
Automata Theory and Model Checking

Orna Kupferman

Abstract We study automata on infinite words and their applications insystem spec-
ification and verification. We first introduce Büchi automata and survey their closure
properties, expressive power, and determinization. We then introduce additional ac-
ceptance conditions and the model of alternating automata.We compare the differ-
ent classes of automata in terms of expressive power and succinctness, and describe
decision problems for them. Finally, we describe the automata-theoretic approach
to system specification and verification.

1 Introduction

Finite automata on infinite objects were first introduced in the 1960s. Motivated by
decision problems in mathematics and logic, Büchi, McNaughton, and Rabin devel-
oped a framework for reasoning about infinite words and infinite trees [6, 52, 61].
The framework has proved to be very powerful. Automata and their tight relation
to second-order monadic logics were the key to the solution of several fundamental
decision problems in mathematics and logic [62, 74]. Today,automata on infinite
objects are used for specification and verification of nonterminating systems. The
idea is simple: when a system is defined with respect to a finitesetAP of proposi-
tions, each of the system’s states can be associated with a set of propositions that
hold in this state. Then, each of the system’s computations induces an infinite word
over the alphabet 2AP, and the system itself induces a language of infinite words
over this alphabet. This language can be defined by an automaton. Similarly, a sys-
tem specification, which describes all the allowed computations, can be viewed as a
language of infinite words over 2AP , and can therefore be defined by an automaton.
In the automata-theoretic approach to verification, we reduce questions about sys-

Orna Kupferman
School of Computer Science and Engineering, Hebrew University, Jerusalem 91904, Israel. e-mail:
orna@cs.huji.ac.il

1

2 Orna Kupferman

tems and their specifications to questions about automata. More specifically, ques-
tions such as satisfiability of specifications and correctness of systems with respect
to their specifications are reduced to questions such as non-emptiness and language
containment [79, 48, 77].

The automata-theoretic approach separates the logical andthe combinatorial as-
pects of reasoning about systems. The translation of specifications to automata han-
dles the logic and shifts all the combinatorial difficultiesto automata-theoretic prob-
lems, yielding clean and asymptotically optimal algorithms, as well as better under-
standing of the complexity of the problems. Beyond leading to tight complexity
bounds, automata have proven to be very helpful in practice.Automata are the key
to techniques such as on-the-fly model checking [21, 11], andthey are useful also for
modular model checking [41], partial-order model checking[75, 31, 23, 78], model
checking of real-time and hybrid systems [26], open systems[1], and infinite-state
systems [43, 40]. Automata also serve as expressive specification formalisms [39, 2]
and in algorithms for sanity checks [37]. Automata-based methods have been imple-
mented in both academic and industrial automated-verification tools (e.g., COSPAN
[24], SPIN [27], ForSpec [72], and NuSMV [9]).

This chapter studies automata on infinite words and their applications in sys-
tem specification and verification. We first introduce Büchi automata, survey their
closure properties, expressive power, and determinization. We then introduce addi-
tional acceptance conditions and the model of alternating automata. We compare
the different classes of automata in terms of expressive power and succinctness, and
describe decision problems for them. Finally, we describe the automata-theoretic
approach to system specification and verification.

2 Nondeterministic Büchi Automata on Infinite Words

2.1 Definitions

For a finite alphabetΣ , an infinite wordw= σ1 ·σ2 ·σ3 · · · is an infinite sequence of
letters fromΣ . We useΣ ω to denote the set of all infinite words over the alphabetΣ .
A languageL ⊆ Σ ω is a set of words. We sometimes refer also to finite words, and
to languagesL ⊆ Σ ∗ of finite words overΣ . A prefixof w= σ1 ·σ2 · · · is a (possibly
empty) finite wordσ1 · σ2 · σ3 · · ·σi , for somei ≥ 0. A suffix of w is an infinite
word σi ·σi+1 · · ·, for somei ≥ 1. A property of a system with a setAP of atomic
propositions can be viewed as a language over the alphabet 2AP. We have seen in
Chapter 2 that languages over this alphabet can be defined by linear temporal-logic
(LTL, for short) formulas. Another way to define languages isby automata.

A nondeterministic finite automatonis a tupleA = 〈Σ ,Q,Q0,δ ,α〉, whereΣ
is a finite non-empty alphabet,Q is a finite non-empty set ofstates, Q0 ⊆ Q is a
non-empty set ofinitial states, δ : Q×Σ → 2Q is a transition function, andα is an
acceptance condition, to be defined below.

Automata Theory and Model Checking 3

Intuitively, when the automatonA runs on an input word overΣ , it starts in
one of the initial states, and it proceeds along the word according to the transition
function. Thus,δ (q,σ) is the set of states thatA can move into when it is in state
q and it reads the letterσ . Note that the automaton may benondeterministic, since
it may have several initial states and the transition function may specify several
possible transitions for each state and letter. The automaton A is deterministicif
|Q0| = 1 and |δ (q,σ)| = 1 for all statesq ∈ Q and symbolsσ ∈ Σ . Specifying
deterministic automata, we sometimes describe the single initial state or destination
state, rather than a singleton set.

Formally, arun r of A on a finite wordw = σ1 ·σ2 · · ·σn ∈ Σ ∗ is a sequence
r = q0,q1, . . . ,qn of n+1 states inQ such thatq0 ∈ Q0, and for all 0≤ i < n we have
qi+1 ∈ δ (qi ,σi+1). Note that a nondeterministic automaton may have several runs
on a given input word. In contrast, a deterministic automaton has exactly one run on
a given input word. When the input word is infinite, thusw= σ1 ·σ2 ·σ3 · · · ∈ Σ ω ,
then a run ofA on it is an infinite sequence of statesr = q0,q1,q2, . . . such that
q0 ∈ Q0, and for all i ≥ 0, we haveqi+1 ∈ δ (qi ,σi+1). For an infinite runr, let
inf (r) = {q : qi = q for infinitely manyi’s }. Thus,inf (r) is the set of states thatr
visits infinitely often.

The acceptance conditionα determines which runs are “good”. For automata on
finite words,α ⊆ Q and a runr is acceptingif qn ∈ α. For automata on infinite
words, one can consider several acceptance conditions. Letus start with the B̈uchi
acceptance condition [6]. There,α ⊆ Q, and a runr is accepting if it visits some
state inα infinitely often. Formally,r is accepting iffinf (r)∩α 6= /0. A run that is
not accepting isrejecting. A word w is accepted by an automatonA if there is an
accepting run ofA on w. The language recognized byA , denotedL (A), is the
set of words thatA accepts. We sometimes refer toL (A) also as the language of
A .

We use NBW and DBW to abbreviate nondeterministic and deterministic Büchi
automata, respectively.1 For a classγ of automata (so far, we have introducedγ ∈
{NBW,DBW}), we say that a languageL ⊆ Σ ω is γ-recognizable iff there is an
automaton in the classγ that recognizesL. A language isω-regular iff it is NBW-
recognizable.

Example 1.Consider the DBWA1 appearing in Figure 1. When we draw automata,
states are denoted by circles. Directed edges between states are labeled with letters
and describe the transitions. Initial states (q0, in the figure) have an edge entering
them with no source, and accepting states (q1, in the figure) are identified by double
circles. The DBW moves to the accepting state whenever it reads the lettera, and
it moves to the non-accepting state whenever it reads the letter b. Accordingly, the
single runr on a wordw visits the accepting state infinitely often iffw has infinitely
manya’s. Hence,L (A1) = {w : w has infinitely manya’s }.

Example 2.Consider the NBWA2 appearing in Figure 2. The automaton is non-
deterministic, and in order for a run to be accepting it has toeventually move to

1 The letter W indicates that the automata run on words (rather than, say, trees).

4 Orna Kupferman

b

b a

A1 :
q0 q1

a

Fig. 1 A DBW for {w : w has infinitely manya’s }

the accepting state, where it has to stay forever while reading b. Note that ifA2

readsa from the accepting state it gets stuck. Accordingly,A2 has an accepting run
on a wordw iff w has a position from which an infinite tail ofb’s starts. Hence,
L (A2) = {w : w has only finitely manya’s}.

b

b

q1

a,b
A2 :

q0

Fig. 2 An NBW for {w : w has only finitely manya’s}

Consider a directed graphG= 〈V,E〉. A strongly connected setof G (SCS) is a
setC ⊆V of vertices such that for every two verticesv,v′ ∈C, there is a path from
v to v′. An SCSC is maximalif it cannot be extended to a larger SCS. Formally,
for every nonemptyC′ ⊆ V \C, we have thatC∪C′ is not an SCS. The maximal
strongly connected sets are also termedstrongly connected components(SCC). An
automatonA = 〈Σ ,Q,Q0,δ ,α〉 induces a directed graphGA = 〈Q,E〉 in which
〈q,q′〉 ∈ E iff there is a letterσ such thatq′ ∈ δ (q,σ). When we talk about the
SCSs and SCCs ofA , we refer to those ofGA . Consider a runr of an automaton
A . It is not hard to see that the setinf (r) is an SCS. Indeed, since every two states
q andq′ in inf (r) are visited infinitely often, the stateq′ must be reachable fromq.

2.2 Closure Properties

Automata on finite words are closed under union, intersection, and complemen-
tation. In this section we study closure properties for nondeterministic B̈uchi au-
tomata.

Automata Theory and Model Checking 5

2.2.1 Closure Under Union and Intersection

We start with closure under union, where the construction that works for nondeter-
ministic automata on finite words, namely putting the two automata “one next to
the other”, works also for nondeterministic Büchi automata. Formally, we have the
following.

Theorem 1. [8] Let A1 andA2 be NBWs with n1 and n2 states, respectively. There
is an NBWA such thatL (A) = L (A1)∪L (A2) andA has n1+n2 states.

Proof: Let A1 = 〈Σ ,Q1,Q0
1,δ1,α1〉 and A2 = 〈Σ ,Q2,Q0

2,δ2,α2〉. We assume,
without loss of generality, thatQ1 andQ2 are disjoint. Since nondeterministic au-
tomata may have several initial states, we can defineA as the NBW obtained by
taking the union ofA1 andA2. Thus,A = 〈Σ ,Q1∪Q2,Q0

1∪Q0
2,δ ,α1∪α2〉, where

for every stateq∈ Q1∪Q2, we have thatδ (q,σ) = δi(q,σ), for the indexi ∈ {1,2}
such thatq∈ Qi . It is easy to see that for every wordw∈ Σ ω , the NBWA has an
accepting run onw iff at least one of the NBWsA1 andA2 has an accepting run on
w.

We proceed to closure under intersection. For the case of finite words, one proves
closure under intersection by constructing, givenA1 andA2, a “product automaton”
that hasQ1×Q2 as its state space and simulates the runs of bothA1 andA2 on the
input words. A word is then accepted by bothA1 andA2 iff the product automaton
has a run that leads to a state inα1×α2. As the example below demonstrates, this
construction does not work for B̈uchi automata.

Example 3.Consider the two DBWsA1 andA2 on the left of Figure 3. The product
automatonA1×A2 is shown on the right. Clearly,L (A1) = L (A2) = {aω}, but
L (A1×A2) = /0.

s1 t1

a

a

A1:
s2 t2

a

a

A2:
t1, t2

a

a

A1×A2:
s1,s2

Fig. 3 Two Büchi automata accepting the language{aω}, and their empty product

As demonstrated in Example 3, the problem with the product automaton is that
the definition of the set of accepting states to beα1×α2 forces the accepting runs
of A1 andA2 to visit α1 andα2 simultaneously. This requirement is too strong, as
an input word may still be accepted by bothA1 andA2, but the accepting runs on it
visit α1 andα2 in different positions. As we show below, the product automaton is a
good basis for proving closure under intersection, but one needs to take two copies
of it: one that waits for visits of runs ofA1 to α1 (and moves to the second copy
when such a visit is detected) and one that waits for visits ofruns ofA2 to α2 (and

6 Orna Kupferman

returns to the first copy when such a visit is detected). The acceptance condition
then requires the run to alternate between the two copies infinitely often, which is
possible exactly when both the run ofA1 visits α1 infinitely often, and the run of
A2 visits α2 infinitely often. Note thatA2 may visitα2 when the run is in the first
copy, in which case the visit toα2 is ignored, and in fact this may happen infinitely
many times. Still, if there are infinitely many visits toα1 andα2, then eventually the
run moves to the second copy, where it eventually comes across a visit toα2 that is
not ignored. Formally, we have the following.

Theorem 2. [8] Let A1 andA2 be NBWs with n1 and n2 states, respectively. There
is an NBWA such thatL (A) = L (A1)∩L (A2) andA has2n1n2 states.

Proof: Let A1 = 〈Σ ,Q1,Q0
1,δ1,α1〉 andA2 = 〈Σ ,Q2,Q0

2,δ2,α2〉. We defineA =
〈Σ ,Q,Q0,δ ,α〉, where

• Q= Q1×Q2×{1,2}. That is, the state space consists of two copies of the prod-
uct automaton.

• Q0 = Q0
1×Q0

2×{1}. That is, the initial states are triples〈s1,s2,1〉 such thats1

ands2 are initial inA1 andA2, respectively. The run starts in the first copy.
• For all q1 ∈ Q1, q2 ∈ Q2, c ∈ {1,2}, andσ ∈ Σ , we defineδ (〈s1,s2,c〉,σ) =

δ1(s1,σ)×δ2(s2,σ)×{next(s1,s2,c)}, where

next(s1,s2,c) =

[

1 if (c= 1 ands1 6∈ α1) or (c= 2 ands2 ∈ α2),
2 if (c= 1 ands1 ∈ α1) or (c= 2 ands2 6∈ α2).

That is,A proceeds according to the product automaton, and it moves from the
first copy to the second copy whens1 ∈ α1, and from the second copy to the first
copy whens2 ∈ α2. In all other cases it stays in the current copy.

• α = α1×Q2×{1}. That is, a run ofA is accepting if it visits infinitely many
states in the first copy in which theQ1-component is inα1. Note that after such
a visit, A moves to the second copy, from which it returns to the first copy
after visiting a state in which theQ2-component is inα2. Accordingly, there
must be a visit to a state in which theQ2-component is inα2 between every two
successive visits to states inα. This is why a run visitsα infinitely often iff its
Q1-component visitsα1 infinitely often and itsQ2-component visitsα2 infinitely
often.

Note that the product construction retains determinism; i.e., starting with deter-
ministic A1 andA2, the productA is deterministic. Thus, DBWs are also closed
under intersection. Also, while the union construction we have described does not
retain determinism, DBWs are closed also under union. Indeed, if we take the prod-
uct construction (one copy of it is sufficient), which retains determinism, and define
the set of accepting states to be(α1×Q2)∪ (Q1×α2), we get a DBW for the union.
Note, however, that unlike then1+n2 blow-up in Theorem 1, the blow-up now is
n1n2.

Automata Theory and Model Checking 7

2.2.2 Closure Under Complementation

For deterministic automata on finite words, complementation is easy: the single run
is rejecting iff its last state is not accepting, thus complementing a deterministic
automaton can proceed bydualizing its acceptance condition: for an automaton
with state spaceQ and setα of accepting states, the dual acceptance condition is
α̃ = Q\α, and it is easy to see that dualizing the acceptance condition of a deter-
ministic automaton on finite words results in a deterministic automaton for the com-
plement language. It is also easy to see that such a simple dualization does not work
for DBWs. Indeed, a run of a B̈uchi automaton is rejecting iff it visitsα only finitely
often, which is different from requiring it to visit̃α infinitely often. As a concrete
example, consider the DBWA1 from Figure 1. Recall thatL (A1) = {w : w has
infinitely manya’s }. An attempt to complement it by defining the set of accepting
states to be{q0} results in a DBW whose language is{w : w has infinitely manyb’s
}, which does not complementL (A1). For example, the word(a ·b)ω belongs to
both languages. In this section we study the complementation problem for B̈uchi au-
tomata. We start with deterministic automata and show that while dualization does
not work, their complementation is quite simple, but results in a nondeterministic
automaton. We then move on to nondeterministic automata, and describe a comple-
mentation procedure for them.

Theorem 3. [47] Let A be a DBW with n states. There is an NBWA ′ such that
L (A ′) = Σ ω \L (A), andA ′ has at most2n states.

Proof: Let A = 〈Σ ,Q,q0,δ ,α〉. The NBW A ′ should accept exactly all words
w for which the single run ofA on w visits α only finitely often. It does so by
guessing a position from which no more visits ofA to α take place. For that,A ′

consists of two copies ofA : one that includes all the states and transitions ofA ,
and one that excludes the accepting states ofA , and to whichA ′ moves when it
guesses that no more states inα are going to be visited. All the states in the second
copy are accepting. Formally,A ′ = 〈Σ ,Q′,Q′

0,δ ′,α ′〉, where

• Q′ = (Q×{0})∪ ((Q\α)×{1}).
• Q′

0 = {〈q0,0〉}.
• For everyq∈ Q, c∈ {0,1}, andσ ∈ Σ with δ (q,σ) = q′, we have

δ ′(〈q,c〉,σ) =









{〈q′,0〉,〈q′,1〉} if c= 0 andq′ 6∈ α,
{〈q′,0〉} if c= 0 andq′ ∈ α,
{〈q′,1〉} if c= 1 andq′ 6∈ α,
/0 if c= 1 andq′ ∈ α.

• α ′ = (Q\α)×{1}.

Thus,A ′ can stay in the first copy forever, but in order for a run ofA ′ to be ac-
cepting, it must eventually move to the second copy, from where it cannot go back
to the first copy and must avoid states inα.

8 Orna Kupferman

The construction described in the proof of Theorem 3 can be applied also to non-
deterministic automata. Since, however,A ′ accepts a wordw iff there exists a run
of A on w that visitsα only finitely often, whereas a complementing automaton
should accept a wordw iff all the runs ofA on w visit α only finitely often, the
construction has a one-sided error when applied to nondeterministic automata. This
is not surprising, as the same difficulty exists when we complement nondeterminis-
tic automata on finite words. By restricting attention to deterministic automata, we
guarantee that the existential and universal quantification on the runs ofA coincide.

We now turn to consider complementation for nondeterministic Büchi automata.
In the case of finite words, one first determinizes the automaton and then comple-
ments the result. An attempt to follow a similar plan for NBWs,namely a translation
to a DBW and then an application of Theorem 3, does not work: aswe shall see in
Section 2.3, DBWs are strictly less expressive than NBWs, thusnot all NBWs can
be determinized. Nevertheless, NBWs are closed under complementation.

Efforts to develop a complementation construction for NBWs started in the early
1960s, motivated by decision problems for second-order logics. Büchi introduced
a complementation construction that involved a complicated Ramsey-based combi-
natorial argument and a doubly-exponential blow-up in the state space [6]. Thus,

complementing an NBW withn states resulted in an NBW with 22O(n)
states. In

[70], Sistla et al. suggested an improved implementation ofBüchi’s construction,
with only 2O(n2) states, which is still not optimal.2 Only in [64], Safra introduced a
determinization construction that involves an acceptancecondition that is stronger
than B̈uchi, and used it in order to present a 2O(nlogn) complementation construc-
tion, matching the known lower bound [54]. The use of complementation in practice
has led to a resurgent interest in the exact blow-up that complementation involves
and the feasibility of the complementation construction (e.g., issues like whether
the construction can be implemented symbolically, whetherit is amenable to opti-
mizations or heuristics – these are all important criteria that complementation con-
structions that involve determinization do not satisfy). In [33], Klarlund introduced
an optimal complementation construction that avoids determinization. Rather, the
states of the complementing automaton utilizeprogress measures– a generic con-
cept for quantifying how each step of a system contributes tobringing a compu-
tation closer to its specification. In [44], Kupferman and Vardi used ranks, which
are similar to progress measures, in a complementation construction that goes via
intermediate alternating co-Büchi automata. Below we describe the construction of
[44] circumventing the intermediate alternating automata.

Let A = 〈Σ ,Q,Q0,δ ,α〉 be an NBW withn states. Letw= σ1 ·σ2 ·σ3 · · · be a
word in Σ ω . We define an infiniteDAG G that embodies all the possible runs ofA

onw. Formally,G= 〈V,E〉, where

• V ⊆ Q× IN is the union
⋃

l≥0(Ql ×{l}), where for alll ≥ 0, we haveQl+1 =
⋃

q∈Ql
δ (q,σl+1).

2 Interestingly, by carrying out some simple optimizations, the Ramsey-based approach in the
constructions in [6] and [70] can be improved to produce complementing NBWs with the optimal
2O(nlogn) blow-up [5].

Automata Theory and Model Checking 9

• E ⊆
⋃

l≥0(Ql × {l})× (Ql+1 × {l + 1}) is such that for alll ≥ 0, we have
E(〈q, l〉,〈q′, l +1〉) iff q′ ∈ δ (q,σl+1).

We refer toG as therun DAG of A on w. We say that a vertex〈q′, l ′〉 is asuc-
cessorof a vertex〈q, l〉 iff E(〈q, l〉,〈q′, l ′〉). We say that〈q′, l ′〉 is reachablefrom
〈q, l〉 iff there exists a sequence〈q0, l0〉,〈q1, l1〉,〈q2, l2〉, . . . of successive vertices
such that〈q, l〉 = 〈q0, l0〉, and there existsi ≥ 0 such that〈q′, l ′〉 = 〈qi , l i〉. We say
that a vertex〈q, l〉 is anα-vertexiff q ∈ α. Finally, we say thatG is anaccepting
run DAG if G has a path with infinitely manyα-vertices. Otherwise, we say thatG
is rejecting. It is easy to see thatA acceptsw iff G is accepting.

For k ∈ IN, let [k] denote the set{0,1, . . . ,k}. A ranking for G is a function
f : V → [2n] that satisfies the following two conditions:

1. For all vertices〈q, l〉 ∈V, if f (〈q, l〉) is odd, thenq 6∈ α.
2. For all edges〈〈q, l〉,〈q′, l ′〉〉 ∈ E, we havef (〈q′, l ′〉)≤ f (〈q, l〉).

Thus, a ranking associates with each vertex inG a rank in[2n] so that the ranks
along paths decrease monotonically, andα-vertices get only even ranks. Note that
each path inG eventually gets trapped in some rank. We say that the rankingf is an
odd rankingif all the paths ofG eventually get trapped in an odd rank. Formally,f is
odd iff for all paths〈q0,0〉,〈q1,1〉,〈q2,2〉, . . . in G, there isj ≥ 0 such thatf (〈q j , j〉)
is odd, and for alli ≥ 1, we havef (〈q j+i , j + i〉) = f (〈q j , j〉).

We are going to prove thatG is rejecting iff it has an odd ranking. The difficult
direction is to show that ifG is rejecting, then it has an odd ranking. Below we
make some observations on rejecting runDAGs that help us with this direction. We
say that a vertex〈q, l〉 is finite in a DAG G′ ⊆ G iff only finitely many vertices inG′

are reachable from〈q, l〉. The vertex〈q, l〉 is α-free in G′ iff all the vertices inG′

that are reachable from〈q, l〉 are notα-vertices. Note that, in particular, anα-free
vertex is not anα-vertex. We define an infinite sequenceG0 ⊇ G1 ⊇ G2 ⊇ . . . of
DAGs inductively as follows.

• G0 = G.
• For i ≥ 0, we haveG2i+1 = G2i \{〈q, l〉 : 〈q, l〉 is finite inG2i}.
• For i ≥ 0, we haveG2i+2 = G2i+1\{〈q, l〉 : 〈q, l〉 is α-free inG2i+1}.

Lemma 1. If G is rejecting, then for every i≥ 0, there exists li such that for all l≥ l i ,
there are at most n− i vertices of the form〈q, l〉 in G2i .

Proof: We prove the lemma by an induction oni. The case wherei = 0 follows
from the definition ofG0 = G. Indeed, inG all levelsl ≥ 0 have at mostn vertices
of the form 〈q, l〉. Assume that the lemma’s requirement holds fori; we prove it
for i +1. Consider theDAG G2i . We distinguish between two cases. First, ifG2i is
finite, thenG2i+1 is empty,G2i+2 is empty as well, and we are done. Otherwise, we
claim that there must be someα-free vertex inG2i+1. To see this, assume, by way
of contradiction, thatG2i is infinite and no vertex inG2i+1 is α-free. SinceG2i is
infinite, G2i+1 is also infinite. Also, each vertex inG2i+1 has at least one successor.
Consider some vertex〈q0, l0〉 in G2i+1. Since, by the assumption, it is notα-free,
there exists anα-vertex〈q′0, l

′
0〉 reachable from〈q0, l0〉. Let 〈q1, l1〉 be a successor

10 Orna Kupferman

of 〈q′0, l
′
0〉. By the assumption,〈q1, l1〉 is also notα-free. Hence, there exists anα-

vertex〈q′1, l
′
1〉 reachable from〈q1, l1〉. Let 〈q2, l2〉 be a successor of〈q′1, j ′1〉. By the

assumption,〈q2, l2〉 is also notα-free. Thus, we can continue similarly and construct
an infinite sequence of vertices〈q j , l j〉, 〈q′j , l

′
j〉 such that for allj, the vertex〈q′j , l

′
j〉 is

anα-vertex reachable from〈q j , l j〉, and〈q j+1, l j+1〉 is a successor of〈q′j , l
′
j〉. Such

a sequence, however, corresponds to a path inG with infinitely manyα-vertices,
contradicting the assumption thatG is rejecting.

So, let〈q, l〉 be anα-free vertex inG2i+1. We claim that takingl i+1 = max{l , l i}
satisfies the requirement of the lemma. That is, we claim thatfor all j ≥ max{l , l i},
there are at mostn− (i + 1) vertices of the form〈q, j〉 in G2i+2. Since〈q, l〉 is in
G2i+1, it is not finite in G2i . Thus, there are infinitely many vertices inG2i that
are reachable from〈q, l〉. Hence, by K̈onig’s Lemma,G2i contains an infinite path
〈q, l〉,〈q1, l +1〉,〈q2, l +2〉, For all k ≥ 1, the vertex〈qk, l +k〉 has infinitely
many vertices reachable from it inG2i and thus, it is not finite inG2i . Therefore,
the path〈q, l〉,〈q1, l +1〉,〈q2, l +2〉, . . . exists also inG2i+1. Recall that〈q, l〉 is α-
free. Hence, being reachable from〈q, l〉, all the vertices〈qk, l +k〉 in the path are
α-free as well. Therefore, they are not inG2i+2. It follows that for all j ≥ l , the
number of vertices of the form〈q, j〉 in G2i+2 is strictly smaller than their number
in G2i . Hence, by the induction hypothesis, we are done.

Note that, in particular, by Lemma 1, ifG is rejecting thenG2n is finite. Hence
the following corollary.

Corollary 1. If G is rejecting then G2n+1 is empty.

We can now prove the main lemma required for complementation, which reduces
the fact that all the runs ofA on w are rejecting to the existence of an odd ranking
for the runDAG of A onw.

Lemma 2. An NBWA rejects a word w iff there is an odd ranking for the runDAG

of A on w.

Proof: Let G be the runDAG of A on w. We first claim that if there is an odd
ranking forG, thenA rejectsw. To see this, recall that in an odd ranking, every
path inG eventually gets trapped in an odd rank. Hence, asα-vertices get only even
ranks, it follows that all the paths ofG, and thus all the possible runs ofA on w,
visit α only finitely often.

Assume now thatA rejectsw. We describe an odd ranking forG. Recall that if
A rejectsw, thenG is rejecting and thus, by Corollary 1, each vertex〈q, l〉 in G is
removed fromG j , for some 0≤ j ≤ 2n. Thus, there is 0≤ i ≤ n such that〈q, l〉 is
finite in G2i or α-free in G2i+1. Given a vertex〈q, l〉, we define therank of 〈q, l〉,
denotedf (q, l), as follows.

f (q, l) =

[

2i if 〈q, l〉 is finite inG2i .
2i +1 if 〈q, l〉 is α-free inG2i+1.

We claim thatf is an odd ranking forG. First, by Lemma 1, the subgraphG2n

is finite. Hence, the maximal rank that a vertex can get is 2n. Also, since anα-free

Automata Theory and Model Checking 11

vertex cannot be anα-vertex andf (〈q, l〉) is odd only forα-free 〈q, l〉, the first
condition for f being a ranking holds. We proceed to the second condition. Wefirst
argue (and a proof proceeds easily by an induction oni) that for every vertex〈q, l〉
in G and ranki ∈ [2n], if 〈q, l〉 6∈ Gi , then f (q, l) < i. Now, we prove that for every
two vertices〈q, l〉 and〈q′, l ′〉 in G, if 〈q′, l ′〉 is reachable from〈q, l〉 (in particular, if
〈〈q, l〉,〈q′, l ′〉〉 ∈ E), then f (q′, l ′)≤ f (q, l). Assume thatf (q, l) = i. We distinguish
between two cases. Ifi is even, in which case〈q, l〉 is finite inGi , then either〈q′, l ′〉
is not in Gi , in which case, by the above claim, its rank is at mosti −1, or 〈q′, l ′〉
is in Gi , in which case, being reachable from〈q, l〉, it must be finite inGi and have
rank i. If i is odd, in which case〈q, l〉 is α-free in Gi , then either〈q′, l ′〉 is not in
Gi , in which case, by the above claim, its rank is at mosti −1, or 〈q′, l ′〉 is in Gi , in
which case, being reachable from〈q, l〉, it must byα-free inGi and have ranki.

It remains to be proved thatf is an odd ranking. By the above, in every infinite
path inG, there exists a vertex〈q, l〉 such that all the vertices〈q′, l ′〉 in the path that
are reachable from〈q, l〉 have f (q′, l ′) = f (q, l). We need to prove that the rank of
〈q, l〉 is odd. Assume, by way of contradiction, that the rank of〈q, l〉 is some even
i. Thus,〈q, l〉 is finite in Gi . Then, the rank of all the vertices in the path that are
reachable from〈q, l〉 is alsoi, so they all belong toGi . Since the path is infinite,
there are infinitely many such vertices, contradicting the fact that〈q, l〉 is finite in
Gi .

By Lemma 2, an NBWA ′ that complementsA can proceed on an input word
w by guessing an odd ranking for the runDAG of A on w. We now define such an
NBW A ′ formally. We first need some definitions and notations.

A level rankingfor A is a functiong : Q → [2n]∪ {⊥}, such that ifg(q) is
odd, thenq 6∈ α. For two level rankingsg and g′, we say thatg′ covers gif for
all q andq′ in Q, if g(q) ≥ 0 andq′ ∈ δ (q,σ), then 0≤ g′(q′) ≤ g(q). For a level
rankingg, let even(g) be the set of states thatg maps to an even rank. Formally,
even(g) = {q : g(q) is even}.

Theorem 4.Let A be an NBW with n states. There is an NBWA ′ such that
L (A ′) = Σ ω \L (A), andA ′ has at most2O(nlogn) states.

Proof: Let A = 〈Σ ,Q,Q0,δ ,α〉. Let R be the set of all level rankings forA .
WhenA ′ runs on a wordw, it guesses an odd ranking for the runDAG of A on w.
Each state ofA ′ is a pair〈g,P〉 ∈ R×2Q. The level rankingg maintains the states
in the current level of theDAG (those that are not mapped to⊥) and the guessed rank
for them. The setP is a subset of these states, used for ensuring that all paths visit
odd ranks infinitely often, which, by the definition of odd rankings, implies that all
paths get stuck in some odd rank.

Formally,A ′ = 〈Σ ,R×2Q,Q′
0,δ ′,R×{ /0}〉, where

• Q′
0 = {〈g0, /0〉}, whereg0(q) = 2n for q∈ Q0, andg0(q) = ⊥ for q 6∈ Q0. Thus,

the odd ranking thatA ′ guesses maps the vertices〈q,0〉 of the runDAG to 2n.
• For a state〈g,P〉 ∈R×2Q and a letterσ ∈ Σ , we defineδ ′(〈g,P〉,σ) as follows.

– If P 6= /0, thenδ ′(〈g,P〉,σ) = {〈g′,δ (P,σ)∩even(g′)〉 : g′ coversg}.

12 Orna Kupferman

– If P= /0, thenδ ′(〈g,P〉,σ) = {〈g′,even(g′)〉 : g′ coversg}.

Thus, whenA ′ reads thel -th letter in the input, forl ≥ 1, it guesses the level
ranking for levell in the run DAG. This level ranking should cover the level
ranking of levell −1. In addition, in theP component,A ′ keeps track of states
whose corresponding vertices in theDAG have even ranks. Paths that traverse
such vertices should eventually reach a vertex with an odd rank. When all the
paths of theDAG have visited a vertex with an odd rank, the setP becomes empty
(a formal proof of the latter requires the use of König’s Lemma, showing that if
P does not become empty we can point to an infinite path that visits only even
ranks). The setP is then initiated by new obligations for visits to vertices with odd
ranks according to the current level ranking. The acceptance conditionR ×{ /0}
then checks that there are infinitely many levels in which allthe obligations have
been fulfilled.

Since there are(2n+ 1)n level rankings and 2n subsets ofQ, the automatonA ′

indeed has 2O(nlogn) states.

The blow-up of NBW complementation is thus 2O(nlogn) and goes beyond the 2n

blow-up of the subset construction used in determinizationand complementation of
nondeterministic automata on finite words. As we see below, this blow-up cannot be
avoided.

Theorem 5. [54] There is a family of languages L1,L2, . . . such that Ln ⊆ Σ ω
n can

be recognized by an NBW with n+1 states but an NBW forΣ ω
n \Ln has at least n!

states.

Proof: Forn≥ 1, we defineLn as the language of the NBWAn= 〈Σn,Qn,Q0
n,δn,α〉,

where (see Figure 4)

• Σn = {1, . . . ,n,#},
• Qn = {q0,q1, . . . ,qn},
• Q0

n = {q1, . . . ,qn},
• δn is defined as follows:

δn(qi ,σ) =









/0 if i = 0 andσ = #,
{qσ} if i = 0 andσ ∈ {1, . . . ,n},
{qi} if i 6∈ {0,σ},
{q0,qi} if σ = i.

• α = {q0}.

Note that a run ofAn is accepting if it contains infinitely many segments of the
form q+i1q0q+i2q0 · · ·q0q+ik q0q+i1 for some distincti1, . . . , ik ≥ 1. Accordingly, a wordw
is accepted byAn iff there arek lettersσ1,σ2, . . . ,σk ∈ {1, . . . ,n}, such that all the
pairsσ1σ2, σ2σ3, . . . , σkσ1 appear inw infinitely many times. A good intuition to
keep in mind is that a wordw∈ Σ ω

n induces a directed graphGw = 〈{1, . . . ,n},Ew〉
such thatEw(i, j) iff the subwordi · j appears inw infinitely often. Then,Ln accepts
exactly all wordsw such thatGw contains a cycle.

Automata Theory and Model Checking 13

q0 · · ·q1 qnq2

2

Σn Σn Σn

1
n

Fig. 4 The NBWAn

Consider an NBWA ′
n = 〈Σn,Q′

n,Q
′0
n,δ ′

n,α ′
n〉 that complementsAn, and consider

a permutationπ = 〈σ1, . . . ,σn〉 of {1, . . . ,n}. Note that the wordwπ =(σ1 · · ·σn ·#)ω

is not inLn. Thus,wπ is accepted byA ′
n. Let rπ be an accepting run ofA ′

n on wπ ,
and letSπ ⊆ Q′

n be the set of states that are visited infinitely often inrπ . We prove
that for every two different permutationsπ1 andπ2 of {1, . . . ,n}, it must be that
Sπ1 ∩Sπ2 = /0. Since there aren! different permutations, this implies thatA ′

n must
have at leastn! states.

Assume by way of contradiction thatπ1 andπ2 are such thatSπ1 ∩Sπ2 6= /0. Let
q∈ Q′

n be a state inSπ1 ∩Sπ2. We define three finite words inΣ ∗
n :

• a prefixh of wπ1 with which rπ1 moves from an initial state ofA ′
n to q,

• an infix u1 of wπ1 that includes the permutationπ1 and with whichrπ1 moves
from q back toq and visitsα ′

n at least once when it does so, and
• an infix u2 of wπ2 that includes the permutationπ2 and with whichrπ2 moves

from q back toq.

Note that sinceA ′
n acceptswπ1 andwπ2, the wordsh, u1, andu2 exist. In particular,

sincerπ1 is accepting andq is visited infinitely often inrπ1, there is at least one (in
fact, there are infinitely many) infix inrπ1 that leads fromq to itself and visitsα ′

n.
Consider the wordw = h · (u1 · u2)

ω . We claim thatw ∈ Ln and w ∈ L (A ′
n),

contradicting the fact thatA ′
n complementsAn. We first point to an accepting runr

of A ′
n onw. The runr first follows rπ1 and gets toq while readingh. Then, the runr

repeatedly follows the runrπ1 when it moves fromq via α ′
n back toq while reading

u1, and the runrπ2 when it moves fromq back toq while readingu2. It is easy to
see thatr is a run onw that visitsα ′

n infinitely often, thusw∈ L (A ′
n).

Now, letπ1 = 〈σ1
1 , . . . ,σ1

n 〉 andπ2 = 〈σ2
1 , . . . ,σ2

n〉, and letj be the minimal index
for which σ1

j 6= σ2
j . There must existj < k, l ≤ n such thatσ1

j = σ2
k , andσ2

j = σ1
l .

Since u1 includes the permutationπ1 and u2 includes the permutationπ2, the
pairs σ1

j σ1
j+1, σ1

j+1σ1
j+2, . . . ,σ1

l−1σ1
l , σ1

l σ2
j+1(= σ2

j σ2
j+1), σ2

j+1σ2
j+2, . . . ,σ2

k−1σ2
k ,

σ2
k σ1

j+1(= σ1
j σ1

j+1) repeat infinitely often. Hence,w∈ Ln and we are done.

Remark 1.Note that the alphabets of the languagesLn used in the proof of Theo-
rem 5 depend onn. As shown in [50], it is possible to encode the languages and
prove a 2Ω(nlogn) lower bound with a fixed alphabet.

We note that the upper and lower bounds here are based on classical and relatively
simple constructions and proofs, but are still not tight. A tighter upper bound, based

14 Orna Kupferman

on a restriction and a more precise counting of the required level rankings has been
suggested in [18], and tightened further in [66]. An alternative approach, yielding a
similar bound, is based on tracking levels of “split trees” –run trees in which only
essential information about the history of each run is maintained [17, 30]. A tighter
lower bound, based on the notion of full automata, is described in [80].

2.3 Determinization

Nondeterministic automata on finite words can be determinized by applying the sub-
set construction [63]. Starting with a nondeterministic automatonA = 〈Σ ,Q,Q0,δ ,α〉,
the subset construction generates a deterministic automatonA ′ with state space 2Q.
The intuition is that the single run ofA ′ is in stateS∈ 2Q after reading a word
w∈ Σ ∗ iff S is the set of states thatA could have been at, in one of its runs, after
readingw. Accordingly, the single initial state ofA ′ is the setQ0, and the transition
of A ′ from a stateS∈ 2Q and a letterσ ∈ Σ is the set

⋃

s∈Sδ (s,σ). SinceA ′ accepts
exactly all words on which there is a run ofA that ends inα, the set of accepting
states ofA ′ consists of these setsSsuch thatS∩α 6= /0. The exponential blow-up
that the subset construction involves is justified by a matching lower bound.

It is not hard to see that the subset construction does not result in an equivalent
automaton when applied to an NBW. For example, applying the subset construction
to the NBWA2 from Example 2 results in the DBWA ′

2 in Figure 5. Recall that
A2 recognizes the language of all words with finitely manya’s. On the other hand,
A ′

2 recognizes the language of all words with infinitely manyb’s. Thus,L (A ′
2) 6=

L (A2). For example, the word(a·b)ω is in L (A ′
2)\L (A2).

A ′
2 :

b{q0,q1}a {q0}

b

a

Fig. 5 The DBW obtained by applying the subset construction toA2

Note that not onlyL (A ′
2) 6= L (A2), there is no way to define a Büchi accep-

tance condition on top of the structure ofA ′
2 and obtain a DBW that would be

equivalent toA2. In fact, as we shall see now, there is no DBW that is equivalent to
A2.

Theorem 6. [49] There is a language L that is NBW-recognizable but not DBW-
recognizable.

Proof: Consider the languageL described in Example 2. I.e.,L is over the alphabet
{a,b} and it consists of all infinite words in whicha occurs only finitely many times.

Automata Theory and Model Checking 15

The languageL is recognized by the NBWA2 appearing in Figure 2. We prove that
L is not DBW-recognizable. Assume by way of contradiction that A is a DBW
such thatL (A) = L. Let A = 〈{a,b},Q,q0,δ ,α〉. Recall thatδ can be viewed as
a partial mapping fromQ×{a,b}∗ to Q.

Consider the infinite wordw0 = bω . Clearly, w0 is in L, so the run ofA on
w0 is accepting. Thus, there isi1 ≥ 0 such that the prefixbi1 of w0 is such that
δ (q0,bi1) ∈ α. Consider now the infinite wordw1 = bi1 ·a ·bω . Clearly,w1 is also
in L, so the run ofA on w1 is accepting. Thus, there isi2 ≥ 0 such that the prefix
bi1 ·a·bi2 of w1 is such thatδ (q0,bi1 ·a·bi2)∈α. In a similar fashion we can continue
to find indicesi1, i2, . . . such thatδ (q0,bi1 ·a·bi2 ·a· · ·abi j) ∈ α for all j ≥ 1. Since
Q is finite, there are iterationsj andk, such that 1≤ j < k ≤ |α|+1 and there is
a stateq such thatq = δ (q0,bi1 ·a ·bi2 ·a· · ·a ·bi j) = δ (q0,bi1 ·a ·bi2 ·a· · ·a ·bik).
Since j < k, the extensionabi j+1 · · ·bik−1 ·a·bik is not empty and at least one state in
α is visited whenA loops inq while running through it. It follows that the run of
A on the word

w= bi1 ·a·bi2 ·a· · ·abi j · (abi j+1 · · ·bik−1 ·a·bik)ω

is accepting. Butw has infinitely many occurrences ofa, so it is not inL, and we
have reached a contradiction.

Note that the complementary language(a+b)ω \L, which is the language of in-
finite words in whicha occurs infinitely often, is recognized by the DBW described
in Example 1. It follows that DBWs are not closed under complementation.

A good way to understand why the subset construction does notwork for deter-
minization on NBWs is to note that the DBWA ′

2 discussed above accepts exactly all
words that have infinitely many prefixes on which there is a runof A2 that reaches
an accepting state. SinceA2 is nondeterministic, the different runs need not extend
each other, and thus they need not induce a single run ofA2 that visits the accepting
state infinitely often. In Section 3.2, we are going to returnto this example and study
NBW determinization in general. Here, we use the “extend each other” intuition for
the following characterization of languages that are DBW-recognizable.

For a languageR⊆ Σ ∗, let lim(R) ⊆ Σ ω be the set of infinite words that have
infinitely many prefixes inR. Formally, lim(R) = {w = σ1 · σ2 · · · : σ1 · · ·σi ∈
R for infinitely manyi ≥ 0}. Thus,lim is an operator that takes a language of finite
words and turns it into a language of infinite words. For example, if R is the lan-
guage of words ending witha, thenlim(R) is the language of words with infinitely
manya’s.

Theorem 7. [49] A language L⊆ Σ ω is DBW-recognizable iff there is a regular
language R⊆ Σ ∗ such that L= lim(R).

Proof: Assume first thatL is DBW-recognizable. LetA be a DBW that recognizes
L, let AF beA when viewed as an automaton on finite words, and letR= L (AF).
It is easy to see that sinceA , and therefore alsoAF , are deterministic, we have
that L (A) = lim(R). Assume now that there is a regular languageR⊆ Σ ∗ such

16 Orna Kupferman

thatL = lim(R). LetA be a deterministic automaton on finite words that recognizes
R, and letAB beA when viewed as a DBW. Again, sinceA is deterministic, and
thus runs on different prefixes of a word extend each other, itis easy to see that
L (AB) = lim(L (A)). Hence,L is DBW-recognizable.

Note that a DBW-recognizable language may be the limit of several different
regular languages. As we demonstrate in Theorem 8 below, this explains why, unlike
the case of automata on finite words, a language may have different minimal DBWs.
In fact, while minimization of automata on finite words can bedone in polynomial
time, the problem of DBW minimization in NP-complete [68].

Theorem 8.A DBW-recognizable language L may not have a unique minimal DBW.

Proof: Let Σ = {a,b}. Consider the languageL of all words that contain infinitely
manya’s and infinitely manyb’s. It is not hard to prove thatL cannot be recognized
by a DBW with two states. Figure 6 describes two three-state,and thus minimal,
DBWs for the language. In fact, each of the states in the automata may be the initial
state, so the figure describes six such (non-isomorphic) automata.

b a,b

a

bb a

a

b b

a

a

Fig. 6 Two minimal DBWs forL

Theorem 6 implies that we cannot hope to develop a determinization construction
for NBWs. Suppose, however, that we have changed the definition of acceptance,
and work with a definition in which a run is accepting iff it visits the set of accepting
states only finitely often; i.e.,inf (r)∩α = /0. It is not hard to see that using such a
definition, termedco-Büchi, we could have a deterministic automaton that recog-
nizes the languageL used in the proof of Theorem 6. In particular, the language is
recognized by the deterministic automatonA1 from Figure 1 when we view it as a
co-Büchi automaton. While the co-B̈uchi condition enables us to recognize the lan-
guageL with a deterministic automaton, it is not expressive enoughto recognize all
languages that are recognizable by NBWs. In Section 3, we are going to introduce
and study several acceptance conditions, and see how NBWs canbe determinized
using acceptance conditions that are stronger than the Büchi and co-B̈uchi condi-
tions.

Automata Theory and Model Checking 17

3 Additional Acceptance Conditions

The Büchi acceptance condition suggests one possible way to refer to inf (r) for
defining when a runr is accepting. The fact that DBWs are strictly less expressive
than NBWs motivates the introduction of other acceptance conditions. In this sec-
tion we review some acceptance conditions and discuss the expressive power and
succinctness of the corresponding automata.

Consider an automaton with state spaceQ. We define the following acceptance
conditions.

• Co-Büchi, whereα ⊆ Q, and a runr is accepting iffinf (r)∩α = /0.
• Generalized B̈uchi, whereα = {α1, . . . ,αk}, with αi ⊆Q, and a runr is accepting

if inf (r)∩αi 6= /0 for all 1≤ i ≤ k.
• Rabin, whereα = {〈α1,β1〉,〈α2,β2〉, . . . ,〈αk,βk〉}, with αi ,βi ⊆ Q, and a runr

is accepting if for some 1≤ i ≤ k, we have thatinf (r)∩αi 6= /0 andinf (r)∩βi = /0.
• Streett, whereα = {〈α1,β1〉,〈α2,β2〉, . . . ,〈αk,βk〉}, with αi ,βi ⊆ Q and a runr

is accepting if for all 1≤ i ≤ k, we have thatinf (r)∩αi = /0 or inf (r)∩βi 6= /0.
• Parity, whereα = {α1,α2, . . . ,αk} with α1 ⊆ α2 ⊆ ·· · ⊆ αk = Q, and a runr is

accepting if the minimal indexi for which inf (r)∩αi 6= /0 is even.
• Muller, whereα = {α1,α2, . . . ,αk}, with αi ⊆ Q and a runr is accepting if for

some 1≤ i ≤ k, we have thatinf (r) = αi .

The number of sets in the generalized Büchi, parity, and Muller acceptance con-
ditions or pairs in the Rabin and Streett acceptance conditions is called theindexof
the automaton. We extend our NBW and DBW notations to the above classes of au-
tomata, and we use the letters C, R, S, P, and M to denote co-Büchi, Rabin, Streett,
parity, and Muller automata, respectively. Thus, for example, DPW stands for de-
terministic parity automata. We sometimes talk about satisfaction of an acceptance
conditionα by a setSof states. As expected,Ssatisfiesα iff a run r with inf (r) = S
is accepting. For example, a setSsatisfies a B̈uchi conditionα iff S∩α 6= /0.

It is easy to see that the co-Büchi acceptance condition is dual to the Büchi
acceptance condition in the sense that a runr is accepting with a B̈uchi condi-
tion α iff r is not accepting whenα is viewed as a co-B̈uchi condition, and vice
versa. This implies, for example, that for a deterministic automatonA , we have
that L (AB) = Σ ω \ L (AC), whereAB and AC are the automata obtained by
viewing A as a B̈uchi and co-B̈uchi automaton, respectively. Similarly, the Ra-
bin acceptance condition is dual to the Streett acceptance condition. Indeed, if
α = {〈α1,β1〉,〈α2,β2〉, . . . ,〈αk,βk〉}, then for every runr, there is no 1≤ i ≤ k
such thatinf (r)∩ αi 6= /0 and inf (r)∩ βi = /0 iff for all 1 ≤ i ≤ k, we have that
inf (r)∩αi = /0 or inf (r)∩βi 6= /0.

For two classesγ and κ of automata, we say thatγ is at least as expressive
as κ if for every κ-automatonA , there is aγ-automatonA ′ such thatL (A ′) =
L (A). If both γ is at least as expressive asκ and κ is at least as expressive as
γ, thenγ is as expressive asκ . One way to prove thatγ is at least as expressive
asκ is to show a translation ofκ-automata toγ-automata. In the next section we
are going to see such translations. As we shall see there, NBWsare as expressive

18 Orna Kupferman

as NRWs, NSWs, NPWs, and NMWs. On the other hand, NCWs are strictly less
expressive than NBWs. Also, as we shall see in Section 3.2, nondeterminism does
not add expressive power in automata with the richer acceptance conditions. Thus,
DRWs, DSWs, DPWs, and DMWs recognize allω-regular languages, and are as
expressive as NBWs. This is in contrast with the Büchi condition, where, as we
have seen in Theorem 6, NBWs are strictly more expressive thanDBWs. Finally,
nondeterminism does not add expressive power also in co-Büchi automata, thus
NCWs are as expressive as DCW, where both are weaker than NBW and coincide
with the set of languages whose complement languages are NBW-recognizable (see
Remark 3).

3.1 Translations Among the Different Classes

We distinguish between three types of translations among automata of the different
classes: (1) Translations among the different conditions.This is the simplest case,
where it is possible to translate the acceptance condition itself, regardless of the
automaton on top of which the condition is defined. For example, a B̈uchi accep-
tance conditionα is equivalent to the Rabin condition{〈α, /0〉}. (2) Translations in
which we still do not change the structure of the automaton, yet the definition of
the acceptance condition may depend on its structure. Following the terminology of
[35], we refer to such translations astyped. (3) Translations that manipulate the state
space. This is the most general case, where the translation may involve a blow-up
in the state space of the automaton. Accordingly, here we areinterested also in the
succinctnessof the different classes, namely the worst-case bound on theblow-up
when we translate. In this section we survey the three types.

3.1.1 Translations Among the Different Conditions

Some conditions are special cases of other conditions, making the translation among
the corresponding automata straightforward. We list thesecases below. Consider an
automaton with state spaceQ.

• A Büchi conditionα is equivalent to the Rabin condition{〈α, /0〉}, the Streett
condition{〈Q,α〉}, and the parity condition{ /0,α,Q}.

• A co-Büchi conditionα is equivalent to the Rabin condition{〈Q,α〉}, the Streett
condition{〈α, /0〉}, and the parity condition{α,Q}.

• A generalized B̈uchi condition{α1, . . . ,αk} is equivalent to the Streett condition
{{〈Q,α1〉,〈Q,α2〉, . . . ,〈Q,αk〉}.

• A parity condition{α1, . . . ,αk} (for simplicity, assume thatk is even; otherwise,
we can duplicateαk) is equivalent to the Rabin condition{〈α2,α1〉,〈α4,α3〉,. . .,
〈αk,αk−1〉}, and to the Streett condition{〈α1, /0〉,〈α3,α2〉, . . ., 〈αk−1,αk−2〉}.
(Recall thatαk = Q, so there is no need to include the pair〈Q,αk〉 in the Streett
condition.)

Automata Theory and Model Checking 19

• A Büchi, co-B̈uchi, Rabin, Streett, or parity acceptance conditionα is equivalent
to the Muller condition{F : F satisfiesα}.

3.1.2 Typeness

In [35], the authors studied the expressive power of DBWs and introduced the notion
of typeness for automata. For two classesγ andκ of automata, we say thatγ is κ-
type if for everyγ-automatonA , if L (A) is κ-recognizable, then it is possible to
define aκ-automatonA ′ such thatL (A ′) = L (A) andA ′ differs fromA only
in the definition of the acceptance condition. Clearly, if anacceptance condition can
be translated to another acceptance condition, as discussed in Section 3.1.1, then
typeness for the corresponding classes follows. Interestingly, typeness may be valid
also whenγ is more expressive thanκ . We demonstrate this below.

Theorem 9. [35] DRWs are DBW-type.

Proof: Consider a DRWA = 〈Σ ,Q,q0,δ ,α〉. Letα = {〈α1,β1〉, . . . ,〈αk,βk〉}. We
say that a stateq∈ Q is good inA if all the cyclesC⊆ Q that containq satisfy the
acceptance conditionα. Consider the DBWA ′ = 〈Σ ,Q,q0,δ ,α ′〉, whereα ′ = {q :
q is good inA }. We prove that ifA is DBW-recognizable, thenL (A) =L (A ′).
Hence, ifA is DBW-recognizable, then there is a DBW equivalent toA that can
be obtained by only changing the acceptance condition ofA .

We first prove thatL (A ′)⊆ L (A). In fact, this direction is independent ofA

being DBW-recognizable. Consider a wordw∈ L (A ′). Let r be the accepting run
of A ′ on w. Sincer is accepting, there is a stateq ∈ inf (r)∩α ′. Recall that the
states ininf (r) constitute an SCS and thus also constitute a cycle that contains q.
Therefore, asq is good,inf (r) satisfiesα, andr is also an accepting run ofA onw.
Hence,w∈ L (A) and we are done.

We now prove thatL (A) ⊆ L (A ′). Consider a wordw ∈ L (A). Let r be
the accepting run ofA on w. We prove thatinf (r)∩α ′ 6= /0. Assume by way of
contradiction thatinf (r)∩α ′ = /0. Thus, no state ininf (r) is good, so for each state
q∈ inf (r), there is a cycleCq that containsq and does not satisfyα. By [49], a deter-
ministic automatonA recognizes a language that is in DBW iff for every strongly
connected componentC of A , if C satisfiesα, then all the strongly connected com-
ponentsC′ with C′ ⊇ C satisfyα too. Consider the strongly connected component
C′ =

⋃

q∈inf (r)Cq. SinceC′ containsinf (r), andinf (r) satisfiesα, then, by the above,
C′ satisfiesα too. Therefore, there is 1≤ i ≤ k such thatC′∩αi 6= /0 andC′∩βi = /0.
Consider a states∈C′∩αi . Let q be such thats∈Cq. Observe thatCq∩αi 6= /0 and
Cq∩βi = /0, contradicting the fact thatCq does not satisfyα.

Theorem 10.[35] DSWs are not DBW-type.

Proof: Consider the automatonA1 appearing in Figure 1, now with the Streett
condition{〈{q0,q1},{q0}〉,〈{q0,q1},{q1}〉}. The languageL of A1 then consists of
exactly all words with infinitely manya’s and infinitely manyb’s. As we have seen

20 Orna Kupferman

in the proof of Theorem 8,L is DBW-recognizable. Yet, none of the four possibilities
to define a DBW on top of the structure ofA1 result in a DBW that recognizesL.

Note that, by dualization, we get from Theorems 9 and 10 that DSWs are DCW-
type and DRWs are not DCW-type.

The definition of typeness may be applied to nondeterministic automata too. As
we show below, typeness need not coincide for nondeterministic and deterministic
automata.

Theorem 11.[38] DBWs are DCW-type, but NBWs are not NCW-type.

Proof: The first claim follows from the fact that DBWs are a special case of DSWs,
and the latter are DCW-type. For the second claim, consider the NBWA appearing
in Figure 7. The NBWA has two initial states, in two disjoint components. Thus,
the language ofA is the union of the languages of the two NBWs associated with
its two components. The NBW on the left accepts all words overthe alphabet{a,b}
that satisfy “eventuallya and infinitely manyb’s”. The NBW on the right accepts
all words that satisfy “eventuallyb and infinitely manya’s”. While each of these
languages is not NCW-recognizable, their union recognizesthe languageL of all
words satisfying “eventuallya and eventuallyb”, which is NCW-recognizable. It is
not hard to see that none of the four possibilities to define a co-Büchi acceptance
condition on top ofA result in an NCW that recognizesL.

a

q0 q1

b

a,b a

b

q0 q1

a

a,b b

Fig. 7 An NBW that recognizes an NCW-recognizable language but hasno equivalent NCW on
the same structure

Researchers have considered additional variants of typeness. We mention two
here. Letγ and κ be two acceptance conditions. Inpowerset typeness, we ask
whether a deterministicκ-automaton can be defined on top of the subset construc-
tion of a nondeterministicγ-automaton. For example, NCWs are DBW-powerset-
type: if the language of an NCWA is DBW-recognizable, then a DBW forL (A)
can be defined on top of the subset construction ofA [51]. In combined typeness,
we ask whether the ability to define a certain language on top of the same automa-
ton using two different acceptance conditions implies we can define it using a third,
weaker, condition. For example, DRWs+DSWs are DPW-type: if a languageL can
be defined on top of a deterministic automatonA using both a Streett and a Ra-
bin acceptance condition, thenL can be defined on top ofA also using a parity
acceptance condition [4, 81]. For more results on typeness,see [38].

Automata Theory and Model Checking 21

3.1.3 Translations That Require a New State Space

We now turn to the most general type of translations – those that may involve a
blow-up in the state space. We do not specify all the translations, and rather describe
the translation of nondeterministic generalized Büchi, Rabin, and Streett automata
into NBWs. For the case of NSW, where the translation involvesa blow-up that is
exponential in the index, we also describe a lower bound.

Theorem 12.Let A be a nondeterministic generalized Büchi automaton with n
states and index k. There is an NBWA ′ with n·k states such thatL (A ′) =L (A).

Proof: Let A = 〈Σ ,Q,Q0,δ ,{α1, . . . ,αk}〉. The idea of the construction ofA ′

is similar to the one used for defining the intersection of NBWs. Informally, A ′

consists ofk copies ofA , and it stays in thei-th copy until it visits a state inαi , in
which case it moves to the next copy (modulok). The acceptance condition ofA ′

then makes sure that all copies are visited infinitely often.
Formally,A ′ = 〈Σ ,Q′,Q′

0,δ ′,α〉, where

• Q′ = Q×{1, . . . ,k}.
• Q′

0 = Q×{1}.
• For everyq∈ Q, i ∈ {1, . . . ,k}, andσ ∈ Σ , we haveδ (〈q, i〉,σ) = δ (q,σ)×{ j},

where j = i if q /∈ αi and j = (i modk)+1 if q∈ αi .
• α = α1×{1}. Note that after a visit toα1 in the first copy, the run moves to the

second copy, where it waits for visits toα2, and so on until it visitsαk in the
k-th copy, and moves back to the first copy. Therefore, infinitely many visits in
α1 in the first copy indeed ensure that all copies, and thus also all αi ’s are visited
infinitely often.

Theorem 13.Let A be an NRW with n states and index k. There is an NBWA ′

with at most n(k+1) states such thatL (A ′) = L (A).

Proof: LetA = 〈Σ ,Q,Q0,δ ,{〈α1,β1〉, . . . ,〈αk,βk〉}〉. It is easy to see thatL (A)=
⋃k

i=1L (Ai), whereAi = (Σ ,Q,Q0,δ ,{〈αi ,βi〉}). By Theorem 1, NBWs are closed
under union. It therefore suffices to show a translation to NBWs of NRWs with
index 1.

Consider an NRWU = 〈Σ ,Q,Q0,δ ,{〈α,β 〉}〉 with index 1. We translateU to
an NBWU ′. The idea of the construction is similar to the one used for complement-
ing DBWs: the NBWU ′ consists of two copies ofU , and it nondeterministically
moves to the second copy, which contains only states that arenot inβ , and in which
it has to visit infinitely many states inα. Formally,U ′ = 〈Σ ,Q′,Q′

0,δ ′,α ′〉, where

• Q′ = (Q×{0})∪ ((Q\β)×{1}).
• Q′

0 = Q0×{0}.
• For all q∈ Q andσ ∈ Σ , we haveδ ′(〈q,0〉,σ) = (δ (q,σ)×{0})∪ ((δ (q,σ) \

β)×{1}), andδ ′(〈q,1〉,σ) = (δ (q,σ)\β)×{1} for q∈ Q\β .
• α ′ = α ×{1}.

22 Orna Kupferman

Since for an NRWU with n states, the NBWU ′ has at most 2n states, the
union NBW has at most 2nk states. Now, in order to reduce the state space to
n(k+ 1), we observe that the first copy ofU ′ can be shared by allAi ’s. Thus,
A ′ guesses both the pairαi ,βi with which the acceptance condition is satisfied
and the point from which states fromβi are no longer visited. Formally, we define
A ′ = 〈Σ ,Q′,Q0×{0},δ ′,α ′〉, where

• Q′ = (Q×{0})∪
⋃

1≤i≤k((Q\βi)×{i}).
• For allq∈Qandσ ∈Σ , we haveδ ′(〈q,0〉,σ)= (δ (q,σ)×{0})∪

⋃

1≤i≤k((δ (q,σ)\
βi)×{i}), andδ ′(〈q, i〉,σ) = (δ (q,σ)\βi)×{i} for 1≤ i ≤ k andq∈ Q\βi .

• α ′ =
⋃

1≤i≤k αi ×{i}.

Translating NRWs to NBWs, we took the union of the NRWs of index 1 that are
obtained by decomposing the acceptance condition. For NSW,it is tempting to pro-
ceed dually, and define the NBW as the intersection of the NSWs of index 1 that are
obtained by decomposing the acceptance condition. Such an intersection, however,
may accept words that are not in the language of the NSW. To seethis, consider an
automatonA , a Streett acceptance conditionα = {〈α1,β1〉,〈α2,β2〉}, and a word
w. It may be that there is a runr1 of A on w that satisfies the Streett acceptance
condition{〈α1,β1〉} and also a runr2 of A on w that satisfies the Streett accep-
tance condition{〈α2,β2〉}. Yet, the runsr1 andr2 may be different, and there need
not be a run ofA on w that satisfies both{〈α1,β1〉} and{〈α2,β2〉}. Consequently,
the translation of NSWs to NBWs has to consider the relation among the different
pairs inα, giving rise to a blow-up that is exponential ink. Formally, we have the
following.

Theorem 14.LetA be an NSW with n states and index k. There is an NBWA ′ with
at most n(1+k2k) states such thatL (A ′) = L (A).

Proof: Let A = 〈Σ ,Q,Q0,δ ,{〈α1,β1〉, . . . ,〈αk,βk〉}〉. Recall that in an accepting
run r of A , we have thatinf (r)∩αi = /0 or inf (r)∩ βi 6= /0 for all 1≤ i ≤ k. For
I ⊆ {1, . . . ,k}, we define an NBWAI that accepts exactly all wordsw such that
there is a runr of A on w for which inf (r)∩αi = /0 for all i ∈ I andinf (r)∩βi 6= /0
for all i 6∈ I . Thus,I indicates how the acceptance conditionα is satisfied. It is easy
to see thatL (A) =

⋃

I⊆{1,...,k}L (AI).
The idea behind the construction ofAI is similar to the “two copies” idea we

have seen above, except that now, in the copy in whichAI avoids the states inαi ,
for all i ∈ I , it also has to visit all the states inβi , for i 6∈ I . This can be easily achieved
by first definingAI as a nondeterministic generalized Büchi automaton. Formally,
we defineAI = 〈Σ ,QI ,Q′

0,δI ,βI 〉 as follows. LetαI =
⋃

i∈I αi . Then,

• QI = (Q×{0})∪ ((Q\αI)×{1}).
• Q′

0 = Q0×{0}.
• For everyq∈Q andσ ∈ Σ , we haveδI (〈q,0〉,σ) = (δ (q,σ)×{0})∪((δ (q,σ)\

αI)×{1}). Forq∈ Q\αI , we also haveδI (〈q,1〉,σ) = (δ (q,σ)\αI)×{1}.

Automata Theory and Model Checking 23

• βI = {βi ×{1} : i 6∈ I}.

SinceAI has at most 2n states and indexk, an equivalent B̈uchi automaton has at
most 2nkstates. A slightly more careful analysis observes that the generalized B̈uchi
condition applies only to the second copy ofAI , thus a translation to NBW results
in an automaton with at mostn+ nk states. The automatonA ′ is then the union
of all the 2k NBWs obtained from the differentAI and thus has at most(n+nk)2k

states. Moreover, as in the proof of Theorem 13, the first copyof all the NBWs in
the union can be shared, tightening the bound further ton+nk2k.

In Theorem 15 below we show that the exponential blow-up in the translation of
NSWs to NBWs cannot be avoided. In fact, as the theorem shows, the blow-up may
occur even when one starts with a DSW.

Theorem 15.[65] There is a family of languages L1,L2, . . . such that Ln can be
recognized by a DSW with3n states and index2n, but an NBW for Ln has at least
2n states.

Proof: Let Σ = {0,1,2}. We can view an infinite word overΣ as a wordw∈ (Σn)ω ,
thusw = u1 ·u2 ·u3 · · ·, where eachu j is a word inΣn. We refer to such words as
blocks. We say that indexi ∈ {0, . . . ,n−1} is 0-active inw iff there are infinitely
many j ’s such that thei-th letter inu j is 0. Similarly,i is 1-active inw iff there are
infinitely many j ’s such that thei-th letter inu j is 1. Forn≥ 1, let

Ln = {w : for all 0≤ i ≤ n−1, the indexi is 0-active inw iff i is 1-active inw}.

We first describe a DSWAn with 3n states such thatL (An) = Ln. We define
An = 〈{0,1,2},Qn,{〈0,0〉},δn,αn〉, where

• Qn = {1, . . . ,n}×{0,1,2}. Intuitively, An moves to the state〈i,σ〉 after it reads
the(i−1)-th letter in the current block, and this letter isσ . Accordingly, an index
0≤ i ≤ n−1 isσ -active inw iff the run ofAn onw visits states in{i+1}×{σ}
infinitely often.

• For all 0≤ i ≤ n−1 andσ ,σ ′ ∈{0,1,2}, we haveδn(〈i,σ〉,σ ′)= 〈(i +1) modn,σ ′〉.
• αn =

⋃

1≤i≤n{〈{〈i,0〉},{〈i,1〉}〉,〈{〈i,1〉},{〈i,0〉}〉}.

It is easy to see thatAn has 3n states and thatL (An) = Ln. Now, assume by
way of contradiction that there is an NBWA ′

n that recognizesLn and has fewer
than 2n states. We say that a position in a word or in a run ofA ′

n is relevantif it is
0 modn. That is,A ′

n starts to read each block in a relevant position. For a setS⊆
{0, . . . ,n−1}, letw0

S∈ {0,2}n be the word of lengthn in which for all 0≤ i ≤ n−1,
thei-th letter is 0 iffi ∈ S, and is 2 otherwise. Similarly, letw1

S∈ {1,2}n be the word
in which thei-th letter is 1 iff i ∈ S, and is 2 otherwise. Note that ifw0

S appears in
a wordw in infinitely many relevant positions, then all the indices in Sare 0-active,
and similarly forw1

S and 1-active. Consider the infinite wordwS = ((w0
S)

2n
·w1

S)
ω .

Clearly, for indexi ∈ {0, . . . ,n−1}, we have thati is 0-active inwS iff i is 1-active
in wS iff i ∈ S. Hence,wS ∈ Ln. Let rS be an accepting run ofA ′

n on wS. We say
that a positionp ≥ 0 in rS is important if it is relevant and there is a stateq and a

24 Orna Kupferman

position p′ > p such thatq is visited in both positionsp and p′ and the subword
read between them is in(w0

S)
∗. We then say thatq supports p. Let QS be the set of

states that support infinitely many important positions. SinceQ is finite and there are
infinitely many relevant positions, the setQS is not empty. SinceA ′

n has fewer than
2n states, there must be two subsetsSandT, such thatT 6= SandQS∩QT 6= /0. LetS
andT be two such subsets. Assume without loss of generality thatT \S 6= /0, and let
q be a state inQS∩QT . By the definition ofQT , there isi ≥ 1 such thatA ′

n can move
from q back to itself when it reads(w0

T)
i . We claim that we can then obtain from

wS a wordw′
S that is not inLn and is accepted byA ′

n. We obtainw′
S by inserting the

word (w0
T)

i inside the(w0
S)

2n
subwords whenever the run ofA ′

n reaches the stateq
in important positions. The accepting run ofA ′

n is then similar torS, except that we
pump visits toq in important positions to traverse the cycle along which(w0

T)
i is

read. SinceA ′
n is a Büchi automaton, the run stays accepting, whereas the word it

reads has indices (those inT \S) that are 0-active but not 1-active, and is therefore
not inL′

n.

3.2 Determinization of NBWs

Recall that NBWs are strictly more expressive than DBWs. In this section we de-
scribe the intuition behind a determinization construction that translates a given
NBW to an equivalent DPW. Detailed description of the construction can be found
in [64, 59, 67]. As in the case of NBW complementation, efforts to determinize
NBWs started in the 1960s, and involve several landmarks. In [52], McNaughton
proved that NBWs can be determinized and described a doubly-exponential trans-
lation of NBWs to DMWs. Only in 1988, Safra improved the bound and described
an optimal translation of NBWs to DRWs: given an NBW withn states, the equiv-
alent DRW has 2O(nlogn) states and indexn. A different construction, with similar
bounds, was given in [58]. The same considerations that holdfor NBW complemen-
tation can be used in order to show a matching 2Ω(nlogn) lower bound [54, 50]. While
Safra’s determinization construction is asymptotically optimal, efforts to improve it
have continued, aiming at reducing the state space and generating automata with
the parity acceptance condition. Indeed, the parity acceptance condition has impor-
tant advantages: it is easy to complement, and when used as a winning condition in
a two-player game, both players can proceed according to memoryless strategies.
Also, solving parity games is easier than solving Rabin games [12, 29] (see Chapter
25). In [59], Piterman described a direct translation of NBWto DPW, which also
reduces the state blow-up in Safra’s determinization. Piterman’s construction has
been further tightened in [67]. The translation is a variantof Safra’s determinization
construction, and we present the intuition behind it here. It is important to note that
in addition to efforts to improve Safra’s determinization construction, there have
been efforts to develop algorithms that avoid determinization in constructions and
methodologies that traditionally involve determinization; e.g., complementation of
NBW [44], LTL synthesis [45], and more [36].

Automata Theory and Model Checking 25

Before we describe the intuition behind the determinization construction, let us
understand why NBW determinization is a difficult problem. Consider the NBW
A2 from Example 2. In Figure 5 we described the DBWA ′

2 obtained by applying
the subset construction toA2. While A2 recognizes the language of all words with
finitely manya’s, the DBWA ′

2 recognizes the language of all words with infinitely
manyb’s. Why does the subset construction work for finite words and fail here?
Consider the wordw= (b·a)ω . The fact the run ofA ′

2 onw visits the state{q0,q1}
infinitely often implies that there are infinitely many prefixes ofw such thatA2 has
a run on the prefix that ends inq1. Nothing, however, is guaranteed about our ability
to compose the runs on these prefixes into a single run. In particular, in the case of
w, the run on each of the prefixes visitsq1 only once, as the destination of its last
transition, and there is no way to continue and read the suffixof w from q1.

Consider an NBWA = 〈Σ ,Q,Q0,δ ,α〉 and an input wordw= σ1 ·σ2 ·σ3 · · ·. As
the example above demonstrates, an equivalent deterministic automaton should not
only make sure thatw has infinitely many prefixes on whichA can reachα, but also
thatA does so with runs that can be composed into a single run. LetS0,S1,S2, . . . ∈
(2Q)ω be the result of applying the subset construction ofA onw. That is,Si is the
set of states thatA can be at after readingσ1 ·σ2 · · ·σi . The deterministic automaton
that is equivalent toA tries to find a sequenceτ = T0,T1,T2, . . . ∈ (2Q)ω such that
T0 ⊆ S0 and for all i ≥ 0, we have thatTi+1 ⊆ δ (Ti ,σi+1). In addition, there are
infinitely many positionsj1, j2, j3, . . . such that for allk ≥ 1, each of the states in
Tjk+1 is reachable from some state inTjk via a run that visitsα. We refer toτ as a
witness sequenceand refer to the positionsj1, j2, j3, . . . asbreak-points. Note that
for all i ≥ 0 we haveTi ⊆Si , and that indeedA acceptsw iff such a witness sequence
exists. First, ifA acceptsw with a runq0,q1, . . ., then we can takeTi = {qi}. Also,
if τ exists, then we can generate an accepting run ofA onw by reaching some state
in Tj1, then reaching, viaα, some state inTj2, then reaching, viaα, some state in
Tj3, and so on. The big challenge in the determinization construction is to detect a
witness sequence without guessing.

One naive way to detect a witness sequence is to maintain fullinformation about
the runs ofA on w. In Section 2.2.2, we defined the runDAG G that embodies all
the possible runs ofA onw. The prefix ofG up to leveli clearly contains all the in-
formation one needs aboutSi and the history of all the states in it. The prefixes ofG,
however, are of increasing and unbounded sizes. A key point in the determinization
construction is to extract from each prefix ofG a finite presentation that is suffi-
ciently informative. For the case of finite words, this is easy – the set of states in
the last level of the prefix (that is,Si) is sufficient. For the case of infinite words, the
presentation is much more complicated, and is based on the data structure ofhistory
trees.

Essentially, the history tree that is reached after readinga prefix of lengthi of w
maintains subsets ofSi that may serve asTi . One challenge is to maintain these sub-
sets in a compact way. A second challenge is to use the parity acceptance condition
in order to guarantee that one of the maintained subsets can indeed serve asTi in a
witness sequence. The first challenge is addressed by arranging all candidate subsets
in a tree in which each state inSi is associated with at most one node of the tree.

26 Orna Kupferman

This bounds the number of history trees bynO(n). The second challenge is addressed
by updating the history trees in each transition in a way thatrelates the choice of the
subset that would serve asTi with the choice of the even index that witnesses the
satisfaction of the parity condition: the subsets are ordered, essentially, according to
their seniority – the point at which the deterministic automaton started to take them
into account as a possibleTi . In each update, each subset may be declared as “sta-
ble”, meaning that it continues to serve as a possibleTi , and may also be declared as
“accepting”, meaning that the positioni is a break-point in the witness sequence in
which Ti is a member. The parity acceptance condition then uses labels of seniority
in order to look for a subset that is eventually always stableand infinitely often ac-
cepting. The above is only a high-level intuition, and in particular it misses the way
in which the subsets are ordered and how the updates interfere with this order. As
pointed out above, details can be found in the original papers [64, 59, 67].

4 Decision Procedures

Automata define languages, which are sets of words. Natural questions to ask about
sets are whether they are trivial (that is, empty or universal), and whether two sets
contain each other. Note that equivalence between two sets amounts to containment
in both directions. In this section we study the following three problems, which
address the above questions for languages defined by automata.

• Thenon-emptinessproblem is to decide, given an automatonA , whetherL (A) 6=
/0.

• The non-universalityproblem is to decide, given an automatonA , whether
L (A) 6= Σ ω .

• The language-containmentproblem is to decide, given automataA1 and A2,
whetherL (A1)⊆ L (A2).

It is not hard to see that the non-emptiness and non-universality problems are
dual, in the sense that an automaton is non-empty iff its complement is non-
universal, and that both can be viewed as a special case of thelanguage-containment
problem. Indeed, ifA⊥ andA⊤ are such thatL (A⊥) = /0 andL (A⊤) = Σ ω , then
an automatonA is empty ifL (A)⊆L (A⊥) and is universal ifL (A⊤)⊆L (A).
As we shall see below, however, the non-emptiness problem iseasier than the other
two. We note that the hardness results and proofs described in this section hold al-
ready for automata on finite words. We still present direct proofs for NBWs. An
alternative would be to carry out a reduction from the setting of finite words.

Theorem 16.[14, 15, 77]The non-emptiness problem for NBWs is decidable in
linear time and is NLOGSPACE-complete.

Proof: Consider an NBWA = 〈Σ ,Q,Q0,δ ,α〉. Recall thatA induces a directed
graphGA = 〈Q,E〉 where〈q,q′〉 ∈E iff there is a letterσ such thatq′ ∈ δ (q,σ). We
claim thatL (A) is non-empty iff there are statesq0 ∈ Q0 andqacc∈ α such that

Automata Theory and Model Checking 27

GA contains a path leading fromq0 to qacc and a cycle going thoughqacc. Assume
first thatL (A) is non-empty. Then, there is an accepting runr = q0,q1, . . . of A on
some input word, which corresponds to an infinite path ofGA . Sincer is accepting,
some stateqacc ∈ α occurs inr infinitely often; in particular, there arei, j, where
0≤ i < j, such thatqacc= qi = q j . Thus,q0, . . . ,qi corresponds to a (possibly empty)
path fromq0 to qacc, andqi , . . . ,q j to a cycle going throughqacc.

Conversely, assume thatGA contains a path leading fromq0 to a stateqacc∈ α
and a cycle going thoughqacc. We can then construct an infinite path ofGA starting
at q0 and visitingqacc infinitely often. This path induces a run on a word accepted
by A .

Thus, NBW non-emptiness is reducible to graph reachability. The algorithm that
proves membership in NLOGSPACE first guesses statesq0 ∈ Q0 andqacc∈ α, and
then checks the reachability requirements by guessing a path from q0 to qacc and a
path fromqacc to itself. Guessing these paths is done by remembering the current
state on the path and the value of a counter for the length of the path traversed so far,
and proceeding to a successor state while increasing the counter. When the counter
value exceeds|Q|, the algorithm returns “no” (that is, the guess is not good).Note
that the algorithm has to rememberq0, qacc, the current state and counter value, each
requiring logarithmic space.

NLOGSPACE-hardness can be proved by an easy reduction from the reachability
problem in directed graphs [28]. There, one is given a directed graphG = 〈V,E〉
along with two verticessandt, and the goal is to decide whether there is a path from
s to t. It is easy to see that such a path exists iff the NBWAG = 〈{a},V,{s},δ ,{t}〉
with v′ ∈ δ (v,a) iff E(v,v′) or v′ = v= t is not empty.

To check non-emptiness in linear time, we first find the decomposition of GA

into SCCs [10, 73]. An SCC is nontrivial if it contains an edge, which means, since
it is strongly connected, that it contains a cycle. It is not hard to see thatA is non-
empty iff from an SCC whose intersection withQ0 is not empty it is possible to
reach a nontrivial SCC whose intersection withα is not empty.

Theorem 17.[70] The non-universality problem for NBWs is decidable in exponen-
tial time and is PSPACE-complete.

Proof: Consider an NBWA . Clearly,L (A) 6= Σ ω iff Σ ω \L (A) 6= /0, which
holds iff L (A ′) 6= /0, whereA ′ is an NBW that complementsA . Thus, to test
A for non-universality, it suffices to testA ′ for non-emptiness. The construction
of A ′ can proceed “on-the-fly” (that is, there is no need to construct and storeA ′

and then perform the non-emptiness test, but rather it is possible to construct only
the components required for the non-emptiness test on demand; such a construction
requires only polynomial space). Hence, asA ′ is exponentially bigger thanA , the
time and space bounds from Theorem 16 imply the two upper bounds.

For the lower bound, we do a reduction from polynomial-spaceTuring machines.
The reduction does not use the fact that Büchi automata run on infinite words and
follows the same considerations as the reduction showing that the non-universality
problem is PSPACE-hard for nondeterministic automata on finite words [53]. Note

28 Orna Kupferman

that we could also have reduced from this latter problem, butpreferred to give the
details of the generic reduction.

Given a Turing machineT of space complexitys(n), we construct an NBWAT

of size linear inT and s(n) such thatAT is universal iff T does not accept the
empty tape. We assume, without loss of generality, that all the computations ofT
eventually reach a final state. Also, onceT reaches a final state it loops there forever.
The NBWAT accepts a wordw iff w is not an encoding of a legal computation ofT
over the empty tape or ifw is an encoding of a legal yet rejecting computation ofT
over the empty tape. Thus,AT rejects a wordw iff w encodes a legal and accepting
computation ofT over the empty tape. Hence,AT is universal iffT does not accept
the empty tape.

We now give the details of the construction ofAT . LetT = 〈Γ ,Q,→,q0,qacc,qreq〉,
whereΓ is the alphabet,Q is the set of states,→⊆ Q×Γ ×Q×Γ ×{L,R} is the
transition relation (we use(q,a) → (q′,b,∆) to indicate that whenT is in stateq
and it reads the inputa in the current tape cell, it moves to stateq′, writesb in the
current tape cell, and its reading head moves one cell to the left/right, according to
∆), andq0,qacc, andqre j are the initial, accepting, and rejecting states.

We encode a configuration ofT by a word #γ1γ2 . . .(q,γi) . . .γs(n). That is, a
configuration starts with #, and all its other letters are inΓ , except for one let-
ter in Q×Γ . The meaning of such a configuration is that thej-th cell in T, for
1≤ j ≤ s(n), is labeledγ j , the reading head points at celli, andT is in stateq. For
example, the initial configuration ofT is #(q0,b)b. . .b (with s(n)−1 occurrences
of b) whereb stands for an empty cell. We can now encode a computation ofT by a
sequence of configurations.

Let Σ = {#} ∪ Γ ∪ (Q× Γ) and let #σ1 . . .σs(n)#σ ′
1 . . .σ ′

s(n) be two succes-

sive configurations ofT. We also setσ0, σ ′
0, and σs(n)+1 to #. For each triple

〈σi−1,σi ,σi+1〉 with 1 ≤ i ≤ s(n), we know, by the transition relation ofT, what
σ ′

i should be. In addition, the letter # should repeat exactly every s(n)+ 1 letters.
Let next(〈σi−1,σi ,σi+1〉) denote our expectation forσ ′

i . That is,

• next(〈γi−1,γi ,γi+1〉) = next(〈#,γi ,γi+1〉) = next(〈γi−1,γi ,#〉) = γi .
• next(〈(q,γi−1),γi ,γi+1〉) = next(〈(q,γi−1),γi ,#〉) =

{

γi if (q,γi−1)→ (q′,γ ′i−1,L)
(q′,γi) if (q,γi−1)→ (q′,γ ′i−1,R)

• next(〈γi−1,(q,γi),γi+1〉) = next(〈#,(q,γi),γi+1〉) =
next(〈γi−1,(q,γi),#〉) = γ ′i where(q,γi)→ (q′,γ ′i ,∆). 3

• next(〈γi−1,γi ,(q,γi+1)〉) = next(〈#,γi ,(q,γi+1)〉) =
{

γi if (q,γi+1)→ (q′,γ ′i+1,R)
(q′,γi) if (q,γi+1)→ (q′,γ ′i ,L)

• next(〈σs(n),#,σ ′
1〉) = #.

3 We assume that the reading head ofT does not “fall” from the right or the left boundaries of the
tape. Thus, the case where(i = 1) and(q,γi)→ (q′,γ ′i ,L) and the dual case where(i = s(n)) and
(q,γi)→ (q′,γ ′i ,R) are not possible.

Automata Theory and Model Checking 29

Consistency withnext now gives us a necessary condition for a trace to encode a
legal computation. In addition, the computation should start with the initial config-
uration.

In order to check consistency withnext, the NBWAT can use its nondeterminism
and guess when there is a violation ofnext. Thus,AT guesses〈σi−1,σi ,σi+1〉 ∈ Σ3,
guesses a position in the trace, checks whether the three letters to be read starting
in this position areσi−1,σi , andσi+1, and checks whethernext(〈σi−1,σi ,σi+1〉) is
not the letter to comes(n)+1 letters later. OnceAT sees such a violation, it goes to
an accepting sink. In order to check that the first configuration is not the initial con-
figuration,AT simply compares the firsts(n)+1 letters with #(q0,b)b. . .b. Finally,
checking whether a legal computation is rejecting is also easy: the computation
should reach a configuration in whichT visits qre j.

Theorem 18.[70] The containment problem for NBWs is decidable in exponential
time and is PSPACE-complete.

Proof: Consider NBWsA1 and A2. Note thatL (A1) ⊆ L (A2) iff L (A1)∩
(Σ ω \L (A2)) = /0, which holds iffL (A ′) = /0, whereA ′ is an NBW for the inter-
section ofA1 with an NBW that complementsA2. Thus, to check the containment
of A1 in A2 we can testA ′ for emptiness. Since the construction ofA ′ can proceed
on-the-fly and its size is linear in the size ofA1 and exponential in the size ofA2,
the required complexity follows, as in the proof of Theorem 17. SinceA2 is univer-
sal iff Σ ω ⊆L (A2) andΣ ω can be recognized by an NBW with one state, hardness
in PSPACE follows from hardness of the universality problem.

Recall that the algorithm for deciding non-emptiness of an NBW A operates on
the graphGA induced byA and thus ignores the alphabet ofA . In particular, the al-
gorithm does not distinguish between deterministic and nondeterministic automata.
In contrast, the algorithms for deciding universality and containment complement
the NBW and thus, can benefit from determinization.

Theorem 19.The non-emptiness, non-universality, and containment problems for
DBWs are NLOGSPACE-complete.

Proof: When applied to DBWs, the intermediate automatonA ′ used in the proofs
of Theorems 17 and 18 is polynomial in the size of the input, thus its non-emptiness
can be tested in NLOGSPACE. Hardness in NLOGSPACE follows from the fact
that reachability in directed graphs can be reduced to the three problems.

Theorems 16, 17, and 18 refer to Büchi automata. For the other types of au-
tomata, one can translate to NBWs and apply the algorithm for them. While in many
cases this results in an optimal algorithm, sometimes it is more efficient to work
directly on the input automaton. In particular, for NSW, thetranslation to NBW
results in an NBW withO(n22k) states, whereas non-emptiness can be checked in
sub-quadratic time [16, 25]. We note, however, that unlike NBWs and NRWs, for
which the non-emptiness problem is NLOGSPACE-complete, itis PTIME-complete
for NSWs [42]. For NPWs, the translation to NBWs results in an NBWwith O(nk)
states, whereas non-emptiness can be checked in timeO(nlogk) [32].

30 Orna Kupferman

5 Alternating Automata on Infinite Words

In [7], Chandra et al. introduced alternating Turing machines. In the alternating
model, the states of the machine, and accordingly also its configurations, are par-
titioned into existential and universal ones. When the machine is in an existential
configuration, one of its successors should lead to acceptance. When the machine
is in a universal configuration, all its successors should lead to acceptance. In this
section we define alternating Büchi automata [55] and study their properties.

5.1 Definition

For a given setX, let B+(X) be the set of positive Boolean formulas overX (i.e.,
Boolean formulas built from elements inX using∧ and∨), where we also allow the
formulastrue andfalse. ForY ⊆ X, we say thatY satisfiesa formulaθ ∈B+(X) iff
the truth assignment that assignstrue to the members ofY and assignsfalseto the
members ofX \Y satisfiesθ . We say thatY satisfiesθ in a minimal mannerif no
strict subset ofY satisfiesθ . For example, the sets{q1,q3}, {q2,q3}, and{q1,q2,q3}
all satisfy the formula(q1∨q2)∧q3, yet only the first two sets satisfy it in a minimal
manner. Also, the set{q1,q2} does not satisfy this formula.

Consider an automatonA = 〈Σ ,Q,Q0,δ ,α〉. We can representδ usingB+(Q).
For example, a transitionδ (q,σ) = {q1,q2,q3} of a nondeterministic automatonA
can be written asδ (q,σ) = q1∨q2∨q3. The dual of nondeterminism is universal-
ity. A word w is accepted by a universal automatonA if all the runs ofA on w
are accepting. Accordingly, ifA is universal, then the transition can be written as
δ (q,σ) = q1∧q2∧q3. While transitions of nondeterministic and universal automata
correspond to disjunctions and conjunctions, respectively, transitions of alternating
automata can be arbitrary formulas inB+(Q). We can have, for instance, a transi-
tion δ (q,σ) = (q1∧q2)∨ (q3∧q4), meaning that the automaton accepts a word of
the formσ ·w from stateq, if it acceptsw from bothq1 andq2 or from bothq3 and
q4. Such a transition combines existential and universal choices.

Formally, analternating automaton on infinite wordsis a tupleA = 〈Σ ,Q,q0,δ ,α〉,
whereΣ ,Q, andα are as in nondeterministic automata,q0 ∈ Q is an initial state (we
will later explain why it is technically easier to assume a single initial state), and
δ : Q×Σ → B+(Q) is a transition function. In order to define runs of alternating
automata, we first have to define trees and labeled trees. Atree is a prefix-closed set
T ⊆ IN∗ (i.e., if x ·c∈ T, wherex∈ IN∗ andc∈ IN, then alsox∈ T). The elements
of T are callednodes, and the empty wordε is theroot of T. For everyx∈ T, the
nodesx·c, for c∈ IN, are thesuccessorsof x. A node is aleaf if it has no successors.
We sometimes refer to the length|x| of x as itslevel in the tree. Apathπ of a treeT
is a setπ ⊆ T such thatε ∈ π and for everyx∈ π, eitherx is a leaf or there exists
a uniquec∈ IN such thatx · c∈ π. Given an alphabetΣ , a Σ -labeled treeis a pair
〈T,V〉 whereT is a tree andV : T → Σ maps each node ofT to a letter inΣ .

Automata Theory and Model Checking 31

While a run of a nondeterministic automaton on an infinite wordis an infinite
sequence of states, a run of an alternating automaton is aQ-labeled tree. Formally,
given an infinite wordw = σ1 ·σ2 · · ·, a run ofA on w is a Q-labeled tree〈Tr , r〉
such that the following hold:

• ε ∈ Tr andr(ε) = q0.
• Let x ∈ Tr with r(x) = q andδ (q,σ|x|+1) = θ . There is a (possibly empty) set

S= {q1, . . . ,qk} such thatSsatisfiesθ in a minimal manner and for all 1≤ c≤ k,
we have thatx ·c∈ Tr andr(x ·c) = qc.

For example, ifδ (q0,σ1) = (q1∨q2)∧ (q3∨q4), then possible runs ofA onw have
a root labeledq0, have one node in level 1 labeledq1 or q2, and have another node
in level 1 labeledq3 or q4. Note that ifθ = true, thenx does not have children. This
is the reason whyTr may have leaves. Also, since there exists no setSsatisfyingθ
for θ = false, we cannot have a run that takes a transition withθ = false.

A run 〈Tr , r〉 is acceptingiff all its infinite paths, which are labeled by words
in Qω , satisfy the acceptance condition. A wordw is accepted iff there exists an
accepting run on it. Note that while conjunctions in the transition function ofA
are reflected in branches of〈Tr , r〉, disjunctions are reflected in the fact we can have
many runs on the same word. The language ofA , denotedL (A), is the set of
infinite words thatA accepts. We use ABW to abbreviate alternating Büchi word
automata.

Example 4.Forn≥ 1, letΣn = {1,2, . . . ,n}. We describe an ABWAn such thatAn

accepts exactly all wordsw ∈ Σ ω
n such thatw contains the subwordi · i · i for all

lettersi ∈ Σn.
We defineAn = 〈Σn,Qn,q0,δ , /0〉, where

• Qn = {q0} ∪ (Σ ×{3,2,1}). Thus, in addition to an initial state,An contains
three states for each letteri ∈ Σn, where state〈i,c〉, for c∈ {1,2,3}, waits for a
subwordic.

• In its first transition,An spawns intoncopies, with copyi waiting for the subword
i3 (or i2, in case the first letter read isi). Thus, for alli ∈ Σn, we haveδn(q0, i) =
〈i,2〉∧

∧

j 6=i 〈 j,3〉. In addition, for alli ∈ Σn andc∈ {3,2,1}, we have

δn(〈i,c〉, j) =





〈i,c−1〉 if j = i andc∈ {3,2},
true if j = i andc= 1,
〈i,3〉 if j 6= i.

Note that no state inQn is accepting. Thus, all copies have to eventually take the
transition totrue, guaranteeing thati · i · i is indeed read, for alli ∈ Σn.

Note also that whileAn has 3n+1 states, it is not hard to prove that an NBW
for the language is exponential inn, as it has to remember the subsets of letters for
which the subwordi · i · i has already appeared.

A slightly more general definition of alternating automata could replace the sin-
gle initial state by aninitial transition in B+(Q), describing possible subsets of
states from which the word should be accepted. Staying with the definition of a set

32 Orna Kupferman

of initial states used in nondeterministic automata would have broken the symmetry
between the existential and universal components of alternation.

5.2 Closure Properties

The rich structure of alternating automata makes it easy to define the union and
intersection of ABWs. Indeed, the same way union is easy for automata with non-
determinism, intersection is easy for automata with universal branches.

Theorem 20.Let A1 and A2 be ABWs with n1 and n2 states, respectively. There
are ABWsA∪ andA∩ such thatL (A∪) = L (A1)∪L (A2), L (A∩) = L (A1)∩
L (A2), andA∪ andA∩ have n1+n2+1 states.

Proof: Let A1 = 〈Σ ,Q1,q0
1,δ1,α1〉 andA2 = 〈Σ ,Q2,q0

2,δ2,α2〉. We assume, with-
out loss of generality, thatQ1 and Q2 are disjoint. We defineA∪ as the union
of A1 andA2, with an additional initial state that proceeds like the union of the
initial states ofA1 andA2. Thus,A∪ = 〈Σ ,Q1∪Q2∪{q0},q0,δ ,α1∪α2〉, where
δ (q0,σ) = δ1(q0

1,σ)∨ δ2(q0
2,σ), and for every stateq ∈ Q1 ∪ Q2, we have that

δ (q,σ) = δi(q,σ), for the indexi ∈ {1,2} such thatq ∈ Qi . It is easy to see that
for every wordw∈ Σ ω , the ABW A has an accepting run onw iff at least one of
the ABWsA1 andA2 has an accepting run onw. The definition ofA∩ is similar,
except that fromq0 we proceed with the conjunction of the transitions fromq0

1 and
q0

2.

We note that with a definition of ABWs in which an initial transition in B+(Q)
is allowed, closing ABWs under union and intersection can be done by applying the
corresponding operation on the initial transitions.

We proceed to closure of ABWs under complementation. Given a transition
function δ , let δ̃ denote the function dual toδ . That is, for everyq and σ with
δ (q,σ) = θ , we have that̃δ (q,σ) = θ̃ , whereθ̃ is obtained fromθ by switching
∨ and∧ and switchingtrue and false. If, for example,θ = p∨ (true ∧ q), then
θ̃ = p∧ (false∨q). Given an acceptance conditionα, let α̃ be an acceptance con-
dition that dualizesα. Thus, a set of statesSsatisfiesα iff Sdoes not satisfỹα . In
particular, ifα is a Büchi condition, theñα is a co-B̈uchi condition.

For deterministic automata, it is easy to complement an automatonA by dualiz-
ing the acceptance condition. In particular, given a DBWA , viewingA as a DCW
complements its language. For an NBWA , the situation is more involved as we
have to make sure that all runs satisfy the dual condition. This can be done by view-
ing A as a universal co-B̈uchi automaton. As Lemma 3 below argues, this approach
can be generalized to all alternating automata and acceptance conditions.

Lemma 3. [58] Given an alternating automatonA = 〈Σ ,Q,q0,δ ,α〉, the alternat-
ing automaton ˜A = 〈Σ ,Q,q0, δ̃ , α̃〉 is such thatL (˜A) = Σ ω \L (A).

Automata Theory and Model Checking 33

Lemma 3 suggests a straightforward translation of an ABWA to a complement-
ing ACW ˜A , and vice versa. In order to end up with an ABW, one has to translate ˜A

to an ABW [44], which uses the ranking method described in thecontext of NBW
complementation and involves a quadratic blow-up:

Theorem 21.[44] Given an ABWA with n states, there is an ABWA ′ with O(n2)
states such thatL (A ′) = Σ ω \L (A).

We note that the ABW constructed in the proof of Theorem 21 is aweak alter-
nating automaton[56]. In a weak automaton, each SCC of the automaton is either
contained inα or is disjoint fromα. Every infinite path of a run ultimately gets
“trapped” within some SCC. The path then satisfies the acceptance condition iff this
component is contained inα.

It is easy to see that weak automata are a special case of both Büchi and co-B̈uchi
alternating automata. A run gets trapped in a component contained inα iff it visits
α infinitely often iff it visits Q\α only finitely often. The study of weak alternating
automata is motivated by the fact that the translation of formulas in several temporal
logics to alternating automata results in weak automata [56, 46]. Another motivation
is the fact that dualizing a weak automaton is straightforward: taking α̃ = Q\α
amounts to switching the classification of accepting and rejecting sets, and thus
dualizes the acceptance condition.

Remark 2.In the non-elementary translation of monadic second-orderlogic for-
mulas to NBWs [6], an exponential blow-up occurs with each negation. While a
blow-up that is non-elementary in the quantifier alternation depth is unavoidable,
the fact that complementation is easy for alternating automata raises the question
whether ABWs may be used in a simpler decision procedure. The negative an-
swer follows from the fact that theexistential projectionoperator, which is easy
for nondeterministic automata, involves an exponential blow-up when applied to
alternating automata. For a languageL ⊆ (Σ1×Σ2)

ω , we define the existential pro-
jection of L on Σ1 as the languageL1 of all wordsw1 ∈ Σ ω

1 such that there is a
word w2 ∈ Σ ω

2 for which w1 ⊗w2 ∈ L, wherew1 ⊗w2 is the word overΣ1 × Σ2

obtained by “merging” the letters ofw1 andw2 in the expected way. For example,
abba⊗ 0010= 〈a0〉〈b0〉〈b1〉〈a0〉. Given an NBW forL, it is easy to see that an
NBW for L1 can be obtained by replacing a letter〈σ1,σ2〉 by the letterσ1. Such
a simple replacement, however, would not work for alternating automata. Indeed,
there, one has to ensure that different copies of the automaton proceed according
to the same word overΣ2. Consequently, existential projection requires alternation
removal. In the context of translations of formulas to automata, the exponential
blow-up with each negation when working with NBWs is traded for an exponen-
tial blow-up with each existential quantifier when working with ABWs. It is easy to
see, say by pushing negations inside, that negations and existential quantifiers can
be traded also at the syntactic level of the formula.

34 Orna Kupferman

5.3 Decision Procedures

The rich structure of alternating automata makes them exponentially more suc-
cinct than nondeterministic automata. On the other hand, reasoning about alter-
nating automata is complicated. For example, while the algorithm for testing the
non-emptiness of a nondeterministic automaton can ignore the alphabet and be re-
duced to reachability questions in the underlying graph of the automaton, ignoring
the alphabet in an alternating automaton leads to an algorithm with a one-sided error.
Indeed, as noted in the context of existential projection inRemark 2, the algorithm
should make sure that the different copies it spawns into follow the same word. Con-
sequently, many algorithms for alternating automata involve alternation removal – a
translation to an equivalent nondeterministic automaton.Below we describe such a
translation for the case of B̈uchi automata.

Theorem 22.[55] Consider an ABWA with n states. There is an NBWA ′ with 3n

states such thatL (A ′) = L (A).

Proof: The automatonA ′ guesses a run ofA . At a given point of a run ofA ′,
it keeps in its memory the states in a whole level of the run tree of A . As it reads
the next input letter, it guesses the states in the next levelof the run tree ofA .
In order to make sure that every infinite path visits states inα infinitely often,A ′

keeps track of states that “owe” a visit toα. Let A = 〈Σ ,Q,q0,δ ,α〉. ThenA ′ =
〈Σ ,2Q×2Q,〈{q0}, /0〉,δ ′,2Q×{ /0}〉, whereδ ′ is defined, for all〈S,O〉 ∈ 2Q × 2Q

andσ ∈ Σ , as follows.

• If O 6= /0, thenδ ′(〈S,O〉,σ) = {〈S′,O′ \α〉 : S′ satisfies
∧

q∈Sδ (q,σ),O′ ⊆ S′,
andO′ satisfies

∧

q∈O δ (q,σ)}.
• If O= /0, thenδ ′(〈S,O〉,σ) = {〈S′,S′ \α〉 : S′ satisfies∧q∈Sδ (q,σ)}.

Note that all the reachable states〈S,O〉 in A ′ satisfyO⊆ S. Accordingly, if the
number of states inA is n, then the number of states inA ′ is at most 3n.

Note that the construction has the flavor of the subset construction [63], but in a
dual interpretation: a set of states is interpreted conjunctively: the suffix of the word
has to be accepted from all the states inS. While such a dual subset construction is
sufficient for automata on finite words, the case of Büchi requires also the mainte-
nance of a subsetO of S, leading to a 3O(n), rather than a 2O(n), blow-up. As shown
in [3], this additional blow-up cannot be avoided.

Remark 3.It is not hard to see that ifA is a universal automaton (that is, the tran-
sition functionδ only has conjunctions), then the automatonA ′ constructed in the
proof of Theorem 22 is deterministic. Indeed, in the definition ofδ ′(〈S,O〉,σ), there
is a single setS′ that satisfies∧q∈Sδ (q,σ) in a minimal manner. It follows that
universal B̈uchi automata are not more expressive than DBWs. Dually, NCWs are
not more expressive than DCW: Given an NCWA , we can apply the construction
above on the dual universal Büchi automaton ˜A (see Lemma 3), and then dualize
the obtained DBW. We end up with a DCW equivalent toA .

Automata Theory and Model Checking 35

We can now use alternation removal in order to solve decisionproblems for al-
ternating automata.

Theorem 23.The non-emptiness, non-universality, and containment problems for
ABW are PSPACE-complete.

Proof: We describe the proof for the non-emptiness problem. Since ABWs are
easily closed for negation and intersection, the proof for non-universality and con-
tainment is similar. Consider an ABWA . In order to checkA for non-emptiness,
we translate it into an NBWA ′ and check the non-emptiness ofA ′. By Theo-
rem 22, the size ofA ′ is exponential in the size ofA . Since the construction ofA ′

can proceed on-the-fly, and, by Theorem 16, its non-emptiness can be checked in
NLOGSPACE, membership in PSPACE follows.

In order to prove hardness in PSPACE, we do a reduction from NBW non-
universality. Given an NBWA , we have thatL (A) 6= Σ ω iff Σ ω \L (A) 6= /0.
Thus, non-universality ofA can be reduced to non-emptiness of an automatonA ′

that complementsA . Since we can defineA ′ as an ABW with quadratically many
states, hardness in PSPACE follows.

6 Automata-Based Algorithms

In this section we describe the application of automata theory in formal verification.
Recall that the logic LTL is used for specifying properties of reactive systems. The
syntax and semantics of LTL are described in Chapter 2. For completeness, we
describe them here briefly. Formulas of LTL are constructed from a setAPof atomic
propositions using the usual Boolean operators and the temporal operatorsX (“next
time”) andU (“until”). Formally, an LTL formula overAP is defined as follows:

• true, false, or p, for p∈ AP.
• ¬ψ1, ψ1∧ψ2, Xψ1, or ψ1Uψ2, whereψ1 andψ2 are LTL formulas.

The semantics of LTL is defined with respect to infinite computations π =
σ1,σ2,σ3, . . ., where for everyj ≥ 1, the setσ j ⊆AP is the set of atomic propositions
that hold in thej-th position ofπ. Systems that generate computations are modeled
by Kripke structures. A (finite) Kripke structure is a tupleK = 〈AP,W,W0,R, ℓ〉,
whereAP is a finite set of atomic propositions,W is a finite set of states,W0 ⊆ W
is a set of initial states,R⊆ W×W is a transition relation, andℓ : W → 2AP maps
each statew to the set of atomic propositions that hold inw. We require that each
state has at least one successor. That is, for each statew ∈ W there is at least one
statew′ such thatR(w,w′). A path inK is an infinite sequenceρ = w0,w1,w2, . . . of
states such thatw0 ∈W0 and for alli ≥ 0, we haveR(wi ,wi+1). The pathρ induces
the computationℓ(w0), ℓ(w1), ℓ(w2),

Consider a computationπ = σ1,σ2,σ3, We denote the suffixσ j ,σ j+1, . . . of
π by π j . We useπ |= ψ to indicate that an LTL formulaψ holds in the computation
π. The relation|= is inductively defined as follows:

36 Orna Kupferman

• For all π, we have thatπ |= true andπ 6|= false.
• For an atomic propositionp∈ AP, we have thatπ |= p iff p∈ σ1.
• π |= ¬ψ1 iff π 6|= ψ1.
• π |= ψ1∧ψ2 iff π |= ψ1 andπ |= ψ2.
• π |= Xψ1 iff π2 |= ψ1.
• π |=ψ1Uψ2 iff there existsk≥ 1 such thatπk |=ψ2 andπ i |=ψ1 for all 1≤ i < k.

Writing LTL formulas, it is convenient to use the abbreviationsG (“always”), F
(“eventually”), andR (“release”). Formally, the abbreviations follow the following
semantics.

• Fψ1 = trueUψ1. That is,π |= Fψ1 iff there existsk≥ 1 such thatπk |= ψ1.
• Gψ1 = ¬F¬ψ1. That is,π |= Gψ1 iff for all k≥ 1 we have thatπk |= ψ1.
• ψ1Rψ2 = ¬((¬ψ1)U(¬ψ2)). That is,π |= ψ1Rψ2 iff for all k ≥ 1, if πk 6|= ψ2,

then there is 1≤ i < k such thatπ i |= ψ1.

Each LTL formulaψ overAPdefines a languageL (ψ)⊆ (2AP)ω of the compu-
tations that satisfyψ, Formally,

L (ψ) = {π ∈ (2AP)ω : π |= ψ}.

Two natural problems arise in the context of systems and their specifications:

• Satisfiability:given an LTL formulaψ, is there a computationπ such thatπ |=ψ?
• Model Checking:given a Kripke structureK and an LTL formulaψ, do all the

computations ofK satisfyψ?

We describe a translation of LTL formulas into Büchi automata and discuss how
such a translation is used for solving the above two problems.

6.1 Translating LTL to Büchi Automata

In this section we describe a translation of LTL formulas to NBW. We start with
a translation that goes via ABWs. For completeness, we also present the original
translation of [77], which directly generates NBWs. The translation involves an ex-
ponential blow-up, which we show to be tight.

6.1.1 A Translation via ABWs

Consider an LTL formulaψ. For simplicity, we assume thatψ is given inpositive
normal form. Thus, negation is applied only to atomic propositions. Formally, given
a setAP of atomic propositions, an LTL formula in positive normal form is defined
as follows:

• true, false, p, or¬p, for p∈ AP.

Automata Theory and Model Checking 37

• ψ1, ψ1∧ψ2, ψ1∨ψ2, Xψ1, ψ1Uψ2, or ψ1Rψ2, whereψ1 andψ2 are LTL formu-
las in positive normal form.

Note that the fact negation is restricted to atomic propositions has forced us to
add not only the Boolean operator∨ but also the temporal operatorR. Still, it is
easy to see that transforming an LTL formula to a formula in positive normal form
involves no blow-up. Theclosureof an LTL formulaψ, denotedcl(ψ), is the set of
all its subformulas. Formally,cl(ψ) is the smallest set of formulas that satisfy the
following.

• ψ ∈ cl(ψ).
• If ψ1 ∧ψ2, ψ1 ∨ψ2, ψ1Uψ2 or ψ1Rψ2 is in cl(ψ), thenψ1 ∈ cl(ψ) andψ2 ∈

cl(ψ).
• If Xψ1 is in cl(ψ), thenψ1 ∈ cl(ψ).

For example,cl(p∧ ((X p)Uq)) is {p∧ ((X p)Uq), p,(X p)Uq,X p,q}. It is easy to
see that the size ofcl(ψ) is linear in|ψ|.

Theorem 24.For every LTL formulaψ, there is an ABWAψ with O(|ψ|) states
such thatL (Aψ) = L (ψ).

Proof: We defineAψ = 〈2AP,cl(ψ),ψ,δ ,α〉, where

• The transitionδ (ϕ,σ) is defined according to the form ofϕ as follows.

– δ (p,σ) =

[

true if p∈ σ ,
false if p 6∈ σ .

– δ (¬p,σ) =

[

true if p 6∈ σ ,
false if p∈ σ .

– δ (ϕ1∧ϕ2,σ) = δ (ϕ1,σ)∧δ (ϕ2,σ).
– δ (ϕ1∨ϕ2,σ) = δ (ϕ1,σ)∨δ (ϕ2,σ).
– δ (Xϕ,σ) = ϕ.
– δ (ϕ1Uϕ2,σ) = δ (ϕ2,σ)∨ (δ (ϕ1,σ)∧ϕ1Uϕ2).
– δ (ϕ1Rϕ2,σ) = δ (ϕ2,σ)∧ (δ (ϕ1,σ)∨ϕ1Rϕ2).

• The setα of accepting states consists of all the formulas incl(ψ) of the form
ϕ1Rϕ2.

The proof of the correctness of the construction proceeds byinduction on the struc-
ture ofψ. For a formulaϕ ∈ cl(ψ), we prove that whenAψ is in stateϕ, it accepts
exactly all words that satisfyϕ. The base case, whenϕ is an atomic proposition or
its negation, follows from the definition of the transition function. The other cases
follow from the semantics of LTL and the induction hypothesis. In particular, the
definition of α guarantees that in order for a word to satisfyϕ1Uϕ2, it must have
a suffix that satisfiesϕ2. Indeed, otherwise, the run ofAψ has an infinite path that
remains forever in the stateϕ1Uϕ2, and thus does not satisfyα.

Example 5.We describe an ABWAψ for the LTL formulaψ =GF p. Note thatψ =
falseR(trueU p). In the example, we use theF andG abbreviations. The alphabet of
Aψ consists of the two letters in 2{p}. The set of accepting states is{GF p}, and the
states and transitions are described in the table in Fig. 8.

38 Orna Kupferman

{p} /0

GF p GF p GF p∧F p
F p true F p

Fig. 8 The transition function of an ABW forGF p

Example 6.We describe an ABWAψ for the LTL formulaψ = p∧ ((X p)Uq). The
alphabet ofAψ consists of the four letters in 2{p,q}. The states and transitions are
described in the table in Fig. 9. No state is accepting. Note that only the initial state
is reachable.

{p,q} {p} {q} /0

p∧ ((X p)Uq)) true p∧ ((X p)Uq) false false
p true true false false
(X p)Uq true p∧ ((X p)Uq)) true p∧ ((X p)Uq))

Fig. 9 The transition function of an ABW forp∧ ((X p)Uq))

Combining Theorems 24 and 22, we get the following.

Theorem 25.For every LTL formulaψ, there is an NBWAψ such thatL (Aψ) =
L (ψ) and the size ofAψ is exponential in|ψ|.

In Section 6.1.3 we show a matching exponential lower bound.Let us note here
that while the 3n blow-up in Theorem 22 refers to general ABWs, the ABWs ob-
tained from LTL in the proof of Theorem 24 have a special structure: all the cycles
in the automata are self-loops. For such automata (termedvery-weakalternating au-
tomata, as they are weak alternating automata in which all SCCs are singletons),
alternation can be removed with only ann2n blow-up [20, 3].

6.1.2 A Direct Translation to NBWs

The original translation of LTL to NBW [77] does not go via intermediate alternat-
ing automata. For completeness, we detail it here. The translation does not assume
a positive normal form, and uses theextended closureof the given formula: For an
LTL formula ψ, the extended closure ofψ, denotedecl(ψ), is the set ofψ ’s sub-
formulas and their negations (¬¬ψ is identified withψ). Formally,ecl(ψ) is the
smallest set of formulas that satisfy the following.

• ψ ∈ ecl(ψ).
• If ψ1 ∈ ecl(ψ) then¬ψ1 ∈ ecl(ψ).
• If ¬ψ1 ∈ ecl(ψ) thenψ1 ∈ ecl(ψ).
• If ψ1∧ψ2 ∈ ecl(ψ) thenψ1 ∈ ecl(ψ) andψ2 ∈ ecl(ψ).

Automata Theory and Model Checking 39

• If Xψ1 ∈ ecl(ψ) thenψ1 ∈ ecl(ψ).
• If ψ1Uψ2 ∈ ecl(ψ) thenψ1 ∈ ecl(ψ) andψ2 ∈ ecl(ψ).

For example,ecl(p∧ ((X p)Uq)) is {p∧ ((X p)Uq),¬(p∧ ((X p)Uq)), p,¬p,
(X p)Uq, ¬((X p)Uq),X p,¬X p,q,¬q}.

The translation is based on the observation that the question of satisfaction of an
LTL formula ψ in a computationπ can be reduced to questions about the satisfaction
of formulas inecl(ψ) in the suffixes ofπ. More formally, given a computationπ, it
is possible to (uniquely) label each suffix ofπ by the subset of formulas inecl(ψ)
that are satisfied in this suffix. The correctness of this labeling can be verified by
local consistency checks, which relate the labeling of successive suffixes, and by
a global consistency check, which takes care of satisfaction of eventualities. Since
it is easier to check the satisfaction of each eventuality inisolation, we describe
a translation to nondeterministic automata with the generalized Büchi acceptance
condition. One can then use Theorem 12 in order to obtain an NBW.

Formally, given an LTL formulaψ overAP, we defineAψ = 〈2AP,Q,Q0,δ ,α〉,
as follows.

• We say that a setS⊆ ecl(ψ) is good in ecl(ψ) if S is a maximal set of formulas
in ecl(ψ) that does not have propositional inconsistency. Thus,S satisfies the
following conditions.

1. For allψ1 ∈ ecl(ψ), we haveψ1 ∈ S iff ¬ψ1 6∈ S, and
2. For allψ1∧ψ2 ∈ ecl(ψ), we haveψ1∧ψ2 ∈ S iff ψ1 ∈ Sandψ2 ∈ S.

The state spaceQ⊆ 2ecl(ψ) is the set of all the good sets inecl(ψ).
• Let S andS′ be two good sets inecl(ψ), and letσ ⊆ AP be a letter. ThenS′ ∈

δ (S,σ) if the following hold.

1. σ = S∩AP,
2. For allXψ1 ∈ ecl(ψ), we haveXψ1 ∈ S iff ψ1 ∈ S′, and
3. For allψ1Uψ2 ∈ ecl(ψ), we haveψ1Uψ2 ∈ S iff either ψ2 ∈ Sor bothψ1 ∈ S

andψ1Uψ2 ∈ S′.

Note that the last condition also means that for all¬(ψ1Uψ2) ∈ ecl(ψ), we have
that¬(ψ1Uψ2) ∈ S iff ¬ψ2 ∈ Sand either¬ψ1 ∈ Sor¬(ψ1Uψ2) ∈ S′.

• Q0 ⊆ Q is the set of all statesS∈ Q for which ψ ∈ S.
• Every formulaψ1Uψ2 contributes to the generalized Büchi conditionα the set

αψ1Uψ2 = {S∈ Q : ψ2 ∈ Sor¬(ψ1Uψ2) ∈ S}.

We now turn to discuss the size ofAψ . It is easy to see that the size ofecl(ψ) is
O(|ψ|), soAψ has 2O(|ψ|) states. Note that sinceψ has at most|ψ| subformulas of
the formψ1Uψ2, the index ofα is at most|ψ|. It follows from Theorem 12 thatψ
can also be translated into an NBW with 2O(|ψ|) states.

Remark 4.Note that the construction ofAψ can proceedon-the-fly. Thus, given a
stateS of Aψ and a letterσ ∈ 2AP, it is possible to compute the setδ (S,σ) based
on the formulas inS. As we shall see in Section 6.2, this fact is very helpful, as it

40 Orna Kupferman

implies that reasoning aboutAψ need not construct the whole state space ofAψ but
can rather proceed in an on-demand fashion.

6.1.3 The blow-up in the LTL to NBW Translation

In this section we describe an exponential lower bound for the translation of LTL
to NBW, implying that the blow-up that both translations above involve cannot in
general be avoided. We do so by describing a doubly-exponential lower bound for
the translation of LTL to DBW. Recall that NBWs are strictly more expressive than
DBWs. The expressiveness gap carries over to languages that can be specified in
LTL. For example, the formulaFGb (“eventually alwaysb”, which is similar to the
language used in the proof of Theorem 6), cannot be translated into a DBW. We now
show that when a translation exists, it is doubly-exponential. Thus, the exponential
blow-ups in Theorem 25 and determinization (when possible)are additive:

Theorem 26.When possible, the translation of LTL formulas to deterministic Büchi
automata is doubly-exponential.

Proof: Let ψ be an LTL formula of lengthn and letAψ be an NBW that recognizes
ψ. By Theorem 25, the automatonAψ has 2O(n) states. By determinizingAψ , we

get a DPWUψ with 22O(n)
states [64, 59]. By B̈uchi typeness of DPWs [35] (see

also Theorem 9), ifUψ has an equivalent DBW, it can be translated into a DBW
with the same state space. Hence the upper bound.

For the lower bound, consider the followingω-regular languageLn over the al-
phabet{0,1,#,$}:4

Ln = {{0,1,#}∗ ·#·w ·#· {0,1,#}∗ ·$·w ·#ω : w∈ {0,1}n}.

A word τ is inLn iff the suffix of lengthn that comes after the single $ inτ appears
somewhere before the $. By [7], the smallest deterministic automaton that accepts
Ln has at least 22

n
states. (The proof in [7] considers the language of the finitewords

obtained fromLn by omitting the #ω suffix. The proof, however, is independent of
this technical detail: reaching the $, the automaton shouldremember the possible
set of words in{0,1}n that have appeared before.) We can specifyLn with an LTL
formula of length quadratic inn. The formula is a conjunction of two formulas. The
first conjunct,ψ1, makes sure that there is only one $ in the word, followed by a
word in {0,1}n, which is followed by an infinite tail of #’s. The second conjunct,
ψ2, states that eventually there exists a position with # and for all 1≤ i ≤ n, thei-th
letter from this position is 0 or 1 and it agrees with thei-th letter after the $. Also,
the(n+1)-th letter from this position is #. Formally,

• ψ1 = (¬$)U($∧X((0∨1)∧X(0∨1)∧
n
· · · X((0∨1)∧XG#))) · · ·).

• ψ2 = F(#∧Xn+1#∧
∧

1≤i≤n((X
i0∧G($→ Xi0))∨ (Xi1∧G($→ Xi1)))).

4 Note that, for technical convenience, the alphabet ofLn is not of the form 2AP. It is easy to adjust
the proof to this setting, say by encoding{0,1,#,$} by two atomic propositions.

Automata Theory and Model Checking 41

Note that the argument about the size of the smallest deterministic automaton that
recognizesLn is independent of the automaton’s acceptance condition. Thus, the
theorem holds for deterministic Rabin, Streett, and Mullerautomata as well.

6.2 Model Checking and Satisfiability

In this section we describe the automata-theoretic approach to LTL satisfiability
and model checking. We show how, using the translation of LTLinto NBW, these
problems can be reduced to problems about automata and theirlanguages.

Theorem 27.The LTL satisfiability problem is PSPACE-complete.

Proof: An LTL formula ψ is satisfiable iff the automatonAψ is not empty. In-
deed,Aψ accepts exactly all the computations that satisfyψ. By Theorem 16, the
non-emptiness problem for NBWs is in NLOGSPACE. Since the size ofAψ is expo-
nential in|ψ|, and its construction can be done on-the-fly, membership in PSPACE
follows. Hardness in PSPACE is proved in [69], and the proof is similar to the hard-
ness proof we detailed for NBW non-universality in Theorem 17. Indeed, as there,
given a polynomial-space Turing machineT, we can construct an LTL formulaψT

of polynomial size that describes exactly all words that either do not encode a le-
gal computation ofT on the empty tape, or encode a rejecting computation. The
formula¬ψ is then satisfiable iffT accepts the empty tape.

Theorem 28.The LTL model-checking problem is PSPACE-complete.

Proof: Consider a Kripke structureK = 〈AP,W,W0,R, ℓ〉. We construct an NBW
AK such thatAK accepts a computationπ ∈ (2AP)ω iff π is a computation ofK.
The construction ofAK essentially moves the labels ofK from the states to the
transitions. Thus,AK = 〈2AP,W,W0,δ ,W〉, where for allw ∈ W andσ ∈ 2AP, we
have

δ (w,σ) =

{

{w′ : R(w,w′)} if σ = ℓ(w).
/0 if σ 6= ℓ(w).

Now, K satisfiesψ iff all the computations ofK satisfyψ, thusL (AK)⊆ L (Aψ).
A naive check of the above would constructAψ and complement it. Complementa-
tion, however, involves an exponential blow-up, on top of the exponential blow-up
in the translation ofψ to Aψ . Instead, we exploit the fact that LTL formulas are easy
to complement and check thatL (AK)∩L (A¬ψ) = /0, whereA¬ψ is the NBW for
¬ψ. Accordingly, the model-checking problem can be reduced tothe non-emptiness
problem of the intersection ofAK andA¬ψ . Let AK,¬ψ be an NBW accepting the
intersection of the languages ofAK andA¬ψ . SinceAK has no acceptance condi-
tion, the construction ofAK,¬ψ can proceed by simply taking the product ofAK

with A¬ψ . Then,K satisfiesψ iff AK,¬ψ is empty. By Theorem 25, the size ofA¬ψ
is exponential in|ψ|. Also, the size ofAK is linear in|K|. Thus, the size ofAK,¬ψ
is |K| ·2O(|ψ|). Since the construction ofA¬ψ , and hence alsoAK,¬ψ , can be done

42 Orna Kupferman

on-the-fly, membership in PSPACE follows from the membership in NLOGSPACE
of the non-emptiness problem for NBW. Hardness in PSPACE is proved in [69], and
again, proceeds by a generic reduction from polynomial-space Turing machines.

As described in the proof of Theorem 28, the PSPACE complexity of the LTL
model-checking problem follows from the exponential size of the product automa-
ton AK,¬ψ . Note thatAK,¬ψ is exponential only in|ψ|, and is linear in|K|. Never-
theless, asK is typically much bigger thanψ, and the exponential blow-up of the
translation ofψ to A¬ψ rarely appears in practice, it is the linear dependency in|K|,
rather than the exponential dependency in|ψ|, that makes LTL model checking so
challenging in practice.

We note that the translations described in Section 6.1 are the classic ones. Since
their introduction, researchers have suggested many heuristics and optimizations,
with rapidly changing state of the art. Prominent ideas involve a reduction of the
state space by associating states with smaller subsets of the closure [21], possibly as
a result of starting with alternating automata [46, 20], reductions based on relations
between the states, in either the alternating or nondeterministic automaton [71, 19],
working with acceptance conditions that are defined with respect to edges rather
than states [22], and a study of easy fragments [34]. In addition, variants of NBWs
are used for particular applications, such astestersin the context of composition
reasoning [60]. Finally, the automata-theoretic approachhas been extended also to
branching temporal logics. There, formulas are interpreted over branching struc-
tures, and the techniques are based on automata on infinite trees [76, 12, 13, 57, 46].

AcknowledgementI thank Javier Esparza and Moshe Y. Vardi for many helpful
comments and discussions.

References

1. R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal logic. InProc. 38th
IEEE Symp. on Foundations of Computer Science, pages 100–109, 1997.

2. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The ForSpectemporal logic: A new
temporal property-specification logic. InProc. 8th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems, volume 2280 ofLecture Notes in Computer Science,
pages 196–211. Springer, 2002.

3. U. Boker, O. Kupferman, and A. Rosenberg. Alternation removal in Büchi automata. InProc.
37th Int. Colloq. on Automata, Languages, and Programming, volume 6199, pages 76–87,
2010.

4. U. Boker, O. Kupferman, and A. Steinitz. Parityzing Rabin and Streett. InProc. 30th Conf.
on Foundations of Software Technology and Theoretical Computer Science, pages 412–423,
2010.

5. S. Breuers, C. L̈oding, and J̈org Olschewski. Improved Ramsey-based Büchi complementa-
tion. InProc. 15th Int. Conf. on Foundations of Software Science andComputation Structures,
volume 7213 ofLecture Notes in Computer Science, pages 150–164. Springer, 2012.

Automata Theory and Model Checking 43

6. J.R. B̈uchi. On a decision method in restricted second order arithmetic.In Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press,
1962.

7. A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association for
Computing Machinery, 28(1):114–133, 1981.

8. Y. Choueka. Theories of automata onω-tapes: A simplified approach.Journal of Computer
and Systems Science, 8:117–141, 1974.

9. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic model
checker.Software Tools for Technology Transfer, 2(4):410–425, 2000.

10. T.H. Cormen, C.E. Leiserson, and R.L. Rivest.Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

11. J.-M. Couvreur. On-the-fly verification of linear temporallogic. InWorld Congress on Formal
Methods, volume 1708 ofLecture Notes in Computer Science, pages 253–271. Springer, 1999.

12. E.A. Emerson and C. Jutla. The complexity of tree automata and logics of programs. InProc.
29th IEEE Symp. on Foundations of Computer Science, pages 328–337, 1988.

13. E.A. Emerson and C. Jutla. Tree automata,µ-calculus and determinacy. InProc. 32nd IEEE
Symp. on Foundations of Computer Science, pages 368–377, 1991.

14. E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes
back. InProc. 12th ACM Symp. on Principles of Programming Languages, pages 84–96,
1985.

15. E.A. Emerson and C.-L. Lei. Temporal model checking under generalized fairness constraints.
In Proc. 18th Hawaii Int. Conf. on System Sciences. Western Periodicals Company, 1985.

16. E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time logic strikes
back.Science of Computer Programming, 8:275–306, 1987.

17. S. Fogarty, O. Kupferman, M.Y. Vardi, and T. Wilke. Unifying Büchi complementation con-
structions. InProc. 20th Annual Conf. of the European Association for Computer Science
Logic, pages 248–263, 2011.

18. E. Friedgut, O. Kupferman, and M.Y. Vardi. Büchi complementation made tighter.Int. J.
Found. Comput. Sci., 17(4):851–868, 2006.

19. C. Fritz. Constructing B̈uchi automata from linear temporal logic using simulation relations
for alternating B̈uchi automata. InProc. 8th Int. Conf. on Implementation and Application of
Automata, number 2759 in Lecture Notes in Computer Science, pages 35–48. Springer, 2003.

20. P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. InProc. 13th Int. Conf.
on Computer Aided Verification, volume 2102 ofLecture Notes in Computer Science, pages
53–65. Springer, 2001.

21. R. Gerth, D. Peled, M.Y. Vardi, and P. Wolper. Simple on-the-fly automatic verification of lin-
ear temporal logic. In P. Dembiski and M. Sredniawa, editors,Protocol Specification, Testing,
and Verification, pages 3–18. Chapman & Hall, 1995.

22. D. Giannakopoulou and F. Lerda. From states to transitions:Improving translation of LTL
formulae to B̈uchi automata. InProc. 22nd International Conference on Formal Techniques
for Networked and Distributed Systems, volume 2529 ofLecture Notes in Computer Science,
pages 308–326. Springer, 2002.

23. P. Godefroid and P. Wolper. A partial approach to model checking. Information and Compu-
tation, 110(2):305–326, 1994.

24. R.H. Hardin, Z. Har’el, and R.P. Kurshan. COSPAN. InProc. 8th Int. Conf. on Com-
puter Aided Verification, volume 1102 ofLecture Notes in Computer Science, pages 423–427.
Springer, 1996.

25. M. Henzinger and J.A. Telle. Faster algorithms for the nonemptiness of Streett automata
and for communication protocol pruning. InProc. 5th Scandinavian Workshop on Algorithm
Theory, volume 1097 ofLecture Notes in Computer Science, pages 10–20. Springer, 1996.

26. T.A. Henzinger, O. Kupferman, and M.Y. Vardi. A space-efficient on-the-fly algorithm for
real-time model checking. InProc. 7th Int. Conf. on Concurrency Theory, volume 1119 of
Lecture Notes in Computer Science, pages 514–529. Springer, 1996.

27. G.J. Holzmann. The model checker SPIN.IEEE Transactions on Software Engineering,
23(5):279–295, 1997.

44 Orna Kupferman

28. N. Immerman. Nondeterministic space is closed under complement.Information and Com-
putation, 17:935–938, 1988.

29. M. Jurdzinski. Small progress measures for solving parity games. In Proc. 17th Symp. on
Theoretical Aspects of Computer Science, volume 1770 ofLecture Notes in Computer Science,
pages 290–301. Springer, 2000.

30. D. Kähler and T. Wilke. Complementation, disambiguation, and determinization of B̈uchi
automata unified. InProc. 35th Int. Colloq. on Automata, Languages, and Programming,
volume 5126 ofLecture Notes in Computer Science, pages 724–735. Springer, 2008.

31. S. Katz and D. Peled. Interleaving set temporal logic.Theoretical Computer Science,
75(3):263–287, 1990.

32. V. King, O. Kupferman, and M.Y. Vardi. On the complexity of parity word automata. InProc.
4th Int. Conf. on Foundations of Software Science and Computation Structures, volume 2030
of Lecture Notes in Computer Science, pages 276–286. Springer, 2001.

33. N. Klarlund. Progress measures for complementation ofω-automata with applications to
temporal logic. InProc. 32nd IEEE Symp. on Foundations of Computer Science, pages 358–
367, 1991.

34. J. Kret́ınsḱy and J. Esparza. Deterministic automata for the (f, g)-fragment ofltl. In Proc.
24th Int. Conf. on Computer Aided Verification, volume 7358 ofLecture Notes in Computer
Science, pages 7–22. Springer, 2012.

35. S.C. Krishnan, A. Puri, and R.K. Brayton. Deterministicω-automata vis-a-vis deterministic
Büchi automata. InAlgorithms and Computations, volume 834 ofLecture Notes in Computer
Science, pages 378–386. Springer, 1994.

36. O. Kupferman. Avoiding determinization. InProc. 21st IEEE Symp. on Logic in Computer
Science, pages 243–254, 2006.

37. O. Kupferman. Sanity checks in formal verification. InProc. 17th Int. Conf. on Concurrency
Theory, volume 4137 ofLecture Notes in Computer Science, pages 37–51. Springer, 2006.

38. O. Kupferman, G. Morgenstern, and A. Murano. Typeness forω-regular automata.Interna-
tional Journal on the Foundations of Computer Science, 17(4):869–884, 2006.

39. O. Kupferman, N. Piterman, and M.Y. Vardi. Extended temporal logic revisited. InProc. 12th
Int. Conf. on Concurrency Theory, volume 2154 ofLecture Notes in Computer Science, pages
519–535, 2001.

40. O. Kupferman, N. Piterman, and M.Y. Vardi. Model checking linear properties of prefix-
recognizable systems. InProc. 14th Int. Conf. on Computer Aided Verification, volume 2404
of Lecture Notes in Computer Science, pages 371–385. Springer, 2002.

41. O. Kupferman and M.Y. Vardi. On the complexity of branchingmodular model checking.
In Proc. 6th Int. Conf. on Concurrency Theory, volume 962 ofLecture Notes in Computer
Science, pages 408–422. Springer, 1995.

42. O. Kupferman and M.Y. Vardi. Verification of fair transition systems. InProc. 8th Int. Conf.
on Computer Aided Verification, volume 1102 ofLecture Notes in Computer Science, pages
372–382. Springer, 1996.

43. O. Kupferman and M.Y. Vardi. An automata-theoretic approach to reasoning about infinite-
state systems. InProc. 12th Int. Conf. on Computer Aided Verification, volume 1855 ofLecture
Notes in Computer Science, pages 36–52. Springer, 2000.

44. O. Kupferman and M.Y. Vardi. Weak alternating automata arenot that weak.ACM Transac-
tions on Computational Logic, 2(2):408–429, 2001.

45. O. Kupferman and M.Y. Vardi. Safraless decision procedures.In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

46. O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach to branching-time
model checking.Journal of the ACM, 47(2):312–360, 2000.

47. R.P. Kurshan. Complementing deterministic Büchi automata in polynomial time.Journal of
Computer and Systems Science, 35:59–71, 1987.

48. R.P. Kurshan.Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

49. L.H. Landweber. Decision problems forω–automata.Mathematical Systems Theory, 3:376–
384, 1969.

Automata Theory and Model Checking 45

50. C. L̈oding. Optimal bounds for the transformation of omega-automata.In Proc. 19th Conf.
on Foundations of Software Technology and Theoretical Computer Science, volume 1738 of
Lecture Notes in Computer Science, pages 97–109, 1999.

51. O. Maler and L. Staiger. On syntactic congruences forω-languages.Theoretical Computer
Science, 183(1):93–112, 1997.

52. R. McNaughton. Testing and generating infinite sequences by a finite automaton.Information
and Control, 9:521–530, 1966.

53. A.R. Meyer and L.J. Stockmeyer. The equivalence problem for regular expressions with squar-
ing requires exponential time. InProc. 13th IEEE Symp. on Switching and Automata Theory,
pages 125–129, 1972.

54. M. Michel. Complementation is more difficult with automata oninfinite words. CNET, Paris,
1988.

55. S. Miyano and T. Hayashi. Alternating finite automata onω-words. Theoretical Computer
Science, 32:321–330, 1984.

56. D.E. Muller, A. Saoudi, and P.E. Schupp. Alternating automata, the weak monadic theory
of the tree and its complexity. InProc. 13th Int. Colloq. on Automata, Languages, and Pro-
gramming, volume 226 ofLecture Notes in Computer Science, pages 275 – 283. Springer,
1986.

57. D.E. Muller and P.E. Schupp. Alternating automata on infinite trees. InAutomata on Infinite
Words, volume 192 ofLecture Notes in Computer Science, pages 100–107. Springer, 1985.

58. D.E. Muller and P.E. Schupp. Simulating alternating treeautomata by nondeterministic au-
tomata: New results and new proofs of theorems of Rabin, McNaughton and Safra.Theoretical
Computer Science, 141:69–107, 1995.

59. N. Piterman. From nondeterministic Büchi and Streett automata to deterministic parity au-
tomata.Logical Methods in Computer Science, 3(3):5, 2007.

60. A. Pnueli and A. Zaks. On the merits of temporal testers. In25 Years of Model Checking,
volume 5000 ofLecture Notes in Computer Science, pages 172–195. Springer, 2008.

61. M.O. Rabin. Decidability of second order theories and automata on infinite trees.Transaction
of the AMS, 141:1–35, 1969.

62. M.O. Rabin. Decidable theories. In J. Barwise, editor,Handbook of Mathematical Logic,
pages 595–629. North-Holland, Amsterdam, 1977.

63. M.O. Rabin and D. Scott. Finite automata and their decisionproblems. IBM Journal of
Research and Development, 3:115–125, 1959.

64. S. Safra. On the complexity ofω-automata. InProc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, 1988.

65. S. Safra and M.Y. Vardi. Onω-automata and temporal logic. InProc. 21st ACM Symp. on
Theory of Computing, pages 127–137, 1989.

66. S. Schewe. B̈uchi complementation made tight. InProc. 26th Symp. on Theoretical Aspects of
Computer Science, volume 3 ofLIPIcs, pages 661–672. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, Germany, 2009.

67. S. Schewe. Tighter bounds for the determinisation of büchi automata. InProc. 12th Int. Conf.
on Foundations of Software Science and Computation Structures, volume 5504 ofLecture
Notes in Computer Science, pages 167–181. Springer, 2009.

68. S. Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. In
Proc. 30th Conf. on Foundations of Software Technology and Theoretical Computer Science,
volume 8 ofLeibniz International Proceedings in Informatics (LIPIcs), pages 400–411, 2010.

69. A.P. Sistla and E.M. Clarke. The complexity of propositional linear temporal logic.Journal
of the ACM, 32:733–749, 1985.

70. A.P. Sistla, M.Y. Vardi, and P. Wolper. The complementationproblem for B̈uchi automata
with applications to temporal logic.Theoretical Computer Science, 49:217–237, 1987.

71. F. Somenzi and R. Bloem. Efficient Büchi automata from LTL formulae. InProc. 12th Int.
Conf. on Computer Aided Verification, volume 1855 ofLecture Notes in Computer Science,
pages 248–263. Springer, 2000.

72. Synopsys. Assertion-based verification. 2003.

46 Orna Kupferman

73. R.E. Tarjan. Depth first search and linear graph algorithms.SIAM Journal of Computing,
1(2):146–160, 1972.

74. W. Thomas. Automata on infinite objects.Handbook of Theoretical Computer Science, pages
133–191, 1990.

75. A. Valmari. A stubborn attack on state explosion.Formal Methods in System Design, 1:297–
322, 1992.

76. M.Y. Vardi and P. Wolper. Automata-theoretic techniquesfor modal logics of programs.Jour-
nal of Computer and Systems Science, 32(2):182–221, 1986.

77. M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

78. B. Willems and P. Wolper. Partial-order methods for model checking: From linear time to
branching time. InProc. 11th IEEE Symp. on Logic in Computer Science, pages 294–303,
1996.

79. P. Wolper, M.Y. Vardi, and A.P. Sistla. Reasoning about infinite computation paths. InProc.
24th IEEE Symp. on Foundations of Computer Science, pages 185–194, 1983.

80. Q. Yan. Lower bounds for complementation ofω-automata via the full automata technique. In
Proc. 33rd Int. Colloq. on Automata, Languages, and Programming, volume 4052 ofLecture
Notes in Computer Science, pages 589–600. Springer, 2006.

81. W. Zielonka. Infinite games on finitely coloured graphs with applications to automata on
infinite trees.Theoretical Computer Science, 200(1-2):135–183, 1998.

