and of the nodes sharing that channel.
Although technically each node accesses the broadcast channel
through its adapter, in this section we will refer to the node as the
sending and receiving device. In practice, hundreds or even
thousands of nodes can directly communicate over a broadcast
channel.



Figure 5.9: Various multiple access channels

Figure 5.10: A broadcast channel interconnecting four nodes
Because all nodes are capable of transmitting frames, more than
two nodes can transmit frames at the same time. When this
happens, all of the nodes receive multiple frames at the same
time, that is, the transmitted frames collide at all of the receivers.
Typically, when there is a collision, none of the receiving nodes
can make any sense of any of the frames that were transmitted; in
a sense, the signals of the colliding frame become inextricably
tangled together. Thus, all the frames involved in the collision are
lost, and the broadcast channel is wasted during the collision
interval. Clearly, if many nodes want to frequently transmit frames,
many transmissions will result in collisions, and much of the
bandwidth of the broadcast channel will be wasted.



In order to ensure that the broadcast channel performs useful work
when multiple nodes are active, it is necessary to somehow
coordinate the transmissions of the active nodes. This coordination
job is the responsibility of the multiple access protocol. Over the
past thirty years, thousands of papers and hundreds of Ph.D.
dissertations have been written on multiple access protocols; a
comprehensive survey of this body of work is [Rom 1990].
Furthermore, dozens of different protocols have been implemented
in a variety of link-layer technologies. Nevertheless, we can
classify just about any multiple access protocol as belonging to
one of three categories: channel partitioning protocols, random
access protocols, and taking-turns protocols. We'll cover these
categories of multiple access protocols in the following three
subsections. Let us conclude this overview by noting that ideally, a
multiple access protocol for a broadcast channel of rate R bits per
second should have the following desirable characteristics:

1. When only one node has data to send, that node has a
throughput of R bps.

2. When M nodes have data to send, each of these nodes has
a throughput of R/M bps. This need not necessarily imply
that each of the M nodes always have an instantaneous
rate of R/M, but rather that each node should have an
average transmission rate of R/M over some suitably
defined interval of time.

3. The protocol is decentralized, that is, there are no master
nodes that can fail and bring down the entire system.

4. The protocol is simple, so that it is inexpensive to
implement.

5.3.1: Channel Partitioning Protocols
Recall from our early discussion back in Section 1.4 that time
division multiplexing (TDM) and frequency division multiplexing
(FDM) are two techniques that can be used to partition a broadcast
channel's bandwidth among all nodes sharing that channel. As an
example, suppose the channel supports N nodes and that the
transmission rate of the channel is R bps. TDM divides time into
time frames (not to be confused with the unit of data, the frame, at
the data-link layer) and further divides each time frame into N time
slots. Each slot time is then assigned to one of the N nodes.
Whenever a node has a frame to send, it transmits the frame's bits
during its assigned time slot in the revolving TDM frame. Typically,
frame sizes are chosen so that a single frame can be transmitting
during a slot time. Figure 5.11 shows a simple four-node TDM
example. Returning to our cocktail party analogy, a TDM-regulated



cocktail party would allow one partygoer to speak for a fixed period
of time, and then allow another partygoer to speak for the same
amount of time, and so on. Once everyone has had their chance to
talk, the pattern repeats.

Figure 5.11: A four-node TDM and FDM example
TDM is appealing as it eliminates collisions and is perfectly fair:
each node gets a dedicated transmission rate of R/N bps during
each frame time. However, it has two major drawbacks. First, a
node is limited to an average rate of R/N bps even when it is the
only node with frames to send. A second drawback is that a node
must always wait for its turn in the transmission sequence--again,
even when it is the only node with a frame to send. Imagine the
partygoer who is the only one with anything to say (and imagine
that this is the even rarer circumstance where everyone at the
party wants to hear what that one person has to say). Clearly,
TDM would be a poor choice for a multiple access protocol for this
particular party.
While TDM shares the broadcast channel in time, FDM divides the
R bps channel into different frequencies (each with a bandwidth of
R/N) and assigns each frequency to one of the N nodes. FDM thus
creates N smaller channels of R/N bps out of the single, larger R
bps channel. FDM shares both the advantages and drawbacks of
TDM. It avoids collisions and divides the bandwidth fairly among
the N nodes. However, FDM also shares a principal disadvantage
with TDM--a node is limited to a bandwidth of R/N, even when it is
the only node with frames to send.
A third channel partitioning protocol is code division multiple
access (CDMA). While TDM and FDM assign time slots and
frequencies, respectively, to the nodes, CDMA assigns a different
code to each node. Each node then uses its unique code to



encode the data bits it sends, as discussed below. We'll see that
CDMA allows different nodes to transmit simultaneously and yet
have their respective receivers correctly receive a sender's
encoded data bits (assuming the receiver knows the sender's
code) in spite of interfering transmissions by other nodes. CDMA
has been used in military systems for some time (due to its
antijamming properties) and is now beginning to find widespread
civilian use, particularly for use in wireless multiple access
channels.
In a CDMA protocol, each bit being sent by the sender is encoded
by multiplying the bit by a signal (the code) that changes at a much
faster rate (known as the chipping rate) than the original
sequence of data bits. Figure 5.12 shows a simple, idealized
CDMA encoding/decoding scenario. Suppose that the rate at
which original data bits reach the CDMA encoder defines the unit
of time; that is, each original data bit to be transmitted requires one
bit-slot time. Let di be the value of the data bit for the ith bit slot.
For mathematical convenience, we represent a data bit with a 0
value as -1. Each bit slot is further subdivided into M minislots; in
Figure 5.12, M = 8, although in practice M is much larger. The
CDMA code used by the sender consists of a sequence of M
values, cm, m = 1, . . . , M, each taking a +1 or -1 value. In the
example in Figure 5.12, the M-bit CDMA code being used by the
sender is (1, 1, 1, -1, 1, -1, -1, -1).

Figure 5.12: A simple CDMA example: Sender encoding, receiver decoding



To illustrate how CDMA works, let us focus on the ith data bit, di.
For the mth mini-slot of the bit-transmission time of di, the output of
the CDMA encoder, Zi,m, is the value of di multiplied by the mth bit
in the assigned CDMA code, cm:

Zi,m = di • cm (5.1)
In a simple world, with no interfering senders, the receiver would
receive the encoded bits, Zi,m, and recover the original data bit, di,
by computing:

(5.2)
The reader might want to work through the details of the example
in Figure 5.12 to see that the original data bits are indeed correctly
recovered at the receiver using Equation 5.2.
The world is far from ideal, however, and as noted above, CDMA
must work in the presence of interfering senders that are encoding
and transmitting their data using a different assigned code. But
how can a CDMA receiver recover a sender's original data bits
when those data bits are being tangled with bits being transmitted
by other senders? CDMA works under the assumption that the
interfering transmitted bit signals are additive, for example, that if
three senders send a 1 value, and a fourth sender sends a -1
value during the same minislot, then the received signal at all
receivers during that minislot is a 2 (since 1 + 1 + 1 - 1 = 2). In the
presence of multiple senders, sender s computes its encoded
transmissions, Zs

i,m, in exactly the same manner as in Equation
5.1. The value received at a receiver during the mth minislot of the
ith bit slot, however, is now the sum of the transmitted bits from all
N senders during that minislot:

Amazingly, if the senders' codes are chosen carefully, each
receiver can recover the data sent by a given sender out of the
aggregate signal simply by using the sender's code in exactly the
same manner as in Equation 5.2:

(5.3)
Figure 5.13 illustrates a two-sender CDMA example. The M-bit
CDMA code being used by the upper sender is (1, 1, 1, -1, 1, -1, -
1, -1), while the CDMA code being used by the lower sender is (1,
-1, 1, 1, 1,-1, 1, 1). Figure 5.13 illustrates a receiver recovering the



original data bits from the upper sender. Note that the receiver is
able to extract the data from sender 1 in spite of the interfering
transmission from sender 2.

Figure 5.13: A two-sender CDMA example
Returning to our cocktail party analogy, a CDMA protocol is similar
to having partygoers speaking in multiple languages; in such
circumstances humans are actually quite good at locking into the
conversation in the language they understand, while filtering out
the remaining conversations. We see here that CDMA is a
partitioning protocol in that it partitions the codespace (as opposed
to time or frequency) and assigns each node a dedicated piece of
the codespace.
Our discussion here of CDMA is necessarily brief and a number of
difficult issues must be addressed in practice. First, in order for the
CDMA receivers to be able to extract out a particular sender's
signal, the CDMA codes must be carefully chosen. Secondly, our
discussion has assumed that the received signal strengths from
various senders at a receiver are the same; this can be difficult to
achieve in practice. There is a considerable body of literature
addressing these and other issues related to CDMA; see [Pickholtz
1982; Viterbi 1995] for details.



5.3.2: Random Access Protocols
The second broad class of multiple access protocols are so-called
random access protocols. In a random access protocol, a
transmitting node always transmits at the full rate of the channel,
namely, R bps. When there is a collision, each node involved in
the collision repeatedly retransmits its frame until the frame gets
through without a collision. But when a node experiences a
collision, it doesn't necessarily retransmit the frame right away.
Instead it waits a random delay before retransmitting the frame.
Each node involved in a collision chooses independent random
delays. Because after a collision the random delays are
independently chosen, it is possible that one of the nodes will pick
a delay that is sufficiently less than the delays of the other colliding
nodes and will therefore be able to sneak its frame into the
channel without a collision.
There are dozens if not hundreds of random access protocols
described in the literature [Rom 1990; Bertsekas 1991]. In this
section we'll describe a few of the most commonly used random
access protocols--the ALOHA protocols [Abramson 1970;
Abramson 1985] and the carrier sense multiple access (CSMA)
protocols [Kleinrock 1975b]. Later, in Section 5.5, we'll cover the
details of Ethernet [Metcalfe 1976], a popular and widely deployed
CSMA protocol.
Slotted ALOHA
Let's begin our study of random access protocols with one of the
most simple random access protocols, the so-called slotted
ALOHA protocol. In our description of slotted ALOHA, we assume
the following:

·  All frames consist of exactly L bits.

·  Time is divided into slots of size L/R seconds (that is, a slot
equals the time to transmit one frame).

·  Nodes start to transmit frames only at the beginnings of
slots.

·  The nodes are synchronized so that each node knows when
the slots begin.

·  If two or more frames collide in a slot, then all the nodes
detect the collision event before the slot ends.

Let p be a probability, that is, a number between 0 and 1. The
operation of slotted ALOHA in each node is simple:

·  When the node has a fresh frame to send, it waits until the
beginning of the next slot and transmits the entire frame in



the slot.

·  If there isn't a collision, the node has successfully
transmitted its frame and thus need not consider
retransmitting the frame. (The node can prepare a new
frame for transmission, if it has one.)

·  If there is a collision, the node detects the collision before
the end of the slot. The node retransmits its frame in each
subsequent slot with probability p until the frame is
transmitted without a collision.

By retransmitting with probability p, we mean that the node
effectively tosses a biased coin; the event heads corresponds to
retransmit, which occurs with probability p. The event tails
corresponds to "skip the slot and toss the coin again in the next
slot"; this occurs with probability (1 - p). Each of the nodes
involved in the collision toss their coins independently.
Slotted ALOHA would appear to have many advantages. Unlike
channel partitioning, slotted ALOHA allows a single active node
(that is, a node with a frame to send) to continuously transmit
frames at the full rate of the channel. Slotted ALOHA is also highly
decentralized, because each node detects collisions and
independently decides when to retransmit. (Slotted ALOHA does,
however, require the slots to be synchronized in the nodes; we'll
shortly discuss an unslotted version of the ALOHA protocol, as
well as CSMA protocols, none of which require such
synchronization and are therefore fully decentralized.) Slotted
ALOHA is also an extremely simple protocol.
Slotted ALOHA works well when there is only one active node, but
how efficient is it when there are multiple active nodes? There are
two possible efficiency concerns here. First, as shown in Figure
5.14, when there are multiple active nodes, a certain fraction of the
slots will have collisions and will therefore be "wasted." The
second concern is that another fraction of the slots will be empty
because all active nodes refrain from transmitting as a result of the
probabilistic transmission policy. The only "unwasted" slots will be
those in which exactly one node transmits. A slot in which exactly
one node transmits is said to be a successful slot. The efficiency
of a slotted multiple access protocol is defined to be the long-run
fraction of successful slots in the case when there are a large
number of active nodes, each always having a large number of
frames to send. Note that if no form of access control were used,
and each node were to immediately retransmit after each collision,
the efficiency would be zero. Slotted ALOHA clearly increases the
efficiency beyond zero, but by how much?



Figure 5.14: Nodes 1, 2, and 3 collide in the first slot. Node 2 finally succeeds in
the fourth slot, node 1 in the eighth slot, and node 3 in the ninth slot. The

notation C, E, and S represent "collision slot," "empty slot," and "successful
slot," respectively.

We now proceed to outline the derivation of the maximum
efficiency of slotted ALOHA. To keep this derivation simple, let's
modify the protocol a little and assume that each node attempts to
transmit a frame in each slot with probability p. (That is, we
assume that each node always has a frame to send and that the
node transmits with probability p for a fresh frame as well as for a
frame that has already suffered a collision.) Suppose first there are
N nodes. Then the probability that a given slot is a successful slot
is the probability that one of the nodes transmits and that the
remaining N - 1 nodes do not transmit. The probability that a given
node transmits is p; the probability that the remaining nodes do not
transmit is (1 - p)N-1. Therefore the probability a given node has a
success is p(1 - p)N-1. Because there are N nodes, the probability
that an arbitrary node has a success is Np(1 - p)N-1.
Thus, when there are N active nodes, the efficiency of slotted
ALOHA is Np(1 - p)N-1. To obtain the maximum efficiency for N
active nodes, we have to find the p* that maximizes this
expression. (See the homework problems for a general outline of
this derivation.) And to obtain the maximum efficiency for a large
number of active nodes, we take the limit of Np*(1 - p*)N-1 as N
approaches infinity. (Again, see the homework problems.) After
performing these calculations, we'll find that the maximum
efficiency of the protocol is given by 1/e = 0.37. That is, when a
large number of nodes have many frames to transmit, then (at
best) only 37% of the slots do useful work. Thus the effective
transmission rate of the channel is not R bps but only 0.37 R bps!
A similar analysis also shows that 37% of the slots go empty and
26% of slots have collisions. Imagine the poor network
administrator who has purchased a 100 Mbps slotted ALOHA
system, expecting to be able to use the network to transmit data
among a large number of users at an aggregate rate of, say, 80
Mbps! Although the channel is capable of transmitting a given
frame at the full channel rate of 100 Mbps, in the long term, the
successful throughput of this channel will be less than 37 Mbps.
ALOHA



The slotted ALOHA protocol required that all nodes synchronize
their transmissions to start at the beginning of a slot. The first
ALOHA protocol [Abramson 1970] was actually an unslotted, fully
decentralized protocol. In so-called pure ALOHA, when a frame
first arrives (that is, a network-layer datagram is passed down from
the network layer at the sending node), the node immediately
transmits the frame in its entirety into the broadcast channel. If a
transmitted frame experiences a collision with one or more other
transmissions, the node will then immediately (after completely
transmitting its collided frame) retransmit the frame with probability
p. Otherwise, the node waits for a frame transmission time. After
this wait, it then transmits the frame with probability p, or waits
(remaining idle) for another frame time with probability 1 - p.
To determine the maximum efficiency of pure ALOHA, we focus on
an individual node. We'll make the same assumptions as in our
slotted ALOHA analysis and take the frame transmission time to
be the unit of time. At any given time, the probability that a node is
transmitting a frame is p. Suppose this frame begins transmission
at time t0. As shown in Figure 5.15, in order for this frame to be
successfully transmitted, no other nodes can begin their
transmission in the interval of time [t0 - 1, t0]. Such a transmission
would overlap with the beginning of the transmission of node i's
frame. The probability that all other nodes do not begin a
transmission in this interval is (1 - p)N-1. Similarly, no other node
can begin a transmission while node i is transmitting, as such a
transmission would overlap with the latter part of node i's
transmission. The probability that all other nodes do not begin a
transmission in this interval is also (1 - p)N-1. Thus, the probability
that a given node has a successful transmission is p(1 - p)2(N-1). By
taking limits as in the slotted ALOHA case, we find that the
maximum efficiency of the pure ALOHA protocol is only 1/(2e)--
exactly half that of slotted ALOHA. This then is the price to be paid
for a fully decentralized ALOHA protocol.

Figure 5.15: Interfering transmissions in pure ALOHA



Norm Abramson and Alohanet
Norm Abramson, a Ph.D. engineer, had a passion for surfing and an interest in
packet switching. This combination of interests brought him to the University of
Hawaii in 1969. Hawaii consists of many mountainous islands, making it difficult
to install and operate land-based networks. When not surfing, Abramson
thought about how to design a network that does packet switching over radio.
The network he designed had one central host and several satellite nodes
scattered over the Hawaiian islands. The network had two channels, each using
a different frequency band. The downlink channel broadcasted packets from the
central host to the satellite hosts; and the upstream channel sent packets from
the satellite hosts to the central host. In addition to sending informational
packets, the central host also sent on the downstream channel an
acknowledgement for each packet successfully received from the satellite hosts.

Because the satellite hosts transmitted packets in a decentralized fashion, collisions on the upstream
channel inevitably occurred. This observation led Abramson to devise the pure Aloha protocol, as
described in this chapter. In 1970, with continued funding from ARPA, Abramson connected his Alohanet
to the ARPAnet. Abramson's work is important not only because it was the first example of a radio packet
network, but also because it inspired Bob Metcalfe. A few years after Abramson's invention, Metcalfe
modified the Aloha protocol to create the CSMA/CD protocol and the Ethernet LAN.

CSMA--Carrier Sense Multiple Access
In both slotted and pure ALOHA, a node's decision to transmit is
made independently of the activity of the other nodes attached to
the broadcast channel. In particular, a node neither pays attention
to whether another node happens to be transmitting when it begins
to transmit, nor stops transmitting if another node begins to
interfere with its transmission. In our cocktail party analogy,
ALOHA protocols are quite like a boorish partygoer who continues
to chatter away regardless of whether other people are talking. As
humans, we have human protocols that allow us to not only
behave with more civility, but also to decrease the amount of time
spent "colliding" with each other in conversation and consequently
increase the amount of data we exchange in our conversations.
Specifically, there are two important rules for polite human
conversation:

·  Listen before speaking. If someone else is speaking, wait
until they are done. In the networking world, this is called
carrier sensing--a node listens to the channel before
transmitting. If a frame from another node is currently being
transmitted into the channel, a node then waits ("backs off")
a random amount of time and then again senses the
channel. If the channel is sensed to be idle, the node then
begins frame transmission. Otherwise, the node waits
another random amount of time and repeats this process.

·  If someone else begins talking at the same time, stop
talking. In the networking world, this is called collision
detection--a transmitting node listens to the channel while it



is transmitting. If it detects that another node is transmitting
an interfering frame, it stops transmitting and uses some
protocol to determine when it should next attempt to
transmit.

These two rules are embodied in the family of CSMA (carrier
sense multiple access) and CSMA/CD (CSMA with collision
detection) protocols [Kleinrock 1975b; Metcalfe 1976; Lam 1980;
Rom 1990]. Many variations on CSMA and CSMA/CD have been
proposed, with the differences being primarily in the manner in
which nodes perform backoff. The reader can consult these
references for the details of these protocols. We'll study the
CSMA/CD scheme used in Ethernet in detail in Section 5.5. Here,
we'll consider a few of the most important, and fundamental,
characteristics of CSMA and CSMA/CD.
The first question that one might ask about CSMA is that if all
nodes perform carrier sensing, why do collisions occur in the first
place? After all, a node will refrain from transmitting whenever it
senses that another node is transmitting. The answer to the
question can best be illustrated using space-time diagrams [Molle
1987]. Figure 5.16 shows a space-time diagram of four nodes (A,
B, C, D) attached to a linear broadcast bus. The horizontal axis
shows the position of each node in space; the vertical axis
represents time.



Figure 5.16: Space-time diagram of two CSMA nodes with colliding
transmissions

At time t0, node B senses the channel is idle, as no other nodes
are currently transmitting. Node B thus begins transmitting, with its
bits propagating in both directions along the broadcast medium.
The downward propagation of B's bits in Figure 5.16 with
increasing time indicates that a nonzero amount of time is needed
for B's bits to actually propagate (albeit at near the speed-of-light)
along the broadcast medium. At time t1 (t1 > t0), node D has a
frame to send. Although node B is currently transmitting at time t1,
the bits being transmitted by B have yet to reach D, and thus D
senses the channel idle at t1. In accordance with the CSMA
protocol, D thus begins transmitting its frame. A short time later,
B's transmission begins to interfere with D's transmission at D.
From Figure 5.16, it is evident that the end-to-end channel
propagation delay of a broadcast channel--the time it takes for a
signal to propagate from one of the channels to another--will play a
crucial role in determining its performance. The longer this
propagation delay, the larger the chance that a carrier-sensing
node is not yet able to sense a transmission that has already
begun at another node in the network.
In Figure 5.16, nodes do not perform collision detection; both B



and D continue to transmit their frames in their entirety even
though a collision has occurred. When a node performs collision
detection, it will cease transmission as soon as it detects a
collision. Figure 5.17 shows the same scenario as in Figure 5.16,
except that the two nodes each abort their transmission a short
time after detecting a collision. Clearly, adding collision detection
to a multiple access protocol will help protocol performance by not
transmitting a useless, damaged (by interference with a frame from
another node) frame in its entirety. The Ethernet protocol we will
study in Section 5.5 is a CSMA protocol that uses collision
detection.

Figure 5.17: CSMA with collision detection

5.3.3: Taking-Turns Protocols
Recall that two desirable properties of a multiple access protocol
are (1) when only one node is active, the active node has a
throughput of R bps, and (2) when M nodes are active, then each
active node has a throughput of nearly R/M bps. The ALOHA and
CSMA protocols have this first property but not the second. This
has motivated researchers to create another class of protocols--
the taking-turns protocols. As with random-access protocols,
there are dozens of taking-turns protocols, and each one of these
protocols has many variations. We'll discuss two of the more



important protocols here. The first one is the polling protocol.
The polling protocol requires one of the nodes to be designated as
a master node. The master node polls each of the nodes in a
round-robin fashion. In particular, the master node first sends a
message to node 1, saying that it can transmit up to some
maximum number of frames. After node 1 transmits some frames,
the master node tells node 2 it can transmit up to the maximum
number of frames. (The master node can determine when a node
has finished sending its frames by observing the lack of a signal on
the channel.) The procedure continues in this manner, with the
master node polling each of the nodes in a cyclic manner.
The polling protocol eliminates the collisions and the empty slots
that plague the random access protocols. This allows it to have a
much higher efficiency. But it also has a few drawbacks. The first
drawback is that the protocol introduces a polling delay--the
amount of time required to notify a node that it can transmit. If, for
example, only one node is active, then the node will transmit at a
rate less than R bps, as the master node must poll each of the
inactive nodes in turn, each time the active node has sent its
maximum number of frames. The second drawback, which is
potentially more serious, is that if the master node fails, the entire
channel becomes inoperative.
The second taking-turn protocol is the token-passing protocol. In
this protocol there is no master node. A small, special-purpose
frame known as a token is exchanged among the nodes in some
fixed order. For example, node 1 might always send the token to
node 2, node 2 might always send the token to node 3, node N
might always send the token to node 1. When a node receives a
token, it holds onto the token only if it has some frames to transmit;
otherwise, it immediately forwards the token to the next node. If a
node does have frames to transmit when it receives the token, it
sends up to a maximum number of frames and then forwards the
token to the next node. Token passing is decentralized and has a
high efficiency. But it has its problems as well. For example, the
failure of one node can crash the entire channel. Or if a node
accidentally neglects to release the token, then some recovery
procedure must be invoked to get the token back in circulation.
Over the years many token-passing products have been
developed, and each one had to address these as well as other
sticky issues.

5.3.4: Local Area Networks (LANs)
Multiple access protocols are used in conjunction with many
different types of broadcast channels. They have been used for
satellite and wireless channels, whose nodes transmit over a
common frequency spectrum. They are currently used in the
upstream channel for cable access to the Internet (see Section



1.5), and they are extensively used in local area networks (LANs).
Recall that a LAN is a computer network that is concentrated in a
geographical area, such as in a building or on a university campus.
When a user accesses the Internet from a university or corporate
campus, the access is almost always by way of a LAN. For this
type of Internet access, the user's host is a node on the LAN, and
the LAN provides access to the Internet through a router, as
shown in Figure 5.18. The LAN is a single "link" between each
user host and the router; it therefore uses a link-layer protocol, part
of which is a multiple access protocol. The transmission rate, R, of
most LANs is very high. Even in the early 1980s, 10 Mbps LANs
were common; today, 100 Mbps LANs are common, and 1 Gbps
LANs are available.

Figure 5.18: User hosts access an Internet Web server through a LAN. The
broadcast channel between a user host and the router consists of one "link."

In the 1980s and the early 1990s, two classes of LAN technologies
were popular in the workplace. The first class consists of the
Ethernet LANs (also known as 802.3 LANs [IEEE 802.3 1998;
Spurgeon 1999]), which are random-access-based. The second
class of LAN technologies are token-passing technologies,
including token ring (also known as IEEE 802.5 [IEEE 802.5
1998]) and FDDI (also known as fiber distributed data interface
[Jain 1994]). Because we shall explore the Ethernet technologies
in some detail in Section 5.4, we focus our discussion here on the
token-passing LANs. Our discussion on token-passing
technologies is intentionally brief, since these technologies have
become relatively minor players in the face of relentless Ethernet
competition. Nevertheless, in order to provide examples of token-
passing technology and to give a little historical perspective, it is
useful to say a few words about token rings.
In a token ring LAN, the N nodes of the LAN (hosts and routers)
are connected in a ring by direct links. The topology of the token



ring defines the token-passing order. When a node obtains the
token and sends a frame, the frame propagates around the entire
ring, thereby creating a virtual broadcast channel. The node that
sends the frame has the responsibility of removing the frame from
the ring. FDDI was designed for geographically larger LANs,
including so-called metropolitan area networks (MANs). For
geographically large LANs (spread out over several kilometers) it
is inefficient to let a frame propagate back to the sending node
once the frame has passed the destination node. FDDI has the
destination node remove the frame from the ring. (Strictly
speaking, FDDI is not a pure broadcast channel, as every node
does not receive every transmitted frame.) You can learn more
about token ring and FDDI by visiting the 3Com adapter page
[3Com 1999].
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5.4: LAN Addresses and ARP
As we learned in the previous section, nodes in LANs send frames to
each other over a broadcast channel. This means that when a node in
a LAN transmits a frame, every other node connected to the LAN
receives the frame. But usually, a node in the LAN doesn't want to
send a frame to all of the other LAN nodes but instead wants to send
to some particular LAN node. To provide this functionality, the nodes
on the LAN must be able to address each other when sending frames,
that is, the nodes need LAN addresses and the link-layer frame needs
a field to contain such a destination address. In this manner, when a
node receives a frame, it can determine whether the frame was
intended for it or for some other node in the LAN:

·  If the destination address of the frame matches a receiving
node's LAN address, then the node extracts the network-layer
datagram from the data-link layer frame and passes the
datagram up the protocol stack.

·  If the destination address does not match the address of the
receiving node, the node simply discards the frame.

5.4.1: LAN Addresses
In truth, it is not a node that has a LAN address but instead a node's



adapter that has a LAN address. This is illustrated in Figure 5.19. A
LAN address is also variously called a physical address, an
Ethernet address, or a MAC (media access control) address. For
most LANs (including Ethernet and token-passing LANs), the LAN
address is six-bytes long, giving 248 possible LAN addresses. These
six-byte addresses are typically expressed in hexadecimal notation,
with each byte of the address expressed as a pair of hexadecimal
numbers. An adapter's LAN address is permanent--when an adapter is
manufactured, a LAN address is burned into the adapter's ROM.

Figure 5.19: Each adapter connected to a LAN has a unique LAN address
One interesting property of LAN addresses is that no two adapters
have the same address. This might seem surprising given that
adapters are manufactured in many different countries by many
different companies. How does a company manufacturing adapters in
Taiwan make sure that it is using different addresses from a company
manufacturing adapters in Belgium? The answer is that IEEE manages
the physical address space. In particular, when a company wants to
manufacture adapters, it purchases a chunk of the address space
consisting of 224 addresses for a nominal fee. IEEE allocates the chunk
of 224 addresses by fixing the first 24 bits of a physical address and
letting the company create unique combinations of the last 24 bits for
each adapter.
An adapter's LAN address has a flat structure (as opposed to a
hierarchical structure), and doesn't change no matter where the
adapter goes. A portable computer with an Ethernet card always has
the same LAN address, no matter where the portable goes. Recall
that, in contrast, an IP address has a hierarchical structure (that is, a
network part and a host part), and a node's IP address needs to be
changed when the host moves. An adapter's LAN address is
analogous to a person's social security number, which also has a flat



addressing structure and which doesn't change no matter where the
person goes. An IP address is analogous to a person's postal address,
which is hierarchical and which needs to be changed whenever a
person moves.
As we described at the beginning of this section, when an adapter
wants to send a frame to some destination adapter on the same LAN,
the sending adapter inserts the destination's LAN address into the
frame. When the destination adapter receives the frame, it extracts the
enclosed datagram and passes the datagram up the protocol stack. All
the other adapters on the LAN also receive the frame. However, these
other adapters discard the frame without passing the network-layer
datagram up the protocol stack. Thus, these other adapters do not
have to interrupt their hosting node when they receive datagrams
destined to other nodes. However, sometimes a sending adapter does
want all the other adapters on the LAN to receive and process the
frame it is about to send. In this case, the sending adapter inserts a
special LAN broadcast address into the destination address field of
the frame. For LANs that use six-byte addresses (such as Ethernet and
token-passing LANs), the broadcast address is a string of 48
consecutive 1s (that is, ) ) � ) ) � ) ) � ) ) � ) ) � ) )  in hexadecimal notation).

Keeping the Layers Independent

There are several reasons why nodes have LAN addresses in addition to also having
network-layer addresses. First, LANs are designed for arbitrary network-layer
protocols, not just for IP and the Internet. If adapters were to get assigned IP
addresses rather than "neutral" LAN addresses, then adapters would not be able to
easily support other network-layer protocols (for example, IPX or DECNet). Second, if
adapters were to use network-layer addresses instead of LAN addresses, the
network-layer address would have to be stored in the adapter RAM and reconfigured
every time the adapter was moved (or powered up). Another option is to not use any
addresses in the adapters, and have each adapter pass the data (typically, an IP
datagram) of each frame it receives to its parent node. The parent node could then
check for a matching network-layer address. One problem with this option is that the
parent node will be interrupted by every frame sent on the LAN, as well as by frames
that are destined for other nodes on the same broadcast LAN. In summary, in order
for the layers to be largely independent building blocks in a network architecture,
many layers need to have their own address scheme. We have now seen three
different types of addresses: host names for the application layer, IP addresses for
the network layer, and LAN addresses for the link layer.

5.4.2: Address Resolution Protocol
Because there are both network-layer addresses (for example, Internet
IP addresses) and link-layer addresses (that is, LAN addresses), there
is a need to translate between them. For the Internet, this is the job of



the address resolution protocol (ARP) [RFC 826]. Every Internet host
and router on a LAN has an ARP module.
To motivate ARP, consider the network shown in Figure 5.20. In this
simple example, each node has a single IP address and each node's
adapter has a LAN address. As usual, IP addresses are shown in
dotted-decimal notation and LAN addresses are shown in hexadecimal
notation. Now suppose that the node with IP address � � � � � � � � � � � � � � �

wants to send an IP datagram to node � � � � � � � � � � � � � � � . To accomplish
this task, the sending node must give its adapter not only the IP
datagram but also the LAN address for node � � � � � � � � � � � � � � � . When
passed the IP datagram and the LAN address, the sending node's
adapter will construct a data-link layer frame containing the receiving
node's LAN address and send the frame into the LAN. But how does
the sending node determine the LAN address for the node with IP
address � � � � � � � � � � � � � � � ? It does this by providing its ARP module with
the IP address � � � � � � � � � � � � � � � . ARP then responds with the
corresponding LAN address, namely, � � � % ' � ' � � & � � � � � � $ .

Figure 5.20: Each node on a LAN has an IP address, and each node's adapter has a
LAN address

So we see that ARP resolves an IP address to a LAN address. In many
ways it is analogous to DNS (studied in Section 2.5), which resolves
hostnames to IP addresses. However, one important difference
between the two resolvers is that DNS resolves hostnames for hosts
anywhere in the Internet, whereas ARP only resolves IP addresses for
nodes on the same LAN. If a node in California were to try to use ARP
to resolve the IP address for a node in Mississippi, ARP would return
with an error.
Now that we have explained what ARP does, let's look at how it works.



The ARP module in each node has a table in its RAM called an ARP
table. This table contains the mappings of IP addresses to LAN
addresses. Figure 5.21 shows what an ARP table in node
� � � � � � � � � � � � � � �  might look like. For each address mapping the table
also contains a time-to-live (TTL) entry, which indicates when the entry
will be deleted from the table. Note that the table does not necessarily
contain an entry for every node on the LAN; some nodes may have
had entries that expired over time, whereas other nodes may have
never been entered into the table. A typical expiration time for an entry
is 20 minutes from when an entry is placed in an ARP table.

IP address
LAN address

TTL

222.222.222.221
88-B2-2F-54-1A-0F

13:45:00

222.222.222.223
5C-66-AB-90-75-B1

13:52:00

Figure 5.21: A possible ARP table in node 222.222.222.220

Now suppose that node � � � � � � � � � � � � � � �  wants to send a datagram
that is IP-addressed to another node on that LAN. The sending node
needs to obtain the LAN address of the destination node, given the IP
address of that node. This task is easy if the sending node's ARP table
has an entry for the destination node. But what if the ARP table doesn't
currently have an entry for the destination node? In particular, suppose
node � � � � � � � � � � � � � � �  wants to send a datagram to node
� � � � � � � � � � � � � � � . In this case, the sending node uses the ARP protocol
to resolve the address. First, the sending node constructs a special
packet called an ARP packet. An ARP packet has several fields,
including the sending and receiving IP and LAN addresses. Both ARP
query and response packets have the same format. The purpose of the
ARP query packet is to query all the other nodes on the LAN to
determine the LAN address corresponding to the IP address that is
being resolved.
Returning to our example, node � � � � � � � � � � � � � � �  passes an ARP query
packet to the adapter along with an indication that the adapter should
send the packet to the LAN broadcast address, namely, ) ) � ) ) � ) ) � ) ) �

) ) � ) ) . The adapter encapsulates the ARP packet in a data-link frame,
uses the broadcast address for the frame's destination address, and
transmits the frame into the LAN. Recalling our social security
number/postal address analogy, note that an ARP query is equivalent
to a person shouting out in a crowded room of cubicles in some
company (say, AnyCorp): "What is the social security number of the



person whose postal address is Cubicle 13, Room 112, AnyCorp, Palo
Alto, CA?" The frame containing the ARP query is received by all the
other adapters on the LAN, and (because of the broadcast address)
each adapter passes the ARP packet within the frame up to its hosting
node. Each node checks to see if its IP address matches the
destination IP address in the ARP packet. The one node with a match
sends back to the querying node a response ARP packet with the
desired mapping. The querying node (� � � � � � � � � � � � � � � ) can then
update its ARP table and send its IP datagram.
There are a couple of interesting things to note about the ARP
protocol. First, the query ARP message is sent within a broadcast
frame whereas the response ARP message is sent within a standard
frame. Before reading on you should think about why this is so.
Second, ARP is plug-and-play, that is, a node's ARP table gets built
automatically--it doesn't have to be configured by a systems
administrator. And if a node is disconnected from the LAN, its entry is
eventually deleted from the table.
Sending a datagram to a node off the LAN
It should now be clear how ARP operates when a node wants to send
a datagram to another node on the same LAN. But now let's look at the
more complicated situation when a node on a LAN wants to send a
network-layer datagram to a node off the LAN. Let us discuss this
issue in the context of Figure 5.22, which shows a simple network
consisting of two LANs interconnected by a router.

Figure 5.22: Two LANs interconnected by a router
There are several interesting things to note about Figure 5.22. First,
there are two types of nodes: hosts and routers. Each host has exactly
one IP address and one adapter. But, as discussed in Section 4.4, a
router has an IP address for each of its interfaces. Each router
interface also has its own ARP module (in the router) and its own
adapter. Because the router in Figure 5.22 has two interfaces, it has
two IP addresses, two ARP modules, and two adapters. Of course,
each adapter in the network has its own LAN address.
Also note that all of the interfaces connected to LAN 1 have addresses
of the form � � � � � � � � � � � � [ [ [  and all of the interfaces connected to LAN
2 have the form � � � � � � � � � � � � [ [ [ . Thus, in this example, the first three
bytes of the IP address specifies the "network," whereas the last byte



specifies the specific interface in the network.
Now suppose that host � � � � � � � � � � � � � � �  wants to send an IP datagram
to host � � � � � � � � � � � � � � � . The sending host passes the datagram to its
adapter, as usual. But the sending host must also indicate to its
adapter an appropriate destination LAN address. What LAN address
should the adapter use? One might venture to guess that the
appropriate LAN address is that of the adapter for host
� � � � � � � � � � � � � � � , namely, � � � % ' � ' � � & � � � � � � $ . This guess is, however,
wrong. If the sending adapter were to use that LAN address, then none
of the adapters on LAN 1 would bother to pass the IP datagram up to
its network layer, since the frame's destination address would not
match the LAN address of any adapter on LAN 1. The datagram would
just die and go to datagram heaven.
If we look carefully at Figure 5.22, we see that in order for a datagram
to go from � � � � � � � � � � � � � � �  to a node on LAN 2, the datagram must
first be sent to the router interface � � � � � � � � � � � � � � � . As discussed in
Section 4.4, the routing table in host � � � � � � � � � � � � � � �  would indicate
that to reach host � � � � � � � � � � � � � � � � , the datagram must first be sent to
router interface � � � � � � � � � � � � � � � . Thus, the appropriate LAN address
for the frame is the address of the adapter for router interface
� � � � � � � � � � � � � � � , namely, ( � � ( � � � � � � � � % % � � % . How does the sending
host acquire the LAN address of � � � � � � � � � � � � � � � ? By using ARP, of
course! Once the sending adapter has this LAN address, it creates a
frame and sends the frame into LAN 1. The router adapter on LAN 1
sees that the data-link frame is addressed to it, and therefore passes
the frame to the network layer of the router. Hooray, the IP datagram
has successfully been moved from source host to the router! But we
are not done. We still have to move the datagram from the router to the
destination! The router now has to determine the correct interface on
which the datagram is to be forwarded. As discussed in Section 4.4,
this is done by consulting a routing table in the router. The routing table
tells the router that the datagram is to be forwarded via router interface
� � � � � � � � � � � � � � � . This interface then passes the datagram to its
adapter, which encapsulates the datagram in a new frame and sends
the frame into LAN 2. This time, the destination LAN address of the
frame is indeed the LAN address of the ultimate destination. And how
does the router obtain this destination LAN address? From ARP, of
course!
ARP for Ethernet is defined in RFC 826. A nice introduction to ARP is
given in the TCP/IP tutorial, RFC 1180. We shall explore ARP in more
detail in the homework problems.
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5.5: Ethernet
Ethernet has pretty much taken over the LAN market. As recently
as the 1980s and the early 1990s, Ethernet faced many challenges
from other LAN technologies, including token ring, FDDI, and ATM.
Some of these other technologies succeeded at capturing a part of
the market share for a few years. But since its invention in the mid-
1970s, Ethernet has continued to evolve and grow, and has held
on to its dominant market share. Today, Ethernet is by far the most
prevalent LAN technology, and is likely to remain so for the
foreseeable future. One might say that Ethernet has been to local
area networking what the Internet has been to global networking.

There are many reasons for Ethernet's success. First, Ethernet
was the first widely deployed high-speed LAN. Because it was
deployed early, network administrators became intimately familiar
with Ethernet--its wonders and its quirks--and were reluctant to
switch over to other LAN technologies when they came on the
scene. Second, token ring, FDDI, and ATM are more complex and
expensive than Ethernet, which further discouraged network
administrators from switching over. Third, the most compelling
reason to switch to another LAN technology (such as FDDI or
ATM) was usually the higher data rate of the new technology;
however, Ethernet always fought back, producing versions that
operated at equal data rates or higher. Switched Ethernet was also
introduced in the early 1990s, which further increased its effective
data rates. Finally, because Ethernet has been so popular,
Ethernet hardware (in particular, network interface cards) has
become a commodity and is remarkably cheap. This low cost is
also due to the fact that Ethernet's multiple access protocol,
CSMA/CD, is completely decentralized, which has also contributed
to a simple design.

The original Ethernet LAN, as shown in Figure 5.23, was invented
in the mid 1970s by Bob Metcalfe and David Boggs. An excellent
source of online information about Ethernet is Spurgeon's Ethernet
Web Site [Spurgeon 1999].



Figure 5.23: The original Metcalfe design led to the 10Base5 Ethernet standard,
which included an interface cable that connected the Ethernet adapter (that is,

interface) to an external tranceiver

Bob Metcalfe and Ethernet
As a Ph.D. student at Harvard University in the early 1970s, Bob Metcalfe
worked on the ARPAnet at M.I.T. During his studies, he also became exposed
to Abramson's work on Aloha and random-access protocols. After completing
his Ph.D. and just before beginning a job at Xerox Palo Alto Research Center
(Xerox PARC), he visited Abramson and his University of Hawaii colleagues for
three months, getting a first-hand look at Alohanet. At Xerox PARC, Metcalfe
became exposed to Alto computers, which in many ways were the forerunners
of the personal computers of the 1980s. Metcalfe saw the need to network these
computers in an inexpensive manner. So armed wth his knowledge about
ARPAnet, Alohanet, and random-access protocols, Metcalfe--along with
colleague David Boggs--invented Ethernet.

Metcalfe's and Boggs' original Ethernet ran at 2.94 Mbps, and linked up to 256 hosts separated by up to
one mile. Metcalfe and Boggs succeeded at getting most of the researchers at Xerox PARC to
communicate through their Alto computers. Metcalfe then forged an alliance between Xerox, Digital, and
Intel to establish Ethernet as a 10 Mbps Ethernet standard, ratified by the IEEE. Xerox did not show much
interest in commercializing Ethernet. In 1979, Metcalfe formed his own company, 3Com, which developed
and commercialized networking technology, including Ethernet technology. In particular, 3Com developed
and marketed Ethernet cards in the early 1980s for the immensely popular IBM PCs. Metcalfe left 3Com in
1990, when it had two thousand people and $400 milllion dollars in revenue. As of early January 2000,
3Com has a market capitalization of $15 billion and employs thirteen thousand people.

5.5.1: Ethernet Basics
Today's Ethernet comes in many shapes and forms. An Ethernet
LAN can have a bus topology or a star topology. An Ethernet LAN
can run over coaxial cable, twisted-pair copper wire, or fiber optics.
Furthermore, Ethernet can transmit data at different rates,
specifically, at 10 Mbps, 100 Mbps, and 1 Gbps. But even though
Ethernet comes in many flavors, all of the Ethernet technologies
share a few important characteristics. Before examining the
different technologies, let's first take a look at the common
characteristics.
Ethernet frame structure



Given that there are many different Ethernet technologies on the
market today, what do they have in common, what binds them
together with a common name? First and foremost is the Ethernet
frame structure. All of the Ethernet technologies--whether they use
coaxial cable or copper wire, whether they run at 10 Mbps, 100
Mbps or 1 Gbps--use the same frame structure.
The Ethernet frame is shown in Figure 5.24. Once we understand
the Ethernet frame, we will already know a lot about Ethernet. To
put our discussion of the Ethernet frame in a tangible context, let
us consider sending an IP datagram from one host to another host,
with both hosts on the same Ethernet LAN. (We note, though, that
Ethernet can carry other network-layer packets, as well.) Let the
sending adapter, adapter A, have the physical address $ $ � $ $ � $ $ �

$ $ � $ $ � $ $  and the receiving adapter, adapter B, have the physical
address % % � % % � % % � % % � % % � % % . The sending adapter encapsulates the
IP datagram within an Ethernet frame and passes the frame to the
physical layer. The receiving adapter receives the frame from the
physical layer, extracts the IP datagram, and passes the IP
datagram to the network layer. In this context, let us now examine
the six fields of the Ethernet frame:

Figure 5.24: Ethernet frame structure

·  Data Field (46 to 1500 bytes). This field carries the IP
datagram. The maximum transfer unit (MTU) of Ethernet is
1500 bytes. This means that if the IP datagram exceeds
1500 bytes, then the host has to fragment the datagram, as
discussed in Section 4.4.4. The minimum size of the data
field is 46 bytes. This means that if the IP datagram is less
than 46 bytes, the data field has to be "stuffed" to fill it out to
46 bytes. When stuffing is used, the data passed to the
network layer contains the stuffing as well as an IP
datagram. The network layer uses the length field in the IP
datagram header to remove the stuffing.

·  Destination Address (6 bytes). This field contains the LAN
address of the destination adapter, namely, % % � % % � % % � % % �

% % � % % . When adapter B receives an Ethernet frame with a
destination address other than its own physical address, % % �

% % � % % � % % � % % � % % , or the LAN broadcast address, it discards
the frame. Otherwise, it passes the contents of the data field
to the network layer.



·  Source Address (6 bytes). This field contains the LAN
address of the adapter that transmits the frame onto the
LAN, namely, $ $ � $ $ � $ $ � $ $ � $ $ � $ $ .

·  Type Field (2 bytes). The type field permits Ethernet to
"multiplex" network-layer protocols. To understand this idea,
we need to keep in mind that hosts can use other network-
layer protocols besides IP. In fact, a given host may support
multiple network-layer protocols, and use different protocols
for different applications. For this reason, when the Ethernet
frame arrives at adapter B, adapter B needs to know to
which network-layer protocol it should pass (i.e.,
demultiplex) the contents of the data field. IP and other
data-link layer protocols (for example, Novell IPX or
AppleTalk) each have their own, standardized type number.
Furthermore, the ARP protocol (discussed in the previous
section) has its own type number. Note that the type field is
analogous to the protocol field in the network-layer
datagram and the port number fields in the transport-layer
segment; all of these fields serve to glue a protocol at one
layer to a protocol at the layer above.

·  Cyclic Redundancy Check (CRC) (4 bytes). As discussed in
Section 5.2.3, the purpose of the CRC field is to allow the
receiving adapter, adapter B, to detect whether any errors
have been introduced into the frame, that is, if bits in the
frame have been toggled. Causes of bit errors include
attenuation in signal strength and ambient electromagnetic
energy that leaks into the Ethernet cables and interface
cards. Error detection is performed as follows. When host A
constructs the Ethernet frame, it calculates a CRC field,
which is obtained from a mapping of the other bits in frame
(except for the preamble bits). When host B receives the
frame, it applies the same mapping to the frame and checks
to see if the result of the mapping is equal to what is in the
CRC field. This operation at the receiving host is called the
CRC check. If the CRC check fails (that is, if the result of
the mapping does not equal the contents of the CRC field),
then host B knows that there is an error in the frame.

·  Preamble (8 bytes). The Ethernet frame begins with an
eight-byte preamble field. Each of the first seven bytes of
the preamble has a value of � � � � � � � � ; the last byte is
� � � � � � � � . The first seven bytes of the preamble serve to
"wake up" the receiving adapters and to synchronize their
clocks to that of the sender's clock. Why should the clocks
be out of synchronization? Keep in mind that adapter A



aims to transmit the frame at 10 Mbps, 100 Mbps, or 1
Gbps, depending on the type of Ethernet LAN. However,
because nothing is absolutely perfect, adapter A will not
transmit the frame at exactly the target rate; there will
always be some drift from the target rate, a drift which is not
known a priori by the other adapters on the LAN. A
receiving adapter can lock onto adapter A's clock by simply
locking onto the bits in the first seven bytes of the preamble.
The last two bits of the eighth byte of the preamble (the first
two consecutive 1s) alert adapter B that the "important stuff"
is about to come. When host B sees the two consecutive
1s, it knows that the next six bytes are the destination
address. An adapter can tell when a frame ends by simply
detecting absence of current.

An unreliable connectionless service
All of the Ethernet technologies provide connectionless service
to the network layer. That is, when adapter A wants to send a
datagram to adapter B, adapter A encapsulates the datagram in an
Ethernet frame and sends the frame into the LAN, without first
"handshaking" with adapter B. This layer-2 connectionless service
is analogous to IP's layer-3 datagram service and UDP's layer-4
connectionless service.
All of the Ethernet technologies provide an unreliable service to
the network layer. In particular, when adapter B receives a frame
from A, adapter B does not send an acknowledgment when a
frame passes the CRC check (nor does it send a negative
acknowledgment when a frame fails the CRC check). Adapter A
hasn't the slightest idea whether its transmitted frame was
received correctly or incorrectly. When a frame fails the CRC
check, adapter B simply discards the frame. This lack of reliable
transport (at the link layer) helps to make Ethernet simple and
cheap. But it also means that the stream of datagrams passed to
the network layer can have gaps.
If there are gaps due to discarded Ethernet frames, does the
application-layer protocol at host B see gaps as well? As we
learned in Chapter 3, this solely depends on whether the
application is using UDP or TCP. If the application is using UDP,
then the application-layer protocol in host B will indeed suffer from
gaps in the data. On the other hand, if the application is using
TCP, then TCP in host B will not acknowledge the discarded data,
causing TCP in host A to retransmit. Note that when TCP
retransmits data, the data will eventually find its way to the
Ethernet adapter at which it was discarded. And in this sense,
Ethernet eventually retransmits the data as well. But we should
keep in mind that Ethernet doesn't know that it is retransmitting.
Ethernet thinks it is receiving a brand new datagram with brand



new data, even though this datagram contains data that has
already been transmitted at least once.
Baseband transmission and manchester encoding
Ethernet uses baseband transmission, that is, the adapter sends a
digital signal directly into the broadcast channel. The interface card
does not shift the signal into another frequency band, as is done in
ADSL and cable modem systems. Ethernet also uses Manchester
encoding, as shown in Figure 5.25. With Manchester encoding,
each bit contains a transition; a 1 has a transition from up to down,
whereas a 0 has a transition from down to up. The reason for
Manchester encoding is that the clocks in the sending and
receiving adapters are not perfectly synchronized. By including a
transition in the middle of each bit, the receiving host can
synchronize its clock to that of the sending host. Once the
receiving adapter's clock is synchronized, the receiver can
delineate each bit and determine whether it is a 1 or 0. Manchester
encoding is a physical layer operation rather than a link-layer
operation; however, we have briefly described it here as it is used
extensively in Ethernet.

Figure 5.25: Manchester encoding

5.5.2: CSMA/CD: Ethernet's Multiple Access Protocol
Nodes in an Ethernet LAN are interconnected by a broadcast
channel, so that when an adapter transmits a frame, all the
adapters on the LAN receive the frame. As we mentioned in
Section 5.3, Ethernet uses a CSMA/CD multiple access algorithm.
Summarizing our discussion from Section 5.3, recall that
CSMA/CD employs the following mechanisms:

1. An adapter may begin to transmit at any time, that is, no
slots are used.

2. An adapter never transmits a frame when it senses that
some other adapter is transmitting, that is, it uses carrier-
sensing.



3. A transmitting adapter aborts its transmission as soon as it
detects that another adapter is also transmitting, that is, it
uses collision detection.

4. Before attempting a retransmission, an adapter waits a
random time that is typically small compared to a frame
time.

These mechanisms give CSMA/CD much better performance than
slotted ALOHA in a LAN environment. In fact, if the maximum
propagation delay between stations is very small, the efficiency of
CSMA/CD can approach 100%. But note that the second and third
mechanisms listed above require each Ethernet adapter to be able
to (1) sense when some other adapter is transmitting, and (2)
detect a collision while it is transmitting. Ethernet adapters perform
these two tasks by measuring voltage levels before and during
transmission.
Each adapter runs the CSMA/CD protocol without explicit
coordination with the other adapters on the Ethernet. Within a
specific adapter, the CSMA/CD protocol works as follows:

1. The adapter obtains a network-layer PDU from its parent
node, prepares an Ethernet frame, and puts the frame in an
adapter buffer.

2. If the adapter senses that the channel is idle (that is, there
is no signal energy from the channel entering the adapter),
it starts to transmit the frame. If the adapter senses that the
channel is busy, it waits until it senses no signal energy
(plus 96 bit times) and then starts to transmit the frame.

3. While transmitting, the adapter monitors for the presence of
signal energy coming from other adapters. If the adapter
transmits the entire frame without detecting signal energy
from other adapters, the adapter is done with the frame.

4. If the adapter detects signal energy from other adapters
while transmitting, it stops transmitting its frame and instead
transmits a 48-bit jam signal.

5. After aborting (that is, transmitting the jam signal), the
adapter enters an exponential backoff phase. Specifically,
when transmitting a given frame, after experiencing the nth
collision in a row for this frame, the adapter chooses a value
for K at random from {0,1,2, . . ., 2m - 1} where m: =
min(n,10). The adapter then waits K • 512 bit times and
then returns to Step 2.

A few comments about the CSMA/CD protocol are certainly in



order. The purpose of the jam signal is to make sure that all other
transmitting adapters become aware of the collision. Let's look at
an example. Suppose adapter A begins to transmit a frame, and
just before A's signal reaches adapter B, adapter B begins to
transmit. So B will have transmitted only a few bits when it aborts
its transmission. These few bits will indeed propagate to A, but
they may not constitute enough energy for A to detect the collision.
To make sure that A detects the collision (so that it too can also
abort), B transmits the 48-bit jam signal.
Next consider the exponential backoff algorithm. The first thing to
notice here is that a bit time (that is, the time to transmit a single
bit) is very short; for a 10 Mbps Ethernet, a bit time is 0.1
microsecond. Now let's look at an example. Suppose that an
adapter attempts for the first time to transmit a frame, and while
transmitting it detects a collision. The adapter then chooses K = 0
with probability 0.5 and chooses K = 1 with probability 0.5. If the
adapter chooses K = 0, then it immediately jumps to Step 2 after
transmitting the jam signal. If the adapter chooses K = 1, it waits
51.2 microseconds before returning to Step 2. After a second
collision, K is chosen with equal probability from {0,1,2,3}. After
three collisions, K is chosen with equal probability from
{0,1,2,3,4,5,6,7}. After ten or more collisions, K is chosen with
equal probability from {0,1,2, . . ., 1023}. Thus the size of the sets
from which K is chosen grows exponentially with the number of
collisions (until n = 10); it is for this reason that Ethernet's backoff
algorithm is referred to as "exponential backoff."
The Ethernet standard imposes limits on the distance between any
two nodes. These limits ensure that if adapter A chooses a lower
value of K than all the other adapters involved in a collision, then
adapter A will be able to transmit its frame without experiencing a
new collision. We will explore this property in more detail in the
homework problems.
Why use exponential backoff? Why not, for example, select K from
{0,1,2,3,4,5,6,7} after every collision? The reason is that when an
adapter experiences its first collision, it has no idea how many
adapters are involved in the collision. If there are only a small
number of colliding adapters, it makes sense to choose K from a
small set of small values. On the other hand, if many adapters are
involved in the collision, it makes sense to choose K from a larger,
more dispersed set of values (why?). By increasing the size of the
set after each collision, the adapter appropriately adapts to these
different scenarios.
We also note here that each time an adapter prepares a new
frame for transmission, it runs the CSMA/CD algorithm presented
above. In particular, the adapter does not take into account any
collisions that may have occurred in the recent past. So it is



possible that an adapter with a new frame will be able to
immediately sneak in a successful transmission while several other
adapters are in the exponential backoff state.
Ethernet efficiency
When only one node has a frame to send, the node can transmit at
the full rate of the Ethernet technology (either 10 Mbps, 100 Mbps,
or 1 Gbps). However, if many nodes have frames to transmit, the
effective transmission rate of the channel can be much less. We
define the efficiency of Ethernet to be the long-run fraction of
time during which frames are being transmitted on the channel
without collisions when there is a large number of active nodes,
with each node having a large number of frames to send. In order
to present a closed-form approximation of the efficiency of
Ethernet, let tprop denote the maximum time it takes signal energy
to propagate between any two adapters. Let ttrans be the time to
transmit a maximum size Ethernet frame (approximately 1.2 msecs
for a 10 Mbps Ethernet). A derivation of the efficiency of Ethernet
is beyond the scope of this book (see [Lam 1980] and [Bertsekas
1991]). Here we simply state the following approximation:

We see from this formula that as tprop approaches 0, the efficiency
approaches 1. This matches our intuition that if the propagation
delay is zero, colliding nodes will abort immediately without
wasting the channel. Also, as ttrans becomes very large, efficiency
approaches 1. This is also intuitive because when a frame grabs
the channel, it will hold on to the channel for a very long time; thus
the channel will be doing productive work most of the time.

5.5.3: Ethernet Technologies
The most common Ethernet technologies today are 10Base2,
which uses thin coaxial cable in a bus topology and has a
transmission rate of 10 Mbps; 10BaseT, which uses twisted-pair
copper wire in a star topology and has a transmission rate of 10
Mbps; 100BaseT, which typically uses twisted-pair copper wire in a
star topology and has a transmission rate of 100 Mbps; and
Gigabit Ethernet, which uses both fiber and twisted-pair copper
wire and transmits at a rate of 1 Gbps. These Ethernet
technologies are standardized by the IEEE 802.3 working groups.
For this reason, an Ethernet LAN is often referred to as an 802.3
LAN.
Before discussing specific Ethernet technologies, we need to
discuss repeaters, which are commonly used in LANs as well as
in longer-distance wide-area links. A repeater is a physical-layer
device that acts on individual bits rather than on frames. It has two
or more interfaces. When a bit, representing a zero or a one,



arrives from one interface, the repeater simply recreates the bit,
boosts its energy strength, and transmits the bit onto all the other
interfaces. Repeaters are commonly used in LANs in order to
extend their geographical range. When used with Ethernet, it is
important to keep in mind that repeaters do not implement carrier
sensing or any other part of CSMA/CD; a repeater repeats an
incoming bit on all outgoing interfaces even if there is signal
energy on some of the interfaces.
10Base2 Ethernet
10Base2 is a very popular Ethernet technology. If you look at how
your computer (at work or at school) is connected to the network, it
is very possible you will see a 10Base2 connection. The "10" in
10Base2 stands for "10 Mbps"; the "2" stands for "200 meters,"
which is the approximate maximum distance between any two
nodes without repeaters between them. (The actual maximum
distance is 185 meters.) A 10Base2 Ethernet is shown in Figure
5.26.

Figure 5.26: A 10Base Ethernet
We see from Figure 5.26 that 10Base2 uses a bus topology; that
is, nodes are connected (through their adapters) in a linear
fashion. The physical medium used to connect the nodes is thin
coaxial cable, which is similar to what is used in cable TV, but
with a thinner and lighter cable. When an adapter transmits a
frame, the frame passes through a "tee connector"; two copies of
the frame leave the tee connector, one copy going in one direction
and one copy in the other direction. As the frames travel toward
the terminators, they leave a copy at every node they pass. (More
precisely, as a bit passes in front of a node, part of the energy of
the bit leaks into the adapter.) When the frame finally reaches a
terminator, it gets absorbed by the terminator. Note that when an
adapter transmits a frame, the frame is received by every other
adapter on the Ethernet. Thus, 10Base2 is indeed a broadcast
technology.
Suppose you want to connect a dozen PCs in your office using
10Base2 Ethernet. To do this, you would need to purchase 12
Ethernet cards with thin Ethernet ports; 12 BNC tees, which are
small metallic objects that attach to the adapters (less than one
dollar each); a dozen or so thin coax segments, 5-20 meters each;



and two "terminators," which you put at the two ends of the bus.
The cost of the whole network, including adapters, is likely to be
less than the cost of a single PC! Because 10Base2 is incredibly
inexpensive, it is often referred to as "cheapnet."
Without a repeater, the maximum length of a 10Base2 bus is 185
meters. If the bus becomes any longer, signal attenuation can
cause the system to malfunction. Also, without a repeater, the
maximum number of nodes is 30, as each node contributes to
signal attenuation. Repeaters can be used to connect 10Base2
segments in a linear fashion, with each segment having up to 30
nodes and having a length up to 185 meters. Up to four repeaters
can be included in a 10Base2 Ethernet, which creates up to five
"segments." Thus a 10Base2 Ethernet bus can have a total length
of 985 meters and support up to 150 nodes. Note that the
CSMA/CD access protocol is completely oblivious to the repeaters;
if any two of 150 nodes transmit at the same time, there will be a
collision.
10BaseT and 100BaseT
We discuss 10BaseT and100BaseT Ethernet together, as they are
similar technologies. The most important difference between them
is that 10BaseT transmits at 10 Mbps and 100BaseT Ethernet
transmits at 100 Mbps. 100BaseT is also commonly called "fast
Ethernet" and "100 Mbps Ethernet." 10BaseT and 100BaseT are
also very popular Ethernet technologies; in fact, for new
installations, 10BaseT and 100BaseT Ethernet are often today the
technology of choice. Both 10BaseT and 100BaseT Ethernet use a
star topology, as shown in Figure 5.27.

Figure 5.27: Star topology for 10BaseT and 100BaseT
In the star topology there is a central device called a hub (also
sometimes called a concentrator.) Each adapter on each node has
a direct, point-to-point connection to the hub. This connection
consists of two pairs of twisted-pair copper wire, one for
transmitting and the other for receiving. At each end of the
connection there is a connector that resembles the RJ-45
connector used for ordinary telephones. The "T" in 10BaseT and
100BaseT stands for "twisted pair." For both 10BaseT and



100BaseT, the maximum length of the connection between an
adapter and the hub is 100 meters; the maximum length between
any two nodes is thus 200 meters. As we will discuss in the next
section, this maximum distance can be increased by using tiers of
hubs, bridges, switches, and fiber links.
In essence, a hub is a repeater: when it receives a bit from an
adapter, it sends the bit to all the other adapters. In this manner,
each adapter can (1) sense the channel to determine if it is idle,
and (2) detect a collision while it is transmitting. But hubs are
popular because they also provide network management features.
For example, if an adapter malfunctions and continually sends
Ethernet frames (a so-called jabbering adapter), then a 10Base2
Ethernet will become totally dysfunctional; none of the nodes will
be able to communicate. But a 10BaseT network will continue to
function, because the hub will detect the problem and internally
disconnect the malfunctioning adapter. With this feature, the
network administrator doesn't have to get out of bed and drive
back to work in order to correct the problem. Also, most hubs can
gather information and report the information to a host that
connects directly to the hub. This monitoring host provides a
graphical interface that displays statistics and graphs, such as
bandwidth usage, collision rates, average frame sizes, etc.
Network administrators can use this information not only to debug
and correct problems, but also to plan how the LAN should evolve
in the future.
Many Ethernet adapters today are 10/100 Mbps adapters. This
means that they can be used for both 10BaseT and 100BaseT
Ethernets. 100BaseT, which typically uses category-5 twisted pair
(a high-quality twisted pair of wires with many twists). Unlike the
10Base2 and 10BaseT, 100BaseT does not use Manchester
encoding, but instead a more efficient encoding called 4B5B: every
group of five clock periods is used to send four bits in order to
provide enough transitions to allow clock synchronization.
We briefly mention at this point that both 10 Mbps and 100 Mbps
Ethernet technologies can employ fiber links. A fiber link is often
used to interconnect to hubs that are in different buildings on the
same campus. Fiber is expensive because of the cost of its
connectors, but it has excellent noise immunity. The IEEE 802
standards permit a LAN to have a larger geographical reach when
fiber is used to connect backbone nodes.
Gigabit Ethernet
Gigabit Ethernet is an extension to the highly successful 10 Mbps
and 100 Mbps Ethernet standards. Offering a raw data rate of
1,000 Mbps, Gigabit Ethernet maintains full compatibility with the
huge installed base of Ethernet equipment. The standard for
Gigabit Ethernet, referred to as IEEE 802.3z, does the following:



·  Uses the standard Ethernet frame format (Figure 5.24), and
is backward compatible with 10BaseT and 100BaseT
technologies. This allows for easy integration of Gigabit
Ethernet with the existing installed base of Ethernet
equipment.

·  Allows for point-to-point links as well as shared broadcast
channels. Point-to-point links use switches (see Section 5.6)
whereas broadcast channels use hubs, as described above
for 10BaseT and 100 BaseT. In Gigabit Ethernet jargon,
hubs are called "buffered distributors."

·  Uses CSMA/CD for shared broadcast channels. In order to
have acceptable efficiency, the maximum distance between
nodes must be severely restricted.

·  Allows for full-duplex operation at 1,000 Mbps in both
directions for point-to-point channels.

Like 10BaseT and 100BaseT, Gigabit Ethernet has a star topology
with a hub or switch at its center. (Ethernet switches will be
discussed in Section 5.6.) Gigabit Ethernet often serves as a
backbone for interconnecting multiple 10 Mbps and 100 Mbps
Ethernet LANs. Initially operating over optical fiber, Gigabit
Ethernet will also be able to use Category 5 UTP cabling.
The Gigabit Ethernet Alliance is an open forum whose purpose is
to promote industry cooperation in the development of Gigabit
Ethernet. Their Web site is a rich source of information on Gigabit
Ethernet [Alliance 1999]. The Interoperability Lab at the University
of New Hampshire also maintains a nice page on Gigabit Ethernet
[Interoperability 1999].
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5.6: Hubs, Bridges, and Switches
Institutions--including companies, universities, and high schools--typically
consist of many departments, with each department having and managing
its own Ethernet LAN. Naturally, an institution will want its departments to
interconnect their departmental LAN segments. In this section, we consider
a number of different approaches with which LANs can be connected
together. We'll cover three approaches--hubs, bridges, and switches--in the
following subsections. All three of these approaches are in widespread use



today.

5.6.1: Hubs
The simplest way to interconnect LANs is to use a hub. A hub is a simple
device that takes an input (that is, a frame's bits) and retransmits the input
on the hub's outgoing ports. Hubs are essentially repeaters, operating on
bits. They are thus physical-layer devices. When a bit comes into a hub
interface, the hub simply broadcasts the bit on all the other interfaces.
Figure 5.28 shows how three academic departments in a university might
interconnect their LANs. In this figure, each of the three departments has a
10BaseT Ethernet that provides network access to the faculty, staff, and
students of the departments. Each host in a department has a point-to-point
connection to the departmental hub. A fourth hub, called a backbone hub,
has point-to-point connections to the departmental hubs, interconnecting
the LANs of the three departments. The design shown in Figure 5.28 is a
multi-tier hub design because the hubs are arranged in a hierarchy. It is
also possible to create multi-tier designs with more than two tiers--for
example, one tier for the departments, one tier for the schools within the
university (for example, engineering school, business school, etc.) and one
tier at the highest university level. Multiple tiers can also be created out of
10Base2 (bus topology Ethernets) with repeaters.

Figure 5.28: Three departmental Ethernets interconnected with a hub
In a multi-tier design, we refer to the entire interconnected network as a
LAN, and we refer to each of the departmental portions of the LAN (that is,
the departmental hub and the hosts that connect to the hub) as a LAN
segment. It is important to note that all of the LAN segments in Figure 5.28
belong to the same collision domain, that is, whenever two or more nodes
on the LAN segments transmit at the same time, there will be a collision
and all of the transmitting nodes will enter exponential backoff.
Interconnecting departmental LANs with a backbone hub has many
benefits. First and foremost, it provides interdepartmental communication
among the hosts in the various departments. Second, it extends the
maximum distance between any pair of nodes on the LAN. For example,
with 10BaseT the maximum distance between a node and its hub is 100



meters; therefore, in a single LAN segment the maximum distance between
any pair of nodes is 200 meters. By interconnecting the hubs, this
maximum distance can be extended, since the distance between directly
connected hubs can also be 100 meters when using twisted pair (and more
when using fiber). A third benefit is that the multi-tier design provides a
degree of graceful degradation. Specifically, if any one of the departmental
hubs starts to malfunction, the backbone hub can detect the problem and
disconnect the departmental hub from the LAN; in this manner, the
remaining departments can continue to operate and communicate while the
faulty departmental hub gets repaired.
Although a backbone hub is a useful interconnection device, it has three
serious limitations that hinder its deployment. First, and perhaps more
important, when departmental LANs are interconnected with a hub (or a
repeater), then the independent collision domains of the departments are
transformed into one large, common collision domain. Let us explore this
issue in the context of Figure 5.28. Before interconnecting the three
departments, each departmental LAN had a maximum throughput of 10
Mbps, so that maximum aggregate throughput of the three LANs was 30
Mbps. But once the three LANs are interconnected with a hub, all of the
hosts in the three departments belong to the same collision domain, and
the maximum aggregate throughput is reduced to 10 Mbps.
A second limitation is that if the various departments use different Ethernet
technologies, then it may not be possible to interconnect the departmental
hubs with a backbone hub. For example, if some departments use 10BaseT
and the remaining departments use 100BaseT, then it is impossible to
interconnect all the departments without some frame buffering at the
interconnection point; since hubs are essentially repeaters and do not
buffer frames, they cannot interconnect LAN segments operating at
different rates.
A third limitation is that each of the Ethernet technologies (10Base2,
10BaseT, 100BaseT, and so on) has restrictions on the maximum allowable
number of nodes in a collision domain, the maximum distance between two
hosts in a collision domain, and the maximum allowable number of tiers in a
multi-tier design. These restrictions constrain both the total number of hosts
that can connect to a multi-tier LAN as well as the geographical reach of the
multi-tier LAN.

5.6.2: Bridges
In contrast to hubs, which are physical-level devices, bridges operate on
Ethernet frames and thus are layer-2 devices. In fact, bridges are full-
fledged packet switches that forward and filter frames using the LAN
destination addresses. When a frame comes into a bridge interface, the
bridge does not just copy the frame onto all of the other interfaces. Instead,
the bridge examines the layer-2 destination address of the frame and
attempts to forward the frame on the interface that leads to the destination.
Figure 5.29 shows how the three academic departments of our previous
example might be interconnected with a bridge. The three numbers next to



the bridge are the interface numbers for the three bridge interfaces. When
the departments are interconnected by a bridge, as in Figure 5.29, we
again refer to the entire interconnected network as a LAN, and we again
refer to each of the departmental portions of the network as LAN segments.
But in contrast to the multi-tier hub design in Figure 5.28, each LAN
segment is now an isolated collision domain.

Figure 5.29: Three departmental LANs interconnected with a bridge
Bridges can overcome many of the problems that plague hubs. First,
bridges permit interdepartmental communication while preserving isolated
collision domains for each of the departments. Second, bridges can
interconnect different LAN technologies, including 10 Mbps and 100 Mbps
Ethernets. Third, there is no limit to how large a LAN can be when bridges
are used to interconnect LAN segments; in theory, using bridges, it is
possible to build a LAN that spans the entire globe.
Bridge forwarding and filtering
Filtering is the ability of a bridge to determine whether a frame should be
forwarded to some interface or should just be dropped. Forwarding is the
ability to determine the interfaces to which a frame should be directed.
Bridge filtering and forwarding are done with a bridge table. The bridge
table contains entries for some, but not necessarily all, of the nodes on a
LAN. A node's entry in the bridge table contains (1) the LAN address of the
node, (2) the bridge interface that leads toward the node, (3) and the time
at which the entry for the node was placed in the table. An example bridge
table for the LAN in Figure 5.29 is shown in Figure 5.30. Although this
description of frame forwarding may sound similar to our discussion of
datagram forwarding in Chapter 4, we'll see shortly that there are important
differences. We note here that the addresses used by bridges are physical
addresses rather than network-layer addresses. We will also see shortly
that a bridge table is constructed in a very different manner than routing
tables.

Address
Interface

Time

62-FE-F7-11-89-A3
1

9:32



7C-BA-B2-B4-91-10
3

9:36

....

....

....

Figure 5.30: Portion of a bridge table for the LAN in Figure 5.29
To understand how bridge filtering and forwarding works, suppose a frame
with destination address ' ' � ' ' � ' ' � ' ' � ' ' � ' '  arrives to the bridge on
interface x. The bridge indexes its table with the LAN address ' ' � ' ' � ' ' �

' ' � ' ' � ' '  and finds its corresponding interface y that is known to lead to
destinator address ' ' � ' ' � ' ' � ' ' � ' ' � ' ' . We'll see shortly what happens if
such an interface, y is not found in the table.

·  If x equals y, then the frame is coming from a LAN segment that
contains adapter ' ' � ' ' � ' ' � ' ' � ' ' � ' ' . There being no need to
forward the frame to any of the other interfaces, the bridge performs
the filtering function by discarding the frame.

·  If x does not equal y, then the frame needs to be routed to the LAN
segment attached to interface y. The bridge performs its forwarding
function by putting the frame in an output buffer that precedes
interface y.

These simple rules allow a bridge to preserve separate collision domains
for each of the different LAN segments connected to its interfaces. The
rules also allow two sets of nodes on different LAN segments to
communicate simultaneously without interfering with each other.
Let's walk through these rules for the network in Figure 5.29 and its bridge
table in Figure 5.30. Suppose that a frame with destination address � � -) ( �

) � � � � � � � � $ �  arrives to the bridge from interface 1. The bridge examines its
table and sees that the destination is on the LAN segment connected to
interface 1 (that is, the Electrical Engineering LAN). This means that the
frame has already been broadcast on the LAN segment that contains the
destination. The bridge therefore filters (that is, discards) the frame. Now
suppose a frame with the same destination address arrives from interface
2. The bridge again examines its table and sees that the destination is the
direction of interface 1; it therefore forwards the frame to the output buffer
preceding interface 1. It should be clear from this example that as long as
the bridge table is complete and accurate, the bridge isolates the
departmental collision domains while permitting the departments to
communicate.
Recall that when a hub (or a repeater) forwards a frame onto a link, it just
sends the bits onto the link without bothering to sense whether another
transmission is currently taking place on the link. In contrast, when a bridge



wants to forward a frame onto a link, it runs the CSMA/CD algorithm
discussed in Section 5.3. In particular, the bridge refrains from transmitting
if it senses that some other node on the LAN segment into which it wants to
send a frame is transmitting; furthermore, the bridge uses exponential
backoff when one of its transmissions results in a collision. Thus bridge
interfaces behave very much like node adapters. But, technically speaking,
they are not node adapters because neither a bridge nor its interfaces have
LAN addresses. Recall that a node adapter always inserts its LAN address
into the source address of every frame it transmits. This statement is true
for router adapters as well as host adapters. A bridge, on the other hand,
does not change the source address of the frame.
One significant feature of bridges is that they can be used to combine
Ethernet segments using different Ethernet technologies. For example, if in
Figure 5.29, Electrical Engineering has a 10Base2 Ethernet, Computer
Science has a 100BaseT Ethernet, and Systems Engineering has a
10BaseT Ethernet, then a bridge can be purchased that can interconnect
the three LANs. With Gigabit Ethernet bridges, it is possible to have an
additional 1 Gbps connection to a router, which in turn connects to a larger
university network. As we mentioned earlier, this feature of being able to
interconnect different link rates is not available with hubs.
Also, when bridges are used as interconnection devices, there is no
theoretical limit to the geographical reach of a LAN. In theory, we can build
a LAN that spans the globe by interconnecting hubs in a long, linear
topology, with each pair of neighboring hubs interconnected by a bridge.
With this design, each of the hubs has its own collision domain, and there is
no limit on how long the LAN can be. We shall see shortly, however, that it
is undesirable to build very large networks exclusively using bridges as
interconnection devices--large networks need routers as well.
Self-learning
A bridge has the wonderful property (particularly for the already-overworked
network administrator) that its table is built automatically, dynamically, and
autonomously--without any intervention from a network administrator or
from a configuration protocol. In other words, bridges are self-learning.
This capability is accomplished as follows.

1. The bridge table is initially empty.

2. When a frame arrives on one of the interfaces and the frame's
destination address is not in the table, then the bridge forwards
copies of the frame to the output buffers of all of the other interfaces.
(At each of these other interfaces, the frame is transmitted into that
LAN segment using CSMA/CD.)

3. For each frame received, the bridge stores in its table (1) the LAN
address in the frame's source address field, (2) the interface from
which the frame arrived, (3) the current time. In this manner the
bridge records in its table the LAN segment on which the sending
node resides. If every node in the LAN eventually sends a frame,



then every node will eventually get recorded in the table.

4. When a frame arrives on one of the interfaces and the frame's
destination address is in the table, then the bridge forwards the
frame to the appropriate interface.

5. The bridge deletes an address in the table if no frames are received
with that address as the source address after some period of time
(the aging time). In this manner, if a PC is replaced by another PC
(with a different adapter), the LAN address of the original PC will
eventually be purged from the bridge table.

Let's walk through the self-learning property for the network in Figures 5.29
and its corresponding bridge table in Figure 5.30. Suppose at time 9:39 a
frame with source address � � � � � � � � � � � � � � � � �  arrives from interface 2.
Suppose that this address is not in the bridge table. Then the bridge
appends a new entry in the table, as shown in Figure 5.31.

Address
Interface

Time

01-12-23-34-45-56
2

9:39

62-FE-F7-11-89-A3
1

9:32

7C-BA-B2-B4-91-10
3

9:36

....

....

....

Figure 5.31: Bridge learns about the location of an adapter with address 01-12-23-34-45-
56

Continuing with this same example, suppose that the aging time for this
bridge is 60 minutes and no frames with source address � � � ) ( � ) � � � � � � � �

$ �  arrive to the bridge between 9:32 and 10:32. Then at time 10:32, the
bridge removes this address from its table.
Bridges are plug-and-play devices because they require no intervention
from a network administrator or user. A network administrator wanting to
install a bridge need do nothing more than connect the LAN segments to
the bridge interfaces. The administrator need not configure the bridge
tables at the time of installation or when a host is removed from one of the
LAN segments. Because bridges are plug-and-play, they are also referred
to as transparent bridges.



Spanning tree
One of the problems with a pure hierarchical design for interconnected LAN
segments is that if a hub or a bridge near the top of the hierarchy fails, then
pieces of the LAN will become disconnected. For this reason it is desirable
to build networks with multiple paths between LAN segments. An example
of such a network is shown in Figure 5.32.

Figure 5.32: Interconnected LAN segments with redundant paths
Multiple redundant paths between LAN segments (such as departmental
LANs) can greatly improve fault tolerance. But, unfortunately, multiple paths
have a serious side effect--frames can cycle and multiply within the
interconnected LAN, unless care is taken [Perlman 1999]. To see this,
suppose that the bridge tables in Figure 5.32 are empty, and a host in
Electrical Engineering sends a frame to a host in Computer Science. When
the frame arrives to the Electrical Engineering hub, the hub will generate
two copies of the frame and send one copy to each of the two bridges.
When each of the bridges receives the frame, it will generate two copies,
send one copy to the Computer Science hub and the other copy to the
Systems Engineering hub. Since both bridges do this, there will be four
identical frames in the LAN. This multiplying of copies could continue
indefinitely if the bridges do not know where the destination host resides.
(Recall that for the destination host's LAN address to appear in the
forwarding table, the destination host must first generate a frame so that its
address can be recorded in the bridge tables.) The number of copies of the
original frame grows exponentially fast, crashing the entire network.
To prevent the cycling and multiplying of frames, bridges use a spanning
tree protocol [Perlman 1999]. In the spanning tree protocol, bridges
communicate with each other over the LANs in order to determine a
spanning tree, that is, a subset of the original topology that has no loops.
Once the bridges determine a spanning tree, the bridges disconnect
appropriate interfaces in order to create the spanning tree out of the original
topology. For example, in Figure 5.32, a spanning tree is created by having
the top bridge disconnect its interface to Electrical Engineering and the
bottom bridge disconnect its interface to Systems Engineering. With the
interfaces disconnected and the loops removed, frames will no longer cycle



and multiply. If, at some later time, one of links in the spanning tree fails,
the bridges can reconnect the interfaces, run the spanning tree algorithm
again, and determine a new set of interfaces that should be disconnected.
Bridges versus routers
As we learned in Chapter 4, routers are store-and-forward packet switches
that forward packets using network-layer addresses. Although a bridge is
also a store-and-forward packet switch, it is fundamentally different from a
router in that it forwards packets using LAN addresses. Whereas a router is
a layer 3 packet switch, a bridge is a layer-2 packet switch.
Even though bridges and routers are fundamentally different, network
administrators must often choose between them when installing an
interconnection device. For example, for the network in Figure 5.29, the
network administrator could have just as easily used a router instead of a
bridge. Indeed, a router would have also kept the three collision domains
separate while permitting interdepartmental communication. Given that both
bridges and routers are candidates for interconnection devices, what are
the pros and cons of the two approaches?
First consider the pros and cons of bridges. As mentioned above, bridges
are plug and play, a property that is cherished by all the overworked
network administrators of the world. Bridges can also have relatively high
packet filtering and forwarding rates--as shown in Figure 5.33, bridges only
have to process packets up through layer 2, whereas routers have to
process frames up through layer 3. On the other hand, the spanning tree
protocol restricts the effective topology of a bridged network to a spanning
tree. This means that all frames must flow along the spanning tree, even
when there are more direct (but disconnected) paths between source and
destination. The spanning tree restriction also concentrates the traffic on
the spanning tree links when it could have otherwise been spread among
all the links of the original topology. Furthermore, bridges do not offer any
protection against broadcast storms--if one host goes haywire and
transmits an endless stream of Ethernet broadcast frames, the bridges will
forward all of these frames, causing the entire network to collapse.

Figure 5.33: Packet processing in bridges, routers, and hosts
Now consider the pros and cons of routers. Because network addressing is
often hierarchical (and not flat as is LAN addressing), packets do not
normally cycle through routers even when the network has redundant
paths. (Actually, packets can cycle when router tables are misconfigured;
but as we learned in Chapter 4, IP uses a special datagram header field to



limit the cycling.) Thus, packets are not restricted to a spanning tree and
can use the best path between source and destination. Because routers do
not have the spanning tree restriction, they have allowed the Internet to be
built with a rich topology that includes, for example, multiple active links
between Europe and North America. Another feature of routers is that they
provide firewall protection against layer 2 broadcast storms. Perhaps the
most significant drawback of routers, though, is that they are not plug and
play--they and the hosts that connect to them need their IP addresses to be
configured. Also, routers often have a larger per-packet processing time
than bridges, because they have to process up through the layer 3 fields.
Finally, there are two different ways to pronounce the word "router," either
as "rootor" or as "rowter," and people waste a lot of time arguing over the
proper pronunciation [Perlman 1999].
Given that both bridges and routers have their pros and cons, when should
an institutional network (for example, university campus network or a
corporate campus network) use bridges, and when should it use routers?
Typically, small networks consisting of a few hundred hosts have a few LAN
segments. Bridges suffice for these small networks, as they localize traffic
and increase aggregate throughput without requiring any configuration of IP
addresses. But larger networks consisting of thousands of hosts typically
include routers within the network (in addition to bridges). The routers
provide a more robust isolation of traffic, control broadcast storms, and use
more "intelligent" routes among the hosts in the network.
Connecting LAN segments with backbones
Consider once again the problem of interconnecting the Ethernets in the
three departments in Figure 5.29 with bridges. An alternative design is
shown in Figure 5.34. This alternative design uses two two-interface
bridges (that is, bridges with two interfaces), with one bridge connecting
Electrical Engineering to Computer Science, and the other bridge
connecting Computer Science to Systems Engineering. Although two-
interface bridges are very popular due to their low cost and simplicity, the
design in Figure 5.34 is not recommended. There are two reasons. First, if
the Computer Science hub were to fail, then Electrical Engineering and
Systems Engineering would no longer be able to communicate. Second,
and more important, all the interdepartmental traffic between Electrical and
Systems Engineering has to pass through Computer Science, which may
overly burden the Computer Science LAN segment.

Figure 5.34: An example of an institutional LAN without a backbone
One important principle that guides the design of an interconnected LAN is
that the various LAN segments should be interconnected with a backbone-



-a network that has direct connections to all the LAN segments. When a
LAN has a backbone, then each pair of LAN segments can communicate
without passing through a third-party LAN segment. The design shown in
Figure 5.29 uses a three-interface bridge for a backbone. In the homework
problems at the end of this chapter, we shall explore how to design
backbone networks with two-interface bridges.

5.6.3: Switches
Up until the mid 1990s, three types of LAN interconnection devices were
essentially available: hubs (and their cousins, repeaters), bridges, and
routers. More recently yet another interconnection device became widely
available, namely, Ethernet switches. Ethernet switches, often trumpeted
by network equipment manufacturers with great fanfare, are in essence
high-performance multi-interface bridges. As do bridges, they forward and
filter frames using LAN destination addresses, and they automatically build
forwarding tables using the source addresses in the traversing frames. The
most important difference between a bridge and switch is that bridges
usually have a small number of interfaces (that is, 2-4), whereas switches
may have dozens of interfaces. A large number of interfaces generates a
high aggregate forwarding rate through the switch fabric, therefore
necessitating a high-performance design (especially for 100 Mbps and 1
Gbps interfaces).
Switches can be purchased with various combinations of 10 Mbps, 100
Mbps and 1 Gbps interfaces. For example, one can purchase switches with
four 100 Mbps interfaces and twenty 10 Mbps interfaces; or switches with
four 100 Mbps interfaces and one 1 Gbps interface. Of course, the more
interfaces and the higher transmission rates of the various interfaces, the
more one pays. Many switches also operate in a full-duplex mode; that is,
they can send and receive frames at the same time over the same
interface. With a full-duplex switch (and corresponding full-duplex Ethernet
adapters in the hosts), host A can send a file to host B while that host B
simultaneously sends to host A.
One of the advantages of having a switch with a large number of interfaces
is that it facilitates direct connections between hosts and the switch. When
a host has a full-duplex direct connection to a switch, it can transmit (and
receive) frames at the full transmission rate of its adapter; in particular, the
host adapter always senses an idle channel and never experiences a
collision. When a host has a direct connection to a switch (rather than a
shared LAN connection), the host is said to have dedicated access. In
Figure 5.35, an Ethernet switch provides dedicated access to six hosts.
This dedicated access allows A to send a file to A' while B is sending a file
to B' and C is sending a file to C'. If each host has a 10 Mbps adapter card,
then the aggregate throughput during the three simultaneous file transfers
is 30 Mbps. If A and A' have 100 Mbps adapters and the remaining hosts
have 10 Mbps adapters, then the aggregate throughput during the three
simultaneous file transfers is 120 Mbps.



Figure 5.35: An Ethernet switch providing dedicated Ethernet access to six hosts
Figure 5.36 shows how an institution with several departments and several
critical servers might deploy a combination of hubs, Ethernet switches, and
routers. In Figure 5.36, each of the three departments has its own 10 Mbps
Ethernet segment with its own hub. Because each departmental hub has a
connection to the switch, all intradepartmental traffic is confined to the
Ethernet segment of the department (assuming the forwarding tables in the
Ethernet switch are complete). The Web and mail servers each have
dedicated 100 Mbps access to the switch. Finally, a router, leading to the
Internet, has dedicated 100 Mbps access to the switch. Note that this
switch has at least three 10 Mbps interfaces and three 100 Mbps interfaces.

Figure 5.36: An institutional network using a combination of hubs, Ethernet switches, and
a router

Cut-through switching
In addition to large numbers of interfaces, support for multitudes of physical



media types and transmission rates, and enticing network management
features, Ethernet switch manufacturers often tout that their switches use
cut-through switching rather than store-and-forward packet switching,
used by routers and bridges. The difference between store-and-forward and
cut-through switching is subtle. To understand this difference consider a
packet that is being forwarded through a packet switch (that is, a router, a
bridge, or an Ethernet switch). The packet arrives to the switch on an
inbound link and leaves the switch on an outbound link. When the packet
arrives, there may or may not be other packets queued in the outbound
link's output buffer. When there are packets in the output buffer, there is
absolutely no difference between store-and-forward and cut-through
switching. The two switching techniques only differ when the output buffer
is empty.
Recall from Chapter 1, when a packet is forwarded through a store-and-
forward packet switch, the packet is first gathered and stored in its entirety
before the switch begins to transmit it on the outbound link. In the case that
the output buffer becomes empty before the whole packet has arrived to the
switch, this gathering generates a store-and-forward delay at the switch--a
delay that contributes to the total end-to-end delay (see Section 1.6). An
upper bound on this delay is L/R, where L is the length of the packet and R
is transmission rate of the inbound link. Note that a packet only incurs a
store-and-forward delay if the output buffer becomes empty before the
entire packet arrives to the switch.
With cut-through switching, if the buffer becomes empty before the entire
packet has arrived, the switch can start to transmit the front of the packet
while the back of the packet continues to arrive. Of course, before
transmitting the packet on the outbound link, the portion of the packet that
contains the destination address must first arrive. (This small delay is
inevitable for all types of switching, as the switch must determine the
appropriate outbound link.) In summary, with cut-through switching, a
packet need not be fully "stored" before it is forwarded; instead the packet
is forwarded through the switch when the output link is free. If the output
link is a multiple access network that is shared with other hosts (for
example, the output link connects to a hub), then the switch must also
sense the link as idle before it can "cut-through" a packet.
To shed some insight on the difference between store-and-forward and cut-
through switching, let us recall the caravan analogy introduced in Section
1.6. In this analogy, there is a highway with occasional toll booths, with
each toll booth having a single attendant. On the highway there is a
caravan of 10 cars traveling together, each at the same constant speed.
The cars in the caravan are the only cars on the highway. Each toll booth
services the cars at a constant rate, so that when the cars leave the toll
booth they are equally spaced apart. As before, we can think of the caravan
as being a packet, each car in the caravan as being a bit, and the toll booth
service rate as the link transmission rate of a link. Consider now what the
cars in the caravan do when they arrive to a toll booth. If each car proceeds



directly to the toll booth upon arrival, then the toll booth is a "cut-through toll
booth." If, on the other hand, each car waits at the entrance until all the
remaining cars in the caravan have arrived, then the toll booth is a store-
and-forward toll booth. The store-and-forward toll booth clearly delays the
caravan more than the cut-through toll booth.
A cut-through switch can reduce a packet's end-to-end delay, but by how
much? As we mentioned above, the maximum store-and-forward delay is
L/R, where L is the packet size and R is the rate of the inbound link. The
maximum delay is approximately 1.2 msec for 10 Mbps Ethernet and 0.12
msec for 100 Mbps Ethernet (corresponding to a maximum size Ethernet
packet). Thus, a cut-through switch only reduces the delay by 0.12 to 1.2
msec, and this reduction only occurs when the outbound link is lightly
loaded. How significant is this delay? Probably not very much in most
practical applications, so you may want to think about selling the family
house before investing in the cut-through feature.
We have learned in this section that hubs, bridges, routers, and switches
can all be used as an interconnection device for hosts and LAN segments.
Table 5.1 provides a summary of the features of each of these
interconnection devices. The Cisco Web site provides numerous
comparisons of the different interconnection technologies [Cisco LAN
Switches 1999].
Table 5.1: Comparison of the typical features of popular interconnection devices

 
hubs

bridges
routers

Ethernet switches

traffic isolation
no
yes
yes
yes

plug and play
yes
yes
no
yes

optimal routing
no
no
yes
no

cut-through
yes
no



no
yes
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5.7: IEEE 802.11 LANs
In Section 5.5, we examined the dominant wired LAN protocol--Ethernet. In
the previous section we examined how LAN segments can be connected
together via hubs, bridges, and switches to form larger LANs. In this section
we examine a LAN standard (belonging to the same IEEE 802 family as
Ethernet) that is being increasingly deployed for untethered (wireless) LAN
communication. The IEEE 802.11 standard [Brenner 1997; Crow 1997;
IEEE 802.11 1999] defines the physical layer and media access control
(MAC) layer for a wireless local area network. The standard defines three
different physical layers for the 802.11 wireless LAN, each operating in a
different frequency range and at rates of 1 Mbps and 2 Mbps. In this section
we focus on the architecture of 802.11 LANs and their media access
protocols. We'll see that although it belongs to the same standard family as
Ethernet, it has a significantly different architecture and media access
protocol.

5.7.1: 802.11 LAN Architecture
Figure 5.37 illustrates the principal components of the 802.11 wireless LAN
architecture. The fundamental building block of the 802.11 architecture is
the cell, known as the basic service set (BSS) in 802.11 parlance. A BSS
typically contains one or more wireless stations and a central base station,
known as an access point (AP) in 802.11 terminology. The wireless
stations, which may be either fixed or mobile, and the central base station
communicate among themselves using the IEEE 802.11 wireless MAC
protocol. Multiple APs may be connected together (for example, using a
wired Ethernet or another wireless channel) to form a so-called
distribution system (DS). The DS appears to upper-level protocols (for
example, IP) as a single 802 network, in much the same way that a
bridged, wired 802.3 Ethernet network appears as a single 802 network to
the upper-layer protocols.



Figure 5.37: IEEE 80.11 LAN architecture
Figure 5.38 shows that IEEE 802.11 stations can also group themselves
together to form an ad hoc network--a network with no central control and
with no connections to the "outside world." Here, the network is formed "on
the fly," simply because there happen to be mobile devices that have found
themselves in proximity to each other, that have a need to communicate,
and that find no pre-existing network infrastructure (for example, a pre-
existing 802.11 BSS with an AP) in the location. An ad hoc network might
be formed when people with laptops meet together (for example, in a
conference room, a train, or a car) and want to exchange data in the
absence of a centralized AP. There has been a tremendous recent increase
in interest in ad hoc networking, as communicating portable devices
continue to proliferate. Within the IETF, activity in ad hoc networking is
centered around the mobile ad hoc networks (manet) working group [manet
2000].

Figure 5.38: An IEEE 8022.11 ad hoc network

5.7.2: 802.11 Media Access Protocols
Just as in a wired 802.3 Ethernet network, stations in an IEEE 802.11
wireless LAN must coordinate their access and use of the shared
communication media (in this case the radio frequency). Once again, this is
the job of the Media Access Control (MAC) protocol. The IEEE 802.11 MAC
protocol is a carrier-sense multiple access protocol with collision avoidance
(CSMA/CA). Recall from our study of Ethernet in Section 5.5 that a CSMA
protocol first senses the channel to determine if the channel is "busy" with
the transmission of a frame from some other station. In the 802.11
specification, the physical layer monitors the energy level on the radio
frequency to determine whether or not another station is transmitting and



provides this carrier sensing information to the MAC protocol. If the channel
is sensed idle for an amount of time equal to or greater than the Distributed
Inter Frame Space (DIFS), a station is then allowed to transmit. As with any
random access protocol, this frame will be successfully received at the
destination station if no other station's transmission has interfered with the
frame's transmission.
When a receiving station has correctly and completely received a frame for
which it was the addressed recipient, it waits a short period of time (known
as the Short Inter Frame Spacing--SIFS) and then sends an explicit
acknowledgment frame back to the sender. This data-link layer
acknowledgment lets the sender know that the receiver has indeed
correctly received the sender's data frame. We will see shortly that this
explicit acknowledgment is needed because, unlike the case of wired
Ethernet, a wireless sender cannot itself determine whether or not its frame
transmission was successfully received at the destination. The transmission
of a frame by a sending station and its subsequent acknowledgment by the
destination station is shown in Figure 5.39.

Figure 5.39: Data transmission and acknowledgement in IEEE 802.11
Figure 5.39 illustrates the case when the sender senses the channel to be
idle. What happens if the sender senses the channel busy? In this case, the
station performs a backoff procedure that is similar to that of Ethernet. More
specifically, a station that senses the channel busy will defer its access until
the channel is later sensed idle. Once the channel is sensed idle for an
amount of time equal to DIFS, the station then computes an additional
random backoff time and counts down this time as the channel is sensed
idle. When the random backoff timer reaches zero, the station transmits its
frame. As in the case of Ethernet, the random backoff timer serves to avoid
having multiple stations immediately begin transmission (and thus collide)
after a DIFS idle period. As in the case of Ethernet, the interval over which



the backoff timer randomizes is doubled each time a transmitted frame
experiences a collision.
We noted above that unlike the 802.3 Ethernet protocol, the wireless
802.11 MAC protocol does not implement collision detection. There are a
couple of reasons for this:

·  The ability to detect collisions requires the ability to both send (one's
own signal) and receive (to determine if another station's
transmissions is interfering with one's own transmission) at the same
time. This can be costly.

·  More importantly, even if one had collision detection and sensed no
collision when sending, a collision could still occur at the receiver.

This situation results from the particular characteristics of the wireless
channel. Suppose that station A is transmitting to station B. Suppose also
that station C is transmitting to station B. With the so-called hidden
terminal problem, physical obstructions in the environment (for example, a
mountain) may prevent A and C from hearing each other's transmissions,
even though A's and C's transmissions are indeed interfering at the
destination, B. This is shown in Figure 5.40(a). A second scenario that
results in undetectable collisions at the receiver results from the fading of a
signal's strength as propagates through the wireless medium. Figure
5.40(b) illustrates the case where A and C are placed such that their signal
strengths are not strong enough for them to detect each other's
transmissions, and yet their transmissions are strong enough to have
interfered with each other at station B.

Figure 5.40: Hidden terminal problem (a) and fading (b)
Given these difficulties with detecting collisions at a wireless receiver, the
designers of IEEE 802.11 developed an access protocol that aimed to
avoid collisions (hence the name CSMA/CA), rather than detect and
recover from collisions (CSMA/CD). First, the IEEE 802.11 frame contains a
duration field in which the sending station explicitly indicates the length of
time that its frame will be transmitting on the channel. This value allows
other stations to determine the minimum amount of time (the so-called
network allocation vector, NAV) for which they should defer their access, as



shown in Figure 5.39.
The IEEE 802.11 protocol can also use a short Request To Send (RTS)
control frame and a short Clear To Send (CTS) frame to reserve access to
the channel. When a sender wants to send a frame, it can first send an
RTS frame to the receiver, indicating the duration of the data packet and
the ACK packet. A receiver that receives an RTS frame responds with a
CTS frame, giving the sender explicit permission to send. All other stations
hearing the RTS or CTS then know about the pending data transmission
and can avoid interfering with those transmissions. The RTS, CTS, DATA,
and ACK frames are shown in Figure 5.41. An IEEE 802.11 sender can
operate either using the RTS/CTS control frames, as shown in Figure 5.41,
or can simply send its data without first using the RTS control frame, as
shown in Figure 5.39.

Figure 5.41: Collision avoidance using the RTS and CTS frames
The use of the RTS and CTS frames helps avoid collisions in two important
ways:

·  Because the receiver's transmitted CTS frame will be heard by all
stations within the receiver's vicinity, the CTS frame helps avoid both



the hidden station problem and the fading problem.

·  Because the RTS and CTS frames are short, a collision involving an
RTS or CTS frame will only last for the duration of the whole RTS or
CTS frame. Note that when the RTS and CTS frames are correctly
transmitted, there should be no collisions involving the subsequent
DATA and ACK frames.

In our discussion above, we have only highlighted some of the key aspects
of the 802.11 protocol. Additional protocol capabilities such as time
synchronization, power management, joining and leaving a network (that is,
support for roaming stations) are covered in the full IEEE 802.11 standard.
See [Brenner 1997; Crow 1997; IEEE 802.11 1999] for details.
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5.8: PPP: The Point-to-Point Protocol
Most of our discussion of data-link protocols thus far has focused on
protocols for broadcast channels. In this section we cover a data-link
protocol for point-to-point links--PPP, the point-to-point protocol. Because
PPP is typically the protocol of choice for a dialup link from residential
hosts, it is undoubtedly one of the most widely deployed data-link protocols
today. The other important data-link protocol in use today is the HDLC
(high-level data link control) protocol; see [Spragins 1991] for a discussion
of HDLC. Our discussion here of the simpler PPP protocol will allow us to
explore many of the most important features of a point-to-point data-link
protocol.

As its name implies, the point-to-point protocol (PPP) [RFC 1661; RFC
2153] is a data-link layer protocol that operates over a point-to-point link--
a link directly connecting two nodes, one on each end of the link. The point-
to-point link over which PPP operates might be a serial dialup telephone
line (for example, a 56K modem connection), a SONET/SDH link, an X.25
connection, or an ISDN circuit. As noted above, PPP has become the
protocol of choice for connecting home users to their ISPs over a dialup
connection.

Before diving into the details of PPP, it is instructive to examine the original
requirements that the IETF placed on the design of PPP [RFC 1547]:

·  Packet framing. The PPP protocol data-link layer sender must be
able to take a network-level packet and encapsulate it within the
PPP data-link layer frame such that the receiver will be able to



identify the start and end of both the data link frame and the network-
layer packet within the frame.

·  Transparency. The PPP protocol must not place any constraints on
data appearing on the network-layer packet (headers or data). Thus,
for example, the PPP protocol cannot forbid the use of certain bit
patterns in the network-layer packet. We'll return to this issue shortly
in our discussion of byte stuffing.

·  Multiple network-layer protocols. The PPP protocol must be able to
support multiple network-layer protocols (for example, IP and
DECnet) running over the same physical link at the same time. Just
as the IP protocol is required to multiplex different transport level
protocols (for example, TCP and UDP) over a single end-to-end
connection, so too must PPP be able to multiplex different network
layer protocols over a single point-to-point connection. This
requirement means that at a minimum, PPP will likely require a
"protocol type" field or some similar mechanism so the receiving-side
PPP can demultiplex a received frame up to the appropriate
network-layer protocol.

·  Multiple types of links. In addition to being able to carry multiple
higher-level protocols, PPP must also be able to operate over a wide
variety of link types, including links that are either serial (transmitting
a bit at a time in a given direction) or parallel (transmitting bits in
parallel), synchronous (transmitting a clock signal along with the data
bits) or asynchronous, low-speed or high-speed, electrical or optical.

·  Error detection. A PPP receiver must be able to detect bit errors in
the received frame.

·  Connection liveness. PPP must be able to detect a failure at the link
level (for example, the inability to transfer data from the sending side
of the link to the receiving side of the link) and signal this error
condition to the network layer.

·  Network-layer address negotiation. PPP must provide a mechanism
for the communicating network layers (for example, IP) to learn or
configure each other's network layer address.

·  Simplicity. PPP was required to meet a number of additional
requirements beyond those listed above. On top of all of these
requirements, first and foremost among all of the PPP requirements
is that of "simplicity." RFC 1547 states "the watchword for a point-to-
point protocol should be simplicity." A tall order indeed given all of
the other requirements placed on the design of PPP! More than 50
RFCs now define the various aspects of this "simple" protocol.

While it may appear that many requirements were placed on the design of



PPP, the situation could actually have been much more difficult! The design
specifications for PPP also explicitly note protocol functionality that PPP
was not required to implement:

·  Error correction. PPP is required to detect bit errors but is not
required to correct them.

·  Flow control. A PPP receiver is expected to be able to receive
frames at the full rate of the underlying physical layer. If a higher
layer cannot receive packets at this full rate, it is then up to the
higher layer to drop packets or throttle the sender at the higher layer.
That is, rather than having the PPP sender throttle its own
transmission rate, it is the responsibility of a higher-level protocol to
throttle the rate at which packets are delivered to PPP for sending.

·  Sequencing. PPP is not required to deliver frames to the link receiver
in the same order in which they were sent by the link sender. It is
interesting to note that while this flexibility is compatible with the IP
service model (which allows IP packets to be delivered end-to-end in
any order), other network layer protocols that operate over PPP do
require sequenced end-to-end packet delivery.

·  Multipoint links. PPP need only operate over links that have a single
sender and a single receiver. Other link-layer protocols (for example,
HDLC) can accommodate multiple receivers (for example, an
Ethernet-like scenario) on a link.

Having now considered the design goals (and non-goals) for PPP, let us
see how the design of PPP met these goals.

5.8.1: PPP Data Framing
Figure 5.42 shows a PPP data frame using HDLC-like framing [RFC 1662].

Figure 5.42: PPP data frame format
The PPP frame contains the following fields:

·  Flag field. Every PPP frame begins and ends with a one byte flag
field with a value of � � � � � � � � .

·  Address field. The only possible value for this field is � � � � � � � � .

·  Control field. The only possible value of this field is � � � � � � � � .
Because both the address and control fields can currently take only
a fixed value, one wonders why the fields are even defined in the
first place. The PPP specification [RFC 1662] states that other



values "may be defined at a later time," although none have been
defined to date. Because these fields take fixed values, PPP allows
the sender to simply not send the address and control bytes, thus
saving two bytes of overhead in the PPP frame.

·  Protocol. The protocol field tells the PPP receiver the upper-layer
protocol to which the received encapsulated data (that is, the
contents of the PPP frame's info field) belongs. On receipt of a PPP
frame, the PPP receiver will check the frame for correctness and
then pass the encapsulated data on to the appropriate protocol. RFC
1700 defines the 16-bit protocol codes used by PPP. Of interest to
us is the IP protocol (that is, the data encapsulated in the PPP frame
is an IP datagram) which has a value of 21 hexadecimal, other
network-layer protocols such as Appletalk (29) and DECnet (27), the
PPP link control protocol (C021 hexadecimal) that we discuss in
detail in the following section, and the IP Control Protocol (8021).
This last protocol is called by PPP when a link is first activated in
order to configure the IP-level connection between the IP-capable
devices on each end of the link (see below).

·  Information. This field contains the encapsulated packet (data) that is
being sent by an upper-layer protocol (for example, IP) over the PPP
link. The default maximum length of the information field is 1,500
bytes, although this can be changed when the link is first configured,
as discussed below.

·  Checksum. The checksum field is used to detect bit errors in a
transmitted frame. It uses either a two or four byte HDLC-standard
cyclic redundancy code.

Byte stuffing
Before closing our discussion of PPP framing, let us consider a problem
that arises when any protocol uses a specific bit pattern in a flag field to
delineate the beginning or end of the frame. What happens if the flag
pattern itself occurs elsewhere in the packet? For example, what happens if
the flag field value of � � � � � � � �  appears in the information field? Will the
receiver incorrectly detect the end of the PPP frame?
One way to solve this problem would be for PPP to forbid the upper-layer
protocol from sending data containing the flag field bit pattern. The PPP
requirement of transparency discussed above obviates this possibility. An
alternate solution, and the one taken in PPP and many other protocols, is to
use a technique known as byte stuffing.
PPP defines a special control escape byte, � � � � � � � � . If the flag sequence,
01111110 appears anywhere in the frame, except in the flag field, PPP
precedes that instance of the flag pattern with the control escape byte. That
is, it "stuffs" (adds) a control escape byte into the transmitted data stream,
before the � � � � � � � � , to indicate that the following � � � � � � � � �  is not a flag



value but is, in fact, actual data. A receiver that sees a � � � � � � � � � preceded
by a� � � � � � � � � � will, of course, remove the stuffed control escape to
reconstruct the original data. Similarly, if the control escape byte bit pattern
itself appears as actual data, it too must be preceded by a stuffed control
escape byte. Thus, when the receiver sees a single control escape byte by
itself in the data stream, it knows that the byte was stuffed into the data
stream. A pair of control escape bytes occurring back to back means that
one instance of the control escape byte appears in the original data being
sent. Figure 5.43 illustrates PPP byte stuffing. (Actually, PPP also XORs
the data byte being escaped with 20 hexadecimal, a detail we omit here for
simplicity.)

Figure 5.43: Byte stuffing

5.8.2: PPP Link Control Protocol (LCP) and Network Control
Protocols
Thus far, we have seen how PPP frames the data being sent over the
point-to-point link. But how does the link get initialized when a host or router
on one end of the PPP link is first turned on? The initialization,
maintenance, error reporting, and shutdown of a PPP link is accomplished
using PPP's link-control protocol (LCP) and family of PPP network-control
protocols.
Before any data is exchanged over a PPP link, the two peers (one at each
end of the PPP link) must first perform a considerable amount of work to
configure the link, in much the same way that a TCP sender and receiver
must perform a three-way handshake (see Section 3.5) to set the
parameters of the TCP connection before TCP data segments are
transmitted. Figure 5.44 illustrates the state transition diagram for the LCP
protocol for configuring, maintaining, and terminating the PPP link.



Figure 5.44: PPP link-control protocol
The PPP link always begins and ends in the dead state. When an event
such as a carrier detection or network administrator intervention indicates
that a physical layer is present and ready to be used, PPP enters the link
establishment state. In this state, one end of the link sends its desired link
configuration options using an LCP configure-request frame (a PPP frame
with the protocol field set to LCP and the PPP information field containing
the specific configuration request). The other side then responds with a
F R Q I LJ X UH � D F N  frame (all options acceptable), a F R Q I LJ X UH � Q D N  frame (all
options understood but not acceptable) or a configure-reject frame (options
not recognizable or not acceptable for negotiation). LCP configuration
options include a maximum frame size for the link, the specification of an
authentication protocol (if any) to be used, and an option to skip the use of
the address and control fields in PPP frames.
Once the link has been established, link options negotiated, and the
authentication (if any) performed, the two sides of the PPP link then
exchange network-layer-specific network control packets with each other. If
IP is running over the PPP link, the IP control protocol [RFC 1332] is used
to configure the IP protocol modules at each end of the PPP link. IPCP data
are carried within a PPP frame (with a protocol field value of 8021), just as
LCP data are carried in a PPP frame. IPCP allows the two IP modules to
exchange or configure their IP addresses and negotiate whether or not IP
datagrams will be sent in compressed form. Similar network-control
protocols are defined for other network-layer protocols, such as DECnet
[RFC 1762] and AppleTalk [RFC 1378]. Once the network layer has been
configured, PPP may then begin sending network-layer datagrams--the link
is in the opened state and data has begun to flow across the PPP link. The
LCP echo-request frame and echo-reply frame can be exchanged between
the two PPP endpoints in order to check the status of the link.
The PPP link remains configured for communication until an LCP terminate-
request packet is sent. If a terminate-request LCP frame is sent by one end
of the PPP link and replied to with a terminate-ack LCP frame, the link then



enters the dead state.
In summary, PPP is a data-link layer protocol by which two communicating
link-level peers, one on each end of a point-to-point link, exchange PPP
frames containing network layer datagrams. The principal components of
PPP are:

·  Framing. A method for encapsulating data in a PPP frame,
identifying the beginning and end of the frame, and detecting errors
in the frame.

·  Link-control protocol. A protocol for initializing, maintaining, and
taking down the PPP link.

·  Network-control protocols. A family of protocols, one for each upper
layer network protocol, that allows the network-layer modules to
configure themselves before network-level datagrams begin flowing
across the PPP link.
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5.9: Asynchronous Transfer Mode (ATM)
The standards for ATM were first developed in the mid 1980s. For those too
young to remember, at this time there were predominately two types of
networks: telephone networks, that were (and still are) primarily used to
carry real-time voice, and data networks, that were primarily used to
transfer text files, support remote login, and provide e-mail. There were also
dedicated private networks available for video conferencing. The Internet
existed at this time, but few people were thinking about using it to transport
phone calls, and the World Wide Web was as yet unheard of. It was
therefore natural to design a networking technology that would be
appropriate for transporting real-time audio and video as well as text, e-
mail, and image files. Asynchronous transfer mode (ATM) achieved this
goal. Two standards committees, the ATM Forum [ATM Forum 2000] and
the International Telecommunications Union [ITU 2000] developed
standards for broadband digital services networks.

The ATM standards call for packet switching with virtual circuits (called
virtual channels in ATM jargon). The standards define how applications
directly interface with ATM, so that ATM provides a complete networking
solution for distributed applications. Paralleling the development of the ATM
standards, major companies throughout the world made significant
investments in ATM research and development. These investments have
led to a myriad of high-performing ATM technologies, including ATM
switches that can switch terabits per second. In recent years, ATM



technology has been deployed very aggressively within both telephone
networks and the Internet backbones.

Although ATM has been deployed within networks, it has been less
successful in extending itself all the way to desktop PCs and workstations.
And it is now questionable whether ATM will ever have a significant
presence at the desktop. Indeed, while ATM was brewing in the standards
committees and research labs in the late 1980s and early 1990s, the
Internet and its TCP/IP protocols were already operational and making
significant headway:

·  The TCP/IP protocol suite was integrated into all of the most popular
operating systems.

·  Companies began to transact commerce (e-commerce) over the
Internet.

·  Residential Internet access became inexpensive.

·  Many wonderful desktop applications were developed for TCP/IP
networks, including the World Wide Web, Internet phone, and
interactive streaming video. Thousands of companies are currently
developing new applications and services for the Internet.

Today, we live in a world in which most networking applications interface
only with TCP/IP. Nevertheless, ATM switches can forward data at very
high rates and, consequently, they have been deployed in Internet
backbone networks, where the need to transport traffic at high rates is most
acute. When ATM is in the Internet backbone, TCP/IP runs on top of ATM
and views an entire ATM network, which might span a continent, as one
large link-layer network. In other words, although ATM has not caught hold
as a process-to-process solution (or even a desktop-to-desktop solution), it
has found a home at the link level within parts of the Internet backbone; this
is referred to as IP-over-ATM--a topic we'll cover in Section 5.9.5. For these
reasons, we have included our discussion of ATM in this chapter on the link
layer, rather than in the previous chapter on the network layer.

5.9.1: Principle Characteristics of ATM
The principle characteristics of ATM are as follows:

·  The ATM standard defines a full suite of communication protocols,
from an application-level API all the way down through the physical
layer.

·  The ATM service models include constant bit rate (CBR) service,
variable bit rate (VBR) service, available bit rate (ABR) service, and
unspecified bit rate (UBR) service. We've already considered each of
the service models in detail in Section 4.1.1.

·  ATM uses packet switching with fixed-length packets of 53 bytes. In



ATM jargon, these packets are called cells. Each cell has 5 bytes of
header and 48 bytes of "payload." The fixed-length cells and simple
headers have facilitated high-speed switching.

·  ATM uses virtual circuits. In ATM jargon, virtual circuits are called
virtual channels. The ATM header includes a field for the virtual
channel number, which is called the virtual channel identifier (VCI)
in ATM jargon. As discussed in Section 1.3, packet switches use the
VCI to route cells toward their destinations.

·  ATM provides no retransmissions on a link-by-link basis. If a switch
detects an error in an ATM cell header, it attempts to correct the
error using error-correcting codes. If it cannot correct the error, it
drops the cell rather than request a retransmission from the
preceding switch.

·  ATM provides congestion control only within the ATM ABR service
class (see Table 4.1). We covered ATM ABR congestion control in
Section 3.6.3, where we saw that it belongs to the general class of
network-assisted congestion control approaches. ATM switches
themselves do provide feedback to a sending end system to help it
regulate its transmission rate in times of network congestion.

·  ATM can run over just about any physical layer. It often runs over
fiber optics using the SONET standard at speeds of 155.52 Mbps,
622 Mbps, and higher.

As shown in Figure 5.45, the ATM protocol stack consists of three layers:
the ATM physical layer, the ATM layer, and the ATM adaptation layer
(AAL):

Figure 5.45: The three ATM layers

·  The ATM physical layer deals with voltages, bit timings, and
framing on the physical medium.

·  The ATM layer is the core of the ATM standard. It defines the
structure of the ATM cell.

·  The ATM adaptation layer (AAL) is roughly analogous to the
transport layer in the Internet protocol stack. ATM includes several
different types of AALs to support different types of services.



Currently, ATM is most commonly used as a link-layer technology within
localized regions of the Internet. A special AAL type, AAL5, has been
developed to allow TCP/IP to interface with ATM. At the IP-to-ATM
interface, AAL5 prepares IP datagrams for ATM transport; at the ATM-to-IP
interface, AAL5 reassembles ATM cells into IP datagrams. Figure 5.46
shows the protocol stack for the regions of the Internet that use ATM. Note
that in this configuration, the three ATM layers have been squeezed into the
lower two layers of the Internet protocol stack. In particular, the Internet's
network layer views ATM as a link-layer protocol. A nice tutorial on ATM,
reflecting its original goals, is given in [LeBoudec 1992].

Figure 5.46: Internet-over-ATM protocol stack

5.9.2: ATM Physical Layer
The physical layer is concerned with sending an ATM cell over a single
physical link. As shown in Table 5.2, the physical layer has two sublayers:
the physical medium dependent (PMD) sublayer and the transmission
convergence (TC) sublayer.
Table 5.2: The two sublayers of the physical layer and their responsibilities
Sublayer
Responsibilities

Transmission Convergence (TC) Sublayer
Idle cell insertion
Cell delineation
Transmission frame adaptation

Physical Medium Dependent (PMD) Sublayer
Physical medium
Bit voltages and timings
Frame structure

The physical medium dependent (PMD) sublayer
The PMD sublayer is at the very bottom of the ATM protocol stack. As the
name implies, the PMD sublayer depends on the physical medium of the



link; in particular, the sublayer is specified differently for different physical
media (fiber, copper, and so on). It is also responsible for generating and
delineating bits. There are two classes of PMD sublayers: PMD sublayers
that have a transmission frame structure (for example, T1, T3, SONET, or
SDH) and PMD sublayers that do not. If the PMD has a frame structure,
then it is responsible for generating and delineating frames. (The
terminology "frames" in this section is not to be confused with link-layer
frames used in the earlier sections of this chapter. The transmission frame
is a physical-layer TDM-like mechanism for organizing the bits sent on a
link.) The PMD sublayer does not recognize cells. Some possible PMD
sublayers include:

1. SONET/SDH (synchronous optical network/synchronous digital
hierarchy) over single-mode fiber. Like T1 and T3, SONET and SDH
have frame structures that establish bit synchronization between the
transmitter and receiver at the two ends of the link. There are several
standardized rates, including:

OC-1: 51.84 Mbps
OC-3: 155.52 Mbps
OC-12: 622.08 Mbps

2. T1/T3 frames over fiber, microwave, and copper.

3. Cell-based with no frames. In this case, the clock at receiver is
derived from a transmitted signal.

Transmission convergence (TC) sublayer
The ATM layer is specified independently of the physical layer; it has no
concept of SONET, T1, or physical media. A sublayer is therefore needed
(1) at the sending side of the link to accept ATM cells from the ATM layer
and prepare them for transmission on the physical medium, and (2) at the
receiving side of the link to group bits arriving from the physical medium
into cells and pass the cells to the ATM layer. These are the jobs of the TC
sublayer, which sits on top of the PMD sublayer and just below the ATM
layer. We note that the TC sublayer is also physical-medium-dependent--if
we change the physical medium or the underlying frame structure, then we
must also change the TC sublayer.
On the transmit side, the TC sublayer places ATM cells into the bit and
transmission frame structure of the PMD sublayer. On the receive side, it
extracts ATM cells from the bit and transmission frame structure of the
PMD sublayer. It also performs header error correction (HEC). More
specifically, the TC sublayer has the following tasks:

·  At the transmit side, the TC sublayer generates the HEC byte for
each ATM cell that is to be transmitted. At the receive side, the TC
sublayer uses the HEC byte to correct all one-bit errors in the header
and some multiple-bit errors in the header, reducing the possibility of
incorrect routing of cells. The HEC is computed over the first 32-bits



in the cell header, using an eight-bit polynomial-coding technique, as
described in Section 5.2.3.

·  At the receive side, the TC sublayer delineates cells. If the PMD
sublayer is cell-based with no frames, then this delineation is
typically done by running the HEC on all contiguous sets of 40 bits
(that is, 5 bytes). When a match occurs, a cell is delineated. Upon
matching four consecutive cells, cell synchronization is declared and
subsequent cells are passed to the ATM layer.

·  If the PMD sublayer is cell based with no frames, the sublayer sends
an idle cell when ATM layer has not provided a cell, thereby
generating a continuous stream of cells. The receiving TC sublayer
does not pass idle cells to the ATM layer. Idle cells are marked in the
PT field in the ATM header.

5.9.3: ATM Layer
When IP runs over ATM, the ATM cell plays the role of the link-layer frame.
The ATM layer defines the structure of the ATM cell and the meaning of the
fields within this structure. The first five bytes of the cell constitute the ATM
header; the remaining 48 bytes constitute the ATM payload. Figure 5.47
shows the structure of the ATM header.

Figure 5.47: The format of the ATM cell header
The fields in the ATM cell are as follows:

·  Virtual channel identifier (VCI). Indicates the VC to which the cell
belongs. As with most network technologies that use virtual circuits,
a cell's VCI is translated from link to link (see Section 1.4).

·  Payload type (PT). Indicates the type of payload the cell contains.
There are several data payload types, several maintenance payload
types, and an idle cell payload type. (Recall that idle cells are
sometimes needed by the physical layer for synchronization.)

·  Cell-loss priority (CLP) bit. Can be set by the source to differentiate
between high-priority traffic and low-priority traffic. If congestion
occurs and an ATM switch must discard cells, the switch can use
this bit to first discard low-priority traffic.

·  Header error checksum (HEC) byte. Error detection and correction
bits that protect the cell header, as described above.

Virtual channels



Before a source can begin to send cells to a destination, the ATM network
must first establish a virtual channel (VC) from source to destination. A
virtual channel is nothing more than a virtual circuit, as described in Section
1.4. Each VC is a path consisting of a sequence of links between source
and destination. On each of the links the VC has a virtual circuit identifier
(VCI). Whenever a VC is established or torn-down, VC translation tables
must be updated (see Section 1.4). As noted earlier, ATM backbones in the
Internet often use permanent VCs; they obviate the need for dynamic VC
establishment and tear-down.

5.9.4: ATM Adaptation Layer
The purpose of the AAL is to allow existing protocols (for example, IP) and
applications (for example, constant-bit-rate video) to run on top of ATM. As
shown in Figure 5.48, AAL is implemented only at the endpoints of an ATM
network. Such an endpoint could be a host system (if ATM provides end-
host-to-end-host data transfer) or an IP router (if ATM is being used to
connect two IP routers). In this respect, the AAL layer is analogous to the
transport layer in the Internet protocol stack.

Figure 5.48: The AAL layer is present only at the edges of the ATM network
The AAL sublayer has its own header fields. As shown in Figure 5.49 these
fields occupy a small portion of the payload in the ATM cell.

Figure 5.49: The AAL fields within the ATM payload
The ITU and the ATM Forum have standardized several AALs. Some of the
most important AALs and the ATM service classes (see Section 4.1.3) they
typically support include:

AAL 1: For constant-bit-rate (CBR) services and circuit
emulation.
AAL 2: For variable-bit-rate (VBR) services.
AAL 5: For data (for example, IP datagrams)

AAL structure
AAL has two sublayers: the segmentation and reassembly (SAR) sublayer
and the convergence sublayer (CS). As shown in Figure 5.50, the SAR sits



just above the ATM layer; the CS sublayer sits between the user application
and the SAR sublayer. Higher-layer data (for example, an IP datagram) are
first encapsulated in a common part convergence sublayer (CPCS) PDU in
the Convergence sublayer. This PDU can have a CPCS header and CPCS
trailer. Typically, the CPCS-PDU is much too large to fit into the payload of
an ATM cell; thus the CPCS-PDU has to be segmented at the ATM source
and reassembled at the ATM destination. The SAR sublayer segments the
CPCS-PDU and adds AAL header and trailer bits to form the payloads of
the ATM cells. Depending on the AAL types, the AAL and CPCS header
and trailers could be empty.

Figure 5.50: The sublayers of the AAL
AAL 5 (Simple and Efficient Adaptation Layer--SEAL)
AAL5 is a low-overhead AAL that is used to transport IP datagrams over
ATM networks. With AAL5, the AAL header and trailer are empty; thus, all
48 bytes of the ATM payload are used to carry segments of the CPCS-
PDU. An IP datagram occupies the CPCS-PDU payload, which can be from
1 to 65,535 bytes. The AAL5 CPCS-PDU is shown in Figure 5.51.

Figure 5.51: CPCS-PDU for AALS
The PAD ensures that the CPCS-PDU is an integer multiple of 48 bytes.
The length field identifies the size of the CPCS-PDU payload, so that the
PAD can be removed at the receiver. The CRC is the same one that is
used by Ethernet, Token Ring, and FDDI. At the ATM source, the AAL5
SAR chops the CPCS-PDU into 48-byte segments. As shown in Figure
5.52, a bit in the PT field of the ATM cell header, which is normally 0, is set
to 1 for the last cell of the CPCS-PDU. At the ATM destination, the ATM
layer directs cells with a specific VCI to an SAR-sublayer buffer. The ATM
cell headers are removed, and the $ $ / B LQ G LF D WH  bit is used to delineate the
CPCS-PDUs. Once the CPCS-PDU is delineated, it is passed to the AAL
convergence sublayer. At the convergence sublayer, the length field is used
to extract the CPCS-PDU payload (for example, an IP datagram), which is
passed to the higher layer.



Figure 5.52: The $ $ / B LQ G LF D WH  bit is used to reassemble IP datagrams from ATM cells

5.9.5: IP over ATM
Figure 5.53 shows an ATM backbone with four entry/exit points for Internet
IP traffic. Note that each entry/exit point is a router. An ATM backbone can
span an entire continent and may have tens or even hundreds of ATM
switches. Most ATM backbones have a permanent virtual channel (VC)
between each pair of entry/exit points. By using permanent VCs, ATM cells
are routed from entry point to exit point without having to dynamically
establish and tear down VCs. Permanent VCs, however, are only feasible
when the number of entry/exit points is relatively small. For n entry points,
n(n - 1) permanent VCs are needed to directly connect n entry/exit points.

Figure 5.53: ATM network in the core of an Internet backbone
Each router interface that connects to the ATM network will have two
addresses. The router interface will have an IP address, as usual, and the
router will have an ATM address, which is essentially a LAN address (see
Section 5.4).
Consider now an IP datagram that is to be moved across the ATM
backbone in Figure 5.53. Note that to the four IP routers, the backbone
appears as a single logical link--ATM interconnects these four routers just
as Ethernet can be used to connect four routers. Let us refer to the router at
which the datagram enters the ATM network as the "entry router" and the
router at which the datagram leaves the network as the "exit router." The



entry router does the following:

1. Examines the destination address of the datagram.

2. Indexes its routing table and determines the IP address of the exit
router (that is, the next router in the datagram's route).

3. To get the datagram to the exit router, the entry router views ATM as
just another link-layer protocol. To move the datagram to the next
router, the physical address of the next-hop router must be
determined. Recall from our discussion in Section 5.4, that this is
done using ARP. In particular, the entry router indexes an ATM ARP
table with the IP address of the exit router and determines the ATM
address of the exit router.

4. IP in the entry router then passes down to the link layer (that is,
ATM) the datagram along with the ATM address of the exit router.

After these four steps have been completed, the job of moving the
datagram to the exit router is out of the hands of IP and in the hands of
ATM. ATM must now move the datagram to the ATM destination address
obtained in Step 3 above. This task has two subtasks:

·  Determine the VCI for the VC that leads to the ATM destination
address.

·  Segment the datagram into cells at the sending side of the VC (that
is, at the entry router), and reassemble the cells into the original
datagram at the receiving side of the VC (that is, at the exit router).

The first subtask listed above is straightforward. The interface at the
sending side maintains a table that maps ATM addresses to VCIs. Because
we are assuming that the VCs are permanent, this table is up-to-date and
static. (If the VCs were not permanent, then an ATM signaling protocol
would be needed to dynamically establish and tear down the VCs.) The
second task merits careful consideration. One approach is to use IP
fragmentation, as discussed in Section 4.4.4. With IP fragmentation, the
sending router would first fragment the original datagram into fragments,
with each fragment being no more than 48 bytes, so that the fragment could
fit into the payload of the ATM cell. But this fragmentation approach has a
big problem--each IP fragment typically has 20 bytes of header, so that an
ATM cell carrying a fragment would have 25 bytes of "overhead" and only
28 bytes of useful information. ATM uses AAL5 to provide a more efficient
way to segment and reassemble a datagram.
Recall that IP in the entry router passes the datagram down to ATM along
with the ATM address of the exit router. ATM in the entry router indexes an
ATM table to determine the VCI for the VC that leads to the ATM
destination address. AAL5 then creates ATM cells out of the IP datagram:

·  The datagram is encapsulated in a CPCS-PDU using the format in



Figure 5.52.

·  The CPCS-PDU is chopped up into 48-byte chunks. Each chunk is
placed in the payload field of an ATM cell.

·  All of the cells except for the last cell have the third bit of the PT field
set to 0. The last cell has the bit set to 1.

AAL5 then passes the cells to the ATM layer. ATM sets the VCI and CLP
fields and passes each cell to the TC sublayer. For each cell, the TC
sublayer calculates the HEC and inserts it in the HEC field. The TC
sublayer then inserts the bits of the cells into the PMD sublayer.
The ATM network then moves each cell across the network to the ATM
destination address. At each ATM switch between ATM source and ATM
destination, the ATM cell is processed by the ATM physical and ATM
layers, but not by the AAL layer. At each switch the VCI is typically
translated (see Section 1.4) and the HEC is recalculated. When the cells
arrive at the ATM destination address, they are directed to an AAL buffer
that has been put aside for the particular VC. The CPCS-PDU is
reconstructed using the $ $ / B LQ G LF D WH  bit to determine which cell is the last
cell of the CPCS-PDU. Finally, the IP datagram is extracted out of the
CPCS-PDU and is passed up the protocol stack to the IP layer.

5.9.6: ARP and ATM
Consider once again the problem of moving a datagram from entry IP
router to exit router across the ATM network in Figure 5.53. Recall that ARP
has the important role of translating the exit router's address to an ATM
destination address. This translation is straightforward if the ARP table is
complete and accurate. But as with Ethernet, ATM ARP tables are auto-
configured and may not be complete. As with Ethernet, if the desired
mapping is not in the table, an ARP protocol must contact the exit router
and obtain the mapping. However, there is a fundamental difference here
between Ethernet and ATM--Ethernet is a broadcast technology and ATM
is a switched technology. What this means is that ATM cannot simply send
an ARP request message within a broadcast packet. ATM must work
harder to get the mapping. There are two generic approaches that can be
used: (1) broadcast ARP request messages and (2) ARP server.

·  Broadcast ARP request messages: In this approach, the entry router
constructs an ARP request message, converts the message to cells,
and sends the cells into the ATM network. These cells are sent by
the source along a special VC reserved for ARP request messages.
The switches broadcast all cells received on this special VC. The exit
router receives the ARP request message and sends the entry router
an ARP response message (which is not broadcasted). The entry
router then updates its ARP table. This approach can place a
significant amount of overhead ARP broadcast traffic into the
network.



·  ARP server: In this approach, an ARP server is attached directly to
one of the ATM switches in the network, with permanent VCs set up
between each router and the ARP server. All of these permanent
VCs use the same VCI on all links from the routers to the ARP
server. There are also permanent VCs from the ARP server to each
router. The ARP server contains an up-to-date ARP table that maps
IP addresses to ATM addresses. Using some registration protocol,
all routers must register themselves with the ARP server. This
approach eliminates the broadcast ARP traffic. However it requires
an ARP server, which can be swamped with ARP request
messages.

An important reference for running ARP over ATM is RFC 1577, which
discusses IP and ARP over ATM. RFC 1932 also provides a good overview
of IP over ATM.
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5.10: X.25 and Frame Relay
In this section we discuss two end-to-end wide-area-networking (WAN)
technologies, namely X.25 and Frame Relay. Introduced in the early 1980s
and popular in Europe up through the mid 1990s, X.25 is arguably the first
public packet-switching technology. Frame Relay, a successor to X.25, is
another public packet-switching technology that has been popular in North
America throughout the 1990s.

Given that X.25 and Frame Relay are end-to-end WAN technologies, you
may be wondering why we are discussing them in a chapter that is devoted
to the data-link layer? We have chosen to discuss these technologies in this
chapter for the same reason we chose to discuss ATM in this chapter--all of
these technologies are often employed today to carry IP datagrams from
one IP router to another. Thus, from the perspective of IP (which is also an
end-to-end WAN technology), X.25, Frame Relay, and ATM are link-layer
technologies. Because IP is one of the protocols being highlighted in this
book, we have put X.25, Frame Relay, and ATM where IP (and most
Internet zealots) believe these technologies belong, namely, in the link
layer.

Although X.25 still exists throughout Europe and in certain niche markets in
North America, the X.25 networks are on the verge of extinction throughout
the world. They were designed almost twenty years ago for a technological
context that is very different from today's. Frame Relay had great appeal to
corporate customers throughout the 1990s, but it is increasingly fighting
fierce competition from the public Internet. In fact, due to this competition,



Frame Relay may become a minor player in the mid-2000s. Even though
X.25 is on its way out and Frame Relay may disappear as well a few years
down the road, we have chosen to cover these technologies in this book
because of their immense historical importance.

5.10.1: A Few Words About X.25
The X.25 protocol suite was designed in the late 1970s. To understand the
motivation behind the design, we need to understand the technological
context of that ancient era. Although the Apple II personal computer was
making a big hit at this time [Nerds 1996], PCs and workstations were not
widespread and didn't have much networking support. Instead, most people
were using inexpensive "dumb terminals" to access distant mainframes
over computer networks. These dumb terminals had minimal intelligence
and storage (no disks); what appeared on their screens was completely
controlled by the mainframe at the other end of the network. In order to
widely support dumb terminals, the designers of X.25 decided to "put the
intelligence in the network." This philosophy, as we now know, is
diametrically opposed to the Internet philosophy, which places much of the
complexity in the end systems and makes minimal assumptions about
network-layer services.
One way the designers put intelligence in the X.25 network was by
employing virtual circuits. Recall from Chapter 1 that virtual-circuit networks
require the packet switches to maintain state information. In particular, the
switch must maintain a table that maps inbound interface/VC-number to
outbound interface/VC-number. Moreover, complex signaling protocols are
needed to establish VCs and tear them down. As we learned in Chapter 4,
the IP protocol is connectionless and, thus, does not use VCs. When a
node wants to send an IP datagram into the network, it just stamps the
datagram with a destination address and injects it into the network; it does
not first request the network to establish a virtual circuit between itself and
the destination.
Another important part of the technological context of the late 1970s and
early 1980s concerns the physical links. In those days, almost all of the
wired links were noisy, error-prone copper links. Fiber-optic links were still
in the research laboratories at that time. Bit error rates over long-haul
copper links were many orders of magnitude higher than they are now over
fiber links. Because of the high error rates, it made sense to design the
X.25 protocol with error recovery on a hop-by-hop basis. In particular,
whenever an X.25 switch sends a packet, it keeps a copy of the packet until
the next switch (in the packet's route) returns an acknowledgment. Thus
each switch, when receiving a packet, performs error checking, and if the
packet is error-free, it sends an acknowledgment to the previous switch.
Hop-by-hop error recovery significantly reduces link transmission rates, and
was consistent with the technological context of the era--high link error
rates and dumb terminals. The X.25 design also calls for flow-control on a
hop-by-hop basis. By contrast, the TCP performs error recovery and flow



control on an end-to-end basis, and thus does not require the links to
perform these tasks.

5.10.2: Frame Relay
Frame Relay, designed in the late 1980s and widely deployed in the 1990s,
is in many ways a second-generation X.25. Like X.25, it uses virtual
circuits. However, because the fiber-based systems of the 1990s had much
lower bit error rates than the copper-based systems of the 1980s, Frame
Relay was naturally designed for much lower error rates. The essence of
Frame Relay is a VC-based packet-switching service with no error recovery
and no flow control. Whenever a Frame Relay switch detects an error in a
packet, its only possible course of action is to discard the data. This results
in a network with lower processing overheads and higher transmission
rates than X.25, but requires intelligent end systems for data integrity. In
most cases today, the Frame Relay network is owned by a public network
service provider (for example, AT&T, Sprint, or Bell Atlantic) and its use is
contracted on a multiyear basis to corporate customers. Frame Relay is
extensively used today to allow LANs on different corporate campuses to
send data to each other at reasonably high speeds. As shown in Figure
5.54, Frame Relay often interconnects these LANs through IP routers, with
each IP router in a different corporate campus. Frame Relay offers a
corporation an alternative to sending its intercampus IP traffic over the
public Internet, for which the corporation may have reliability and security
concerns.

Figure 5.54: Public Frame Relay network interconnecting two Ethernets through routers
located on the Ethernets. The dotted line represents a virtual circuit.

Frame Relay networks can use either switched VCs (SVCs) or permanent
virtual circuits (PVCs). For router interconnection, a PVC is often
permanently established between each pair of routers. N(N - 1)/2 PVCs are
necessary to interconnect N routers. Throughout our discussion we shall
assume that the frame relay network uses PVCs (which is the more
common case).
Sending an IP datagram from Ethernet to Frame Relay to Ethernet
Consider the transmission of an IP datagram between two end systems on
two Ethernets interconnected by a Frame Relay network. Let's walk through
the steps in the context of Figure 5.54. When an Ethernet frame arrives to
the source router, the router's Ethernet card strips off the Ethernet fields



and passes the IP datagram to the network layer. The network layer passes
the IP datagram to the Frame Relay interface card. This card encapsulates
the IP datagram in the Frame Relay frame, as shown in Figure 5.55. It also
calculates the CRC (2 bytes) and inserts the resulting value in the CRC
field. The link-layer field (2 bytes) includes a 10-bit virtual-circuit number
field. The interface card obtains the VC number from a table that associates
IP network numbers to VC numbers. The interface card then transmits the
packet.

Figure 5.55: Encapsulating user data (for example, an IP datagram) into a Frame Relay
frame

The interface card transmits the Frame Relay packet to a nearby Frame
Relay switch, owned by the Frame Relay service provider. The switch
examines the CRC field. If the frame has an error, the switch discards the
frame; unlike X.25, frame relay does not bother to retransmit packets on a
hop-by-hop basis. If there is no error in the frame, the switch uses the
frame's VC number to route the frame to the next switch (or to the
destination router). The destination router removes the frame relay fields
and then delivers the datagram over Ethernet to the destination host. If TCP
segments are lost or arrive out of sequence, then TCP in the
communicating hosts corrects the problem.
Committed Information Rate (CIR)
Frame Relay makes use of an innovative mechanism referred to as the
committed information rate (CIR). Every frame relay VC has a committed
information rate. We will define the CIR rigorously below, but roughly, the
CIR is a commitment on the part of the Frame Relay network to dedicate to
the VC a specified transmission rate determined by the CIR. The CIR
service, introduced by Frame Relay in the early 1990s, is in many ways a
forerunner to the Internet's differentiated service (see Chapter 6). As we
shall shortly see, Frame Relay provides the CIR service by marking
packets.
In Frame Relay networks, Frame Relay packets can belong to one of two
priority levels--either high priority or low priority. Packets are assigned
priorities by marking a special bit in the packet header--the so-called
discard eligibility (DE) bit--to either 0 for high priority and 1 for low priority. If
a frame is a high-priority frame, then the Frame Relay network should
deliver the packet to the destination under all but the most desperate



network conditions, including periods of congestion and backbone link
failures. However, for low-priority packets, the Frame Relay network is
permitted to discard the frame under congested conditions. Under
particularly draconian conditions, the network can even discard high-priority
packets. Congestion is typically measured by the state of output buffers in
Frame Relay switches. When an output buffer in a Frame Relay switch is
about to overflow, the switch will first discard the low-priority packets, that
is, the packets in the buffer with the DE bit set to 1.
The actions that a Frame Relay switch takes on marked packets should be
clear, but we haven't said anything about how packets get marked. This is
where the CIR comes in. To explain this, we need to introduce a little
frame-relay jargon, which we do in the context of Figure 5.54. The access
rate is the rate of the access link, that is, the rate of the link from the source
router to the "edge" Frame Relay switch. This rate is often 64 Kbps, but
integer multiples of 64 Kbps up to 1.544 Mbps are also common. Denote R
for the access rate. As we learned in Chapter 1, each packet sent over the
link of rate R is transmitted at rate R bps. The edge switch is responsible for
marking packets that arrive from the source router. To perform the marking,
the edge switch examines the arrival times of packets from the source
router over short, fixed intervals of time, called the measurement interval,
denoted by Tc. Most frame-relay service providers use a Tc value that falls
somewhere between 100 msec and 1 sec.
Now we can precisely describe the CIR. Each VC that emanates from the
source router (there may be many, possibly destined to different LANs) is
assigned a committed information rate (CIR), which is in units of bits/sec.
The CIR is never greater than R, the access rate. Customers pay for a
specific CIR; the higher the CIR, the more the customer pays to the Frame
Relay service provider. If the VC generates packets at a rate that is less
than the CIR, then all of the VC's packets will be marked as high-priority
packets (DE = 0). However, if the rate at which the VC generates packets
exceeds the CIR, then the fraction of the VC's packets that exceed the rate
will be marked as low-priority packets. More specifically, over each
measurement interval Tc, for the first CIR • Tc bits the VC sends, the edge
switch marks the corresponding packets as high-priority packets (DE = 0).
The edge switch marks all additional packets sent over this interval as low-
priority packets (DE = 1).
To get a feel for what is going on here, let us look at an example. Let us
suppose that the Frame Relay service provider uses a measurement
interval of Tc = 500 msec. Suppose that the access link is R = 64 Kbps and
that the CIR assigned to a particular VC is 32 Kbps. Also suppose, for
simplicity, that each Frame Relay packet consists of exactly L = 4,000 bits.
This means that every 500 msec the VC can send CIR • Tc/L = 4 packets as
high-priority packets. All additional packets sent within the 500 msec
interval are marked as low-priority packets. Note that up to four low-priority
packets can be sent over each 500 msec interval (in addition to four high-
priority packets). Because the goal of the frame relay network is to deliver



all high-priority packets to the destination frame-relay node, the VC is
essentially guaranteed of a throughput of at least 32 Kbps. Frame Relay
does not, however, make any guarantees about the end-to-end delays of
either the high- or low-priority packets.
Increasing the measurement interval Tc increases the potential burstiness
of the high-priority packets emitted from the source router. In the previous
example, if Tc = 0.5 sec, up to four high-priority packets can be emitted
back-to-back; for Tc = 1 sec, up to eight high-priority packets can be emitted
back-to-back. When the frame relay network uses a smaller value of Tc, it
forces the stream of high-priority packets to be smoother (less bursty); but a
large value of Tc gives the VC more flexibility. In any case, for every choice
of Tc, the long-run average rate of bits emitted as high-priority bits never
exceeds the CIR of the VC.
We must keep in mind that many PVCs may emanate from the source
router and travel over the access link. It is interesting to note that the sum
of the CIRs for all these VCs is permitted to exceed the access rate, R. This
is referred to as overbooking. Because overbooking is permitted, an
access link may transmit high-priority packets at a corresponding bit rate
that exceeds the CIR (even though each individual VC sends priority
packets at a rate that does not exceed the CIR).
We conclude this section by mentioning that the Frame Relay Forum
[FRForum 2000] maintains a number or relevant specifications. An
excellent introductory course for Frame Relay is made available on the Hill
Associates Web site [Hill 2000]. Walter Goralski has also written a readable
yet in-depth book about Frame Relay [Goralski 1999].
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5.11: Summary
In this chapter, we've examined the data-link layer--its services, the principles
underlying its operation, and a number of important specific protocols that use
these principles in implementing data-link services.

We saw that the basic service of the data-link layer is to move a network-layer
datagram from one node (router or host) to an adjacent node. We saw that all data
link protocols operate by encapsulating a network-layer datagram within a link-
layer frame before transmitting the frame over the "link" to the adjacent node.
Beyond this common framing function, however, we learned that different data link
protocols provide very different link access, delivery (reliability, error
detection/correction), flow control, and transmission (for example, full-duplex



versus half-duplex) services. These differences are due in part to the wide variety
of link types over which data-link protocols must operate. A simple point-to-point
link has a single sender and receiver communicating over a single "wire." A
multiple access link is shared among many senders and receivers; consequently,
the data link protocol for a multiple access channel has a protocol (its multiple
access protocol) for coordinating link access. In the cases of ATM, X.25, and frame
relay, we saw that the "link" connecting two adjacent nodes (for example, two IP
routers that are adjacent in an IP sense--that they are next-hop IP routers toward
some destination), may actually be a network in and of itself. In one sense, the
idea of a network being considered as a "link" should not seem odd. A telephone
"link" connecting a home modem/computer to a remote modem/router, for
example, is actually a path through a sophisticated and complex telephone
network.

Among the principles underlying data-link communication, we examined error-
detection and correction techniques, multiple access protocols, link-layer
addressing, and the construction of extended local area networks via hubs,
bridges, and switches. In the case of error detection/correction, we examined how
it is possible to add additional bits to a frame's header in order to detect, and in
some cases correct, bit-flip errors that might occur when the frame is transmitted
over the link. We covered simple parity and checksumming schemes, as well as
the more robust cyclic redundancy check. We then moved on to the topic of
multiple access protocols. We identified and studied three broad approaches for
coordinating access to a broadcast channel: channel partitioning approaches
(TDM, FDM, CDMA), random access approaches (the ALOHA protocols, and
CSMA protocols), and taking-turns approaches (polling and token passing). We
saw that a consequence of having multiple nodes share a single broadcast channel
was the need to provide node addresses at the data-link level. We learned that
physical addresses were quite different from network-layer addresses, and that in
the case of the Internet, a special protocol (ARP--the address-resolution protocol)
is used to translate between these two forms of addressing. We then examined
how nodes sharing a broadcast channel form a local area network (LAN), and how
multiple LANs can be connected together to form larger LANs--all without the
intervention of network-layer routing to interconnect these local nodes. Finally, we
covered a number of specific data-link layer protocols in detail--Ethernet, the
wireless IEEE 802.11 protocol, and the point-to-point protocol, PPP. As discussed
in Sections 5.9 and 5.10, ATM, X.25, and Frame Relay can also be used to
connect two network-layer routers. For example, in the IP-over-ATM scenario, two
adjacent IP routers can be connected to each other by a virtual circuit through an
ATM network. In such circumstances, a network that is based on one network
architecture (for example, ATM, or Frame Relay) can serve as a single logical link
between two neighboring nodes (for example, IP routers) in another network
architecture.

Having covered the data link layer, our journey down the protocol stack is now
over! Certainly, the physical layer lies below the data-link layer, but the details of
the physical layer are probably best left for another course (for example, in



communication theory, rather than computer networking). We have, however,
touched upon several aspects of the physical layer in this chapter (for example, our
brief discussions of Manchester encoding in Section 5.5 and of signal fading in
Section 5.7) and in Chapter 1 (our discussion of physical media in Section 1.5).

Although our journey down the protocol stack is over, our study of computer
networking is not yet at an end. In the following three chapters we cover
multimedia networking, network security, and network management. These three
topics do not fit conveniently into any one layer; indeed, each topic crosscuts many
layers. Understanding these topics (sometimes billed as "advanced topics" in some
networking texts) thus requires a firm foundation in all layers of the protocol stack--
a foundation that our study of the data link layer has now completed!


