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Orna Kupferman

Abstract We study automata on infinite words and their applicatiorsystem spec-
ification and verification. We first introduceiBhi automata and survey their closure
properties, expressive power, and determinization. We ithteoduce additional ac-
ceptance conditions and the model of alternating autoriigtacompare the differ-
ent classes of automata in terms of expressive power andhstroess, and describe
decision problems for them. Finally, we describe the autarttzeoretic approach
to system specification and verification.

1 Introduction

Finite automata on infinite objects were first introducechim 1960s. Motivated by
decision problems in mathematics and logidcBi, McNaughton, and Rabin devel-
oped a framework for reasoning about infinite words and ititrees [6, 52, 61].
The framework has proved to be very powerful. Automata aedt tight relation

to second-order monadic logics were the key to the solutiGgeweral fundamental
decision problems in mathematics and logic [62, 74]. Todagpmata on infinite
objects are used for specification and verification of nonteating systems. The
idea is simple: when a system is defined with respect to a feit&P of proposi-
tions, each of the system’s states can be associated withod gepositions that
hold in this state. Then, each of the system’s computatiothsdes an infinite word
over the alphabet’?, and the system itself induces a language of infinite words
over this alphabet. This language can be defined by an auwarrimilarly, a sys-
tem specification, which describes all the allowed comjpurtat can be viewed as a
language of infinite words ove*2 , and can therefore be defined by an automaton.
In the automata-theoretic approach to verification, we cedjuestions about sys-
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tems and their specifications to questions about automaiee §pecifically, ques-
tions such as satisfiability of specifications and corresgrad systems with respect
to their specifications are reduced to questions such agmuiness and language
containment [79, 48, 77].

The automata-theoretic approach separates the logicaharmbmbinatorial as-
pects of reasoning about systems. The translation of spatiifns to automata han-
dles the logic and shifts all the combinatorial difficulttesautomata-theoretic prob-
lems, yielding clean and asymptotically optimal algorithas well as better under-
standing of the complexity of the problems. Beyond leadimdight complexity
bounds, automata have proven to be very helpful in prachoeomata are the key
to techniques such as on-the-fly model checking [21, 11]ilaeygare useful also for
modular model checking [41], partial-order model checKirgy, 31, 23, 78], model
checking of real-time and hybrid systems [26], open systdhsnd infinite-state
systems [43, 40]. Automata also serve as expressive sgadigifidormalisms [39, 2]
and in algorithms for sanity checks [37]. Automata-basethoas have been imple-
mented in both academic and industrial automated-veificébols (e.g., COSPAN
[24], SPIN [27], ForSpec [72], and NuSMV [9]).

This chapter studies automata on infinite words and theiliGgijons in sys-
tem specification and verification. We first introducécBi automata, survey their
closure properties, expressive power, and determinizatMe then introduce addi-
tional acceptance conditions and the model of alternatirigraata. We compare
the different classes of automata in terms of expressiveepand succinctness, and
describe decision problems for them. Finally, we desciiteedutomata-theoretic
approach to system specification and verification.

2 Nondeterministic Blichi Automata on Infinite Words

2.1 Definitions

For a finite alphabeX, an infinite wordw = 01 - 0> - 03 - - - is an infinite sequence of
letters fromX. We useX® to denote the set of all infinite words over the alphabet
Alanguagel C >? is a set of words. We sometimes refer also to finite words, and
to languages C >* of finite words overz. A prefixof w= 01 - 0> - - is a (possibly
empty) finite wordos - 0> - 03--- i, for somei > 0. A suffix of w is an infinite
word ¢; - 041 -+, for somei > 1. A property of a system with a séiP of atomic
propositions can be viewed as a language over the alph&Be¥\& have seen in
Chapter 2 that languages over this alphabet can be definédday temporal-logic
(LTL, for short) formulas. Another way to define languagebysautomata.

A nondeterministic finite automatds a tuples” = (3,Q,Qo,d,a), whereX
is a finite non-empty alphabef) is a finite non-empty set dftates Qo C Q is a
non-empty set oinitial states & : Q x = — 29 is atransition functionanda is an
acceptance conditigrio be defined below.
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Intuitively, when the automatons runs on an input word ovek, it starts in
one of the initial states, and it proceeds along the wordraieg to the transition
function. Thus,d(q, 0) is the set of states that can move into when it is in state
g and it reads the letter. Note that the automaton may hendeterministicsince
it may have several initial states and the transition funmctinay specify several
possible transitions for each state and letter. The autimat is deterministicif
|Qo] = 1 and|d(qg,0)| = 1 for all statesq € Q and symbolso € =. Specifying
deterministic automata, we sometimes describe the sinijilel istate or destination
state, rather than a singleton set.

Formally, arun r of <7 on a finite wordw = 01 - 0»2--- 0, € 2* is a sequence
r =qo,qs,---,0n Of N+ 1 states irQ such thatyy € Qo, and for all 0< i < nwe have
Gi+1 € 9(q;, 0i+1). Note that a nondeterministic automaton may have sevenal ru
on a given input word. In contrast, a deterministic automdias exactly one run on
a given input word. When the input word is infinite, thus= 01 - 0> - 03--- € 2%,
then a run ofe7 on it is an infinite sequence of states- qp,q1, 0, ... such that
Qo € Qo, and for alli > 0, we havegiy1 € 6(q;,0it1). For an infinite runr, let
inf(r) = {q: g = qfor infinitely manyi’s }. Thus,inf(r) is the set of states that
visits infinitely often.

The acceptance conditiandetermines which runs are “good”. For automata on
finite words,a C Q and a runr is acceptingif g, € a. For automata on infinite
words, one can consider several acceptance conditionsisLgtart with the Bchi
acceptance condition [6]. There,C Q, and a rurr is accepting if it visits some
state ina infinitely often. Formally,r is accepting iffinf (r) N a # 0. A run that is
not accepting isejecting A word w is accepted by an automate# if there is an
accepting run ofe# onw. The language recognized by, denoted? (), is the
set of words that7 accepts. We sometimes refer$6(.«7) also as the language of
.

We use NBW and DBW to abbreviate nondeterministic and detéstic Bichi
automata, respectivelyFor a class/ of automata (so far, we have introducge:
{NBW,DBW}), we say that a languadeC X% is y-recognizable iff there is an
automaton in the clagsthat recognize&. A language isw-regular iff it is NBW-
recognizable.

Example 1 Consider the DBWe; appearing in Figure 1. When we draw automata,
states are denoted by circles. Directed edges betwees atatéabeled with letters
and describe the transitions. Initial stateg, (n the figure) have an edge entering
them with no source, and accepting statgs i the figure) are identified by double
circles. The DBW moves to the accepting state whenever dsrdfze lettela, and

it moves to the non-accepting state whenever it reads thex etAccordingly, the
single runr on a wordw visits the accepting state infinitely often Vffhas infinitely
manya’s. Hence, % () = {w: w has infinitely manya’s }.

Example 2Consider the NBWez, appearing in Figure 2. The automaton is non-
deterministic, and in order for a run to be accepting it hasventually move to

1 The letter W indicates that the automata run on words (rattzar, tsay, trees).
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Fig. 1 ADBW for {w: w has infinitely manya’s }

the accepting state, where it has to stay forever while nggloli Note that if .o/,
readsa from the accepting state it gets stuck. Accordingig, has an accepting run
on a wordw iff w has a position from which an infinite tail dfs starts. Hence,
Z(a5) = {w:w has only finitely many's}.

%: a,b b

Fig. 2 An NBW for {w: w has only finitely mang’s}

Consider a directed grapgh = (V,E). A strongly connected seff G (SCS) is a
setC C V of vertices such that for every two vertices’ € C, there is a path from
vto V. An SCSC is maximalif it cannot be extended to a larger SCS. Formally,
for every nonemptyC’ C V \ C, we have thaCuUC' is not an SCS. The maximal
strongly connected sets are also terrardngly connected componef&CC). An
automatoneZ = (,Q,Qp,d,a) induces a directed grapB,, = (Q,E) in which
(9,q) € E iff there is a lettero such thatg’ € d(q,0). When we talk about the
SCSs and SCCs af/, we refer to those o6,,. Consider a rum of an automaton
</ . Itis not hard to see that the gaf(r) is an SCS. Indeed, since every two states
gandd ininf(r) are visited infinitely often, the staté must be reachable from

2.2 Closure Properties

Automata on finite words are closed under union, intersecttmd complemen-
tation. In this section we study closure properties for re@adninistic Richi au-
tomata.
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2.2.1 Closure Under Union and Intersection

We start with closure under union, where the constructiahworks for nondeter-
ministic automata on finite words, namely putting the twooaudta “one next to
the other”, works also for nondeterministiéiéhi automata. Formally, we have the
following.

Theorem 1.[8] Let.o; and.«% be NBWs with pand np states, respectively. There
is an NBWg/ such that? (&) = £ (24) UL () and </ has n + n; states.

Proof: Let @4 = (2,Q1,Q%,81,01) and % = (£,Q2,Q3, %, a2). We assume,
without loss of generality, thaD, and Q. are disjoint. Since nondeterministic au-
tomata may have several initial states, we can defihas the NBW obtained by
taking the union of7; and.«%. Thus,o = (2,Q1UQ2, QQUQ3, 8, a1 U ay), where
for every state) € Q1 UQ2, we have thad(q, o) = &(q, 0), for the index € {1,2}
such thaig € Q. It is easy to see that for every wowde >, the NBW .« has an
accepting run onv iff at least one of the NBWs7; and.«% has an accepting run on
W. L]

We proceed to closure under intersection. For the case t# firrds, one proves
closure under intersection by constructing, givénand.s, a “product automaton”
that hagQ: x Qy as its state space and simulates the runs of bgtand.«% on the
input words. A word is then accepted by bath and.« iff the product automaton
has a run that leads to a statedpnx a». As the example below demonstrates, this
construction does not work fori8hi automata.

Example 3Consider the two DBWs7 and.«% on the left of Figure 3. The product
automatones; x <% is shown on the right. Clearly? (1) = £ (%) = {a“}, but
L(h x ofp) =0.

an. Ca. . ﬁa G X oty a
a a a
Fig. 3 Two Biichi automata accepting the langudg@é’}, and their empty product

As demonstrated in Example 3, the problem with the produtdraaton is that
the definition of the set of accepting states todaex a; forces the accepting runs
of &A1 and.@% to visit a; anda, simultaneously. This requirement is too strong, as
an input word may still be accepted by bath and.ez, but the accepting runs on it
visit a; anday in different positions. As we show below, the product auttomas a
good basis for proving closure under intersection, but arezla to take two copies
of it: one that waits for visits of runs of# to a; (and moves to the second copy
when such a visit is detected) and one that waits for visitsio$ of.<7, to a, (and
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returns to the first copy when such a visit is detected). The@mtance condition
then requires the run to alternate between the two copiestaifi often, which is
possible exactly when both the run.of visits a infinitely often, and the run of
a7y Visits a» infinitely often. Note thate’, may visit a, when the run is in the first
copy, in which case the visit ta, is ignored, and in fact this may happen infinitely
many times. Still, if there are infinitely many visitséq anda-, then eventually the
run moves to the second copy, where it eventually comes sierusit toa, that is
not ignored. Formally, we have the following.

Theorem 2.[8] Let.o; and.«% be NBWs with pand np states, respectively. There
is an NBW/ such that? (&) = £ (a1) N £ (%) and < has2nn, states.

Proof: Let.w) = <Z,Q1,Q(1),61,01> and.cy = <Z’Q27QC2J’ 5, az). We definess =
(£,Q,Q%94,a), where

e Q=01 xQyx{1,2}. Thatis, the state space consists of two copies of the prod-
uct automaton.

o Q¥=Q9x QY x {1}. That s, the initial states are triplés;, s, 1) such thats;
ands; are initial in.«; and.o,, respectively. The run starts in the first copy.

e Forallgs € Q1, o2 € Q2, c€ {1,2}, ando € X, we defined((s;,s,c),0) =
01(s1,0) X &(,0) x {nex{(s1,s,c)}, where

1 if(c=1ands; € ai) or (c=2 ands; € ay),

nex(sy,%.0) = | 5 (c=1ands; € a;) or (=2 ands, & ay).
That is,«7 proceeds according to the product automaton, and it mowees the
first copy to the second copy whene a1, and from the second copy to the first
copy whens, € a». In all other cases it stays in the current copy.

e a=a0a1xQ2x{1}. Thatis, a run ofe/ is accepting if it visits infinitely many
states in the first copy in which th@;-component is inx;. Note that after such
a visit, & moves to the second copy, from which it returns to the firstycop
after visiting a state in which th@,-component is ina,. Accordingly, there
must be a visit to a state in which tigz-component is ira, between every two
successive visits to statesan This is why a run visitsx infinitely often iff its
Q1-component visitsr; infinitely often and it9Q,-component visitsr; infinitely
often.

O

Note that the product construction retains determinisen; starting with deter-
ministic .1 and.«%, the producte is deterministic. Thus, DBWSs are also closed
under intersection. Also, while the union construction veeéndescribed does not
retain determinism, DBWs are closed also under union. Indéee take the prod-
uct construction (one copy of it is sufficient), which reaeterminism, and define
the set of accepting states to(@a x Q2) U(Q1 x a2), we get a DBW for the union.
Note, however, that unlike the + n, blow-up in Theorem 1, the blow-up now is
Nnino.
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2.2.2 Closure Under Complementation

For deterministic automata on finite words, complementaeasy: the single run

is rejecting iff its last state is not accepting, thus compating a deterministic
automaton can proceed ldualizing its acceptance condition: for an automaton
with state spac€ and seta of accepting states, the dual acceptance condition is
0 =Q\a, and it is easy to see that dualizing the acceptance condifia deter-
ministic automaton on finite words results in a determiniatitomaton for the com-
plement language. It is also easy to see that such a simplieaticn does not work
for DBWs. Indeed, a run of aiBhi automaton is rejecting iff it visitg only finitely
often, which is different from requiring it to visit infinitely often. As a concrete
example, consider the DBW; from Figure 1. Recall thatZ(«4) = {w: w has
infinitely manya’s }. An attempt to complement it by defining the set of accepting
states to bd o} results in a DBW whose language{i® : w has infinitely manyo’s

}, which does not complemerf’ (). For example, the wor¢a- b)® belongs to
both languages. In this section we study the complementptiablem for Richi au-
tomata. We start with deterministic automata and show ttndevdualization does
not work, their complementation is quite simple, but resuita nondeterministic
automaton. We then move on to nondeterministic automathglascribe a comple-
mentation procedure for them.

Theorem 3.[47] Let &/ be a DBW with n states. There is an NB¥/ such that
L") =29\ £ (o), ande/’ has at mosPn states.

Proof: Let.o = (5,Q,qo,d,a). The NBW &7’ should accept exactly all words
w for which the single run ofe7 on w visits o only finitely often. It does so by
guessing a position from which no more visits.@fto a take place. For thatg’
consists of two copies of/: one that includes all the states and transitions7gf
and one that excludes the accepting states/ofand to whiche?’ moves when it
guesses that no more statesrimre going to be visited. All the states in the second
copy are accepting. Formallyy’ = (2,Q,Qg, 0", a’), where

o Q=(Qx{0hHu((Q\a)x{1}).
o Q={(t0,0)}
e Foreveryge Q,ce {0,1}, ando € = with 6(q,0) = ¢, we have

{(d,0),(d, 1)} ifc=0andq ¢a,

/ _ {<Q’70>7} if c=0andq € a,
d'({g,c),0) = {q, 1)} if c—1andq ¢ a,
0 ifc=1andq €a.

e a'=(Q\a)x{1}.

Thus,.«”’ can stay in the first copy forever, but in order for a run«f to be ac-
cepting, it must eventually move to the second copy, fromrelitecannot go back
to the first copy and must avoid statesain |
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The construction described in the proof of Theorem 3 can pkeapalso to non-
deterministic automata. Since, howevef, accepts a word iff there exists a run
of &7 onw that visitsa only finitely often, whereas a complementing automaton
should accept a word iff all the runs of.«# on w visit a only finitely often, the
construction has a one-sided error when applied to nondetistic automata. This
is not surprising, as the same difficulty exists when we cemgint nondeterminis-
tic automata on finite words. By restricting attention toedgtinistic automata, we
guarantee that the existential and universal quantificatiothe runs of# coincide.

We now turn to consider complementation for nondeternmimBiichi automata.
In the case of finite words, one first determinizes the automand then comple-
ments the result. An attempt to follow a similar plan for NBWamely a translation
to a DBW and then an application of Theorem 3, does not workveashall see in
Section 2.3, DBWs are strictly less expressive than NBWs, tlotisll NBWs can
be determinized. Nevertheless, NBWs are closed under comepleation.

Efforts to develop a complementation construction for NB\ésted in the early
1960s, motivated by decision problems for second-ordac$oggichi introduced
a complementation construction that involved a compldd&amsey-based combi-
natorial argument and a doubly-exponential blow-up in tla¢esspace [6]. Thus,
complementing an NBW withn states resulted in an NBW witi?2" states. In
[70], Sistla et al. suggested an improved implementatioBiathi’s construction,
with only 22(™) states, which is still not optimad.Only in [64], Safra introduced a
determinization construction that involves an acceptarewlition that is stronger
than Bichi, and used it in order to present @3°9" complementation construc-
tion, matching the known lower bound [54]. The use of comp@etation in practice
has led to a resurgent interest in the exact blow-up that tmmgntation involves
and the feasibility of the complementation constructiom.(essues like whether
the construction can be implemented symbolically, wheithisramenable to opti-
mizations or heuristics — these are all important critdrat tomplementation con-
structions that involve determinization do not satisfy)[33], Klarlund introduced
an optimal complementation construction that avoids detgzation. Rather, the
states of the complementing automaton utilizegress measures a generic con-
cept for quantifying how each step of a system contributdsritaging a compu-
tation closer to its specification. In [44], Kupferman anddfaused ranks, which
are similar to progress measures, in a complementatiortroatisn that goes via
intermediate alternating coti8hi automata. Below we describe the construction of
[44] circumventing the intermediate alternating automata

Let o = (3,Q,Qo,0,a) be an NBW withn states. Leww=01-02-03--- be a
word in Z“. We define an infinit®AG G that embodies all the possible runsaf
onw. Formally,G = (V,E), where

e V C QxINis the unionU,>o(Q x {I}), where for alll > 0, we haveQ,; =
Uq€Q| 5(Q7 O-|+l)'

2 Interestingly, by carrying out some simple optimizations, the Rarbssgd approach in the
constructions in [6] and [70] can be improved to produce compieimg NBWs with the optimal
20(nlogn) hiow-up [5].
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e ECU>0(Q x{I}) x (Qy1x {l +1}) is such that for all > 0, we have
E(<qa|>a <q/a| + 1>) iff q/ € 6(q70-|+1)-

We refer toG as therun DAG of & onw. We say that a vertefd/,l’) is asuc-
cessorof a vertex(q,l) iff E({(q,1),(d,l")). We say thatd,l’) is reachablefrom
(g,1) iff there exists a sequendg,lo), (d1,l1), (0z,12),... of successive vertices
such that(q,l) = (do,lo), and there exists> 0 such thatq,l’) = (q;, ;). We say
that a vertex(q,l) is ana-vertexiff g € a. Finally, we say thaG is anaccepting
run DAG if G has a path with infinitely mangr-vertices. Otherwise, we say th@t
is rejecting. It is easy to see that acceptw iff Gis accepting.

Fork € IN, let [k] denote the sef0,1,...,k}. A ranking for G is a function
f :V — [2n] that satisfies the following two conditions:

1. For all verticegq,l) €V, if f({(q,l)) is odd, therq ¢ a.
2. For all edges(q,!),(q,l")) € E, we havef ((d/,I")) < f({q,])).

Thus, a ranking associates with each vertexcia rank in[2n] so that the ranks
along paths decrease monotonically, angertices get only even ranks. Note that
each path irG eventually gets trapped in some rank. We say that the rarfkisgn
odd rankingf all the paths ofG eventually get trapped in an odd rank. Formallys
odd iff for all paths(do, 0), (g1, 1), (02, 2), ... in G, there isj > 0 such thaff ((q;, j))

is odd, and for all > 1, we havef ((qji, ] +1)) = f({(q;j, ]))-

We are going to prove th#& is rejecting iff it has an odd ranking. The difficult
direction is to show that ifS is rejecting, then it has an odd ranking. Below we
make some observations on rejecting naGs that help us with this direction. We
say that a vertexq, ) is finitein abAaG G’ C G iff only finitely many vertices inG'
are reachable fronig,1). The vertex(q,|) is a-freein G’ iff all the vertices inG'
that are reachable frody,|) are nota-vertices. Note that, in particular, anfree
vertex is not aro-vertex. We define an infinite sequenGg 2 G; 2 G, O ... of
DAGS inductively as follows.

e Gy=0G.
e Fori >0, we haveGyi11 =Gy \ {{(q,l) : (q,]) isfinite iNGy}.
e Fori >0, we haveGyi2 = Gaiy1\ {{(q,]) : (q,]) is a-free inGyi11}.

Lemma 1. If G is rejecting, then for every* 0, there exists;Isuch that for all I> 1;,
there are at most i i vertices of the forniq,I) in Gy;.

Proof: We prove the lemma by an induction anThe case where= 0 follows
from the definition ofGg = G. Indeed, inG all levels| > 0 have at mosh vertices

of the form(q,l). Assume that the lemma’s requirement holdsifowe prove it
for i+ 1. Consider theAG Gy. We distinguish between two cases. FirsiGi is
finite, thenGy;, 1 is empty,Gyi. 2 is empty as well, and we are done. Otherwise, we
claim that there must be sonmefree vertex inGyi.1. To see this, assume, by way
of contradiction, thaGy; is infinite and no vertex Gy, 1 is a-free. SinceGy; is
infinite, Gyi 1 is also infinite. Also, each vertex i@y, 1 has at least one successor.
Consider some vertefqo, lo) in Gyi+1. Since, by the assumption, it is natfree,
there exists am-vertex(qp, lg) reachable fromqo,lo). Let (01,11) be a successor
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of (gp,lp). By the assumption(gs, l1) is also nota-free. Hence, there exists an
vertex (o, |1) reachable from{as,l1). Let (0, l2) be a successor @fy;, j7). By the
assumption{gy, I,) is also notr-free. Thus, we can continue similarly and construct
an infinite sequence of verticés;, 1), (qj, 1) such that for al, the vertexdj, 15) is
ana-vertex reachable frontj, ), and(gj+1,1j+1) is a successor oy}, 1j). Such

a sequence, however, corresponds to a patB with infinitely many a-vertices,
contradicting the assumption th@tis rejecting.

So, let(q,l) be ana-free vertex inGyi 1. We claim that takindj1 = max{l,l;}
satisfies the requirement of the lemma. That is, we claimftrall j > max{l,l;},
there are at most — (i + 1) vertices of the form(q, j) in Gyi_2. Since(q,l) is in
Ggi11, it is not finite in Gy. Thus, there are infinitely many vertices @p; that
are reachable frono, ). Hence, by Knig's Lemma,Gy; contains an infinite path
@), (o, 1 + 1), (az,1 +2),.... For allk > 1, the vertex{(qx,| +K) has infinitely
many vertices reachable from it By and thus, it is not finite irGy. Therefore,
the path(q,1), (1,1 + 1), (02,1 +2),... exists also inGyi+1. Recall that(q,l) is a-
free. Hence, being reachable frojm 1), all the vertices(g,| + k) in the path are
a-free as well. Therefore, they are not @Gy . It follows that for all j > I, the
number of vertices of the forrg, j) in Gy is strictly smaller than their number
in Gy. Hence, by the induction hypothesis, we are done. L]

Note that, in particular, by Lemma 1, @ is rejecting therGy, is finite. Hence
the following corollary.

Corollary 1. If G is rejecting then G, 1 is empty.

We can now prove the main lemma required for complementatibith reduces
the fact that all the runs af/ onw are rejecting to the existence of an odd ranking
for the runbDAG of &7 onw.

Lemma 2. An NBW./ rejects a word w iff there is an odd ranking for the ronG
of o7 onw.

Proof: Let G be the runbAG of & on w. We first claim that if there is an odd
ranking forG, then.« rejectsw. To see this, recall that in an odd ranking, every
path inG eventually gets trapped in an odd rank. Hencey-agrtices get only even
ranks, it follows that all the paths @, and thus all the possible runs of onw,
visit a only finitely often.

Assume now that? rejectsw. We describe an odd ranking f@. Recall that if
</ rejectsw, thenG is rejecting and thus, by Corollary 1, each ver{gd) in G is
removed fromGj, for some 0< j < 2n. Thus, there is 6<i < n such that(qg,!) is
finite in Gy or a-free inGyi.1. Given a vertexq,l), we define theank of (q,1),
denotedf(q,!), as follows.

fFlal) — 2i if (g,1) is finite in Gy;.
(@)= 2i+1 if (q,1) is a-free inGgyi41.

We claim thatf is an odd ranking fo6. First, by Lemma 1, the subgrajip,
is finite. Hence, the maximal rank that a vertex can gehisA®so, since ara-free
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vertex cannot be an-vertex andf({(q,l)) is odd only fora-free (q,l), the first
condition for f being a ranking holds. We proceed to the second conditiorfirgfe
argue (and a proof proceeds easily by an inductior) dmat for every vertexq,|)
in G and ranki € [2n], if (q,]) € G, thenf(q,|) <i. Now, we prove that for every
two vertices(q,l) and(d,l’) in G, if {¢/,l’) is reachable froniq, 1) (in particular, if
((q,1),(d,I")) € E), thenf(q,I") < f(q,]). Assume thaf (q,|) =i. We distinguish
between two cases. ilfis even, in which caség, ) is finite in G;, then eitherd', ")
is not inG;, in which case, by the above claim, its rank is at mostL, or (d/,1)
is in Gj, in which case, being reachable frdip1), it must be finite inG; and have
ranki. If i is odd, in which caséq,|) is a-free inG;, then either(q,l’) is not in
Gi, in which case, by the above claim, its rank is at mest, or (¢/,l’) is in Gj, in
which case, being reachable frain 1), it must bya-free inG; and have rank

It remains to be proved thdtis an odd ranking. By the above, in every infinite
path inG, there exists a vertefq, |) such that all the verticel(,|’) in the path that
are reachable fron, 1) havef(d,l’) = f(qg,l). We need to prove that the rank of
(q,1) is odd. Assume, by way of contradiction, that the ranKaf) is some even
i. Thus,(q,l) is finite in G;. Then, the rank of all the vertices in the path that are
reachable froniq,l) is alsoi, so they all belong td@;. Since the path is infinite,
there are infinitely many such vertices, contradicting et that(q,!) is finite in
Gi.

By Lemma 2, an NBWe7’ that complements7 can proceed on an input word
w by guessing an odd ranking for the ronG of &/ onw. We now define such an
NBW 7’ formally. We first need some definitions and notations.

A level rankingfor < is a functiong: Q — [2n] U {_L}, such that ifg(q) is
odd, theng € a. For two level rankinggy andg’, we say thaty covers gif for
all gandq in Q, if g(q) > 0 andq € 8(q,0), then 0< ¢'(q') < g(q). For a level
rankingg, let everig) be the set of states thgtmaps to an even rank. Formally,
everig) = {q: g(q) is ever}.

Theorem 4.Let o7/ be an NBW with n states. There is an NBW such that
L") =29\ Z(<), and.a7’ has at mos®("'°9" states.

Proof: Let o = (2,Q,Q0,0,0). Let #Z be the set of all level rankings far’.
When.’ runs on a wordv, it guesses an odd ranking for the oG of .« onw.
Each state o7’ is a pair(g,P) € # x 29. The level rankingy maintains the states
in the current level of theAG (those that are not mapped_t9 and the guessed rank
for them. The seP is a subset of these states, used for ensuring that all pesihs v
odd ranks infinitely often, which, by the definition of odd kémgs, implies that all
paths get stuck in some odd rank.

Formally, o/’ = (3, % x 22,Q}, &', % x {0}), where

e Q= {(00,0)}, wherego(q) = 2n for g € Qo, andgo(q) = L for g & Qo. Thus,
the odd ranking thaty’ guesses maps the verticgg0) of the runbAG to 2n.
e Forastatdg,P) € # x 29 and a lettew € 5, we defined’((g,P), o) as follows.

— If P£0,thend’((g,P),0) = {(d,0(P,o)neverid)) : g coversg}.
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— If P=0,thend’({g,P),0) = {{(d',evertd)) : g coversg}.

Thus, whene’ reads thd-th letter in the input, fol > 1, it guesses the level
ranking for levell in the runDAG. This level ranking should cover the level
ranking of levell — 1. In addition, in theP component?’ keeps track of states
whose corresponding vertices in tbeG have even ranks. Paths that traverse
such vertices should eventually reach a vertex with an odK. /é@/hen all the
paths of thebAG have visited a vertex with an odd rank, the Bétecomes empty
(a formal proof of the latter requires the use djirkg's Lemma, showing that if
P does not become empty we can point to an infinite path thasvisily even
ranks). The se® is then initiated by new obligations for visits to verticeishwodd
ranks according to the current level ranking. The accepgtanaditionZ x {0}
then checks that there are infinitely many levels in whichtedlobligations have
been fulfilled.

Since there aré2n+ 1)" level rankings and 2subsets ofQ, the automaton7’
indeed has &"°9" states. O

The blow-up of NBW complementation is thuS(®'°9" and goes beyond thé 2
blow-up of the subset construction used in determinizaaiothcomplementation of
nondeterministic automata on finite words. As we see belug/diow-up cannot be
avoided.

Theorem 5.[54] There is a family of languages; Lo, ... such that |, C 5% can
be recognized by an NBW with#l states but an NBW faX? \ L,, has at least h
states.

Proof: Forn> 1, we defind., as the language of the NBW;, = (%, Qn, QS, &y, a),
where (see Figure 4)

o Z,={1...,n#},

i Qn:{QOv(hw-an}.

d Qg:{Qlw-an},

e §, is defined as follows:

0 if i =0ando = #,
. |{ae} ifi=0andoe{1,...,n},
5(@:9) =1 1q} ifig{0.0}.
{qo,q} if 0 =i.

a = {do}

Note that a run of#, is accepting if it contains infinitely many segments of the
form g dociqo- - - qoqiqoqf; for some distincty, ... ,ix > 1. Accordingly, a wordv
is accepted by, iff there arek lettersoy, 0y, ..., 0k € {1,...,n}, such that all the
pairs 010z, 0203, ..., 0x01 appear inv infinitely many times. A good intuition to
keep in mind is that a wordl € Z% induces a directed graghy = ({1,...,n},Ey)
such tha&(i, j) iff the subwordi - j appears iw infinitely often. ThenL, accepts
exactly all wordsw such thaGy, contains a cycle.
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Fig. 4 The NBW.«7,

Consider an NBW! = (5, Q,,, @2, &, a/,) that complements#,, and consider
apermutationt= (g, ..., 0n) of {1,...,n}. Note that the worev; = (01 - - - O - #)®
is not inLp. Thus,wy is accepted by,. Letr; be an accepting run ofj; onwy,
and letS; C Qj, be the set of states that are visited infinitely oftem;jnWe prove
that for every two different permutatiorrg and e of {1,...,n}, it must be that
Sy NSk, = 0. Since there ara! different permutations, this implies that; must
have at least! states.

Assume by way of contradiction thag and s are such thab; NSy, # 0. Let
q € Q;, be a state irSy N'Sy,. We define three finite words if;:

e a prefixh of wy with whichr moves from an initial state of; to g,

e an infix up of wy that includes the permutatiom and with whichr; moves
from q back toq and visitsa}, at least once when it does so, and

e an infix ux of wy, that includes the permutatiom and with whichrz, moves
from g back tog.

Note that since, acceptsvy andwy,, the wordsh, uz, andu, exist. In particular,
sincer ; is accepting ang is visited infinitely often inr;, there is at least one (in
fact, there are infinitely many) infix iny that leads frong to itself and visitsoy,.

Consider the wordv = h- (uz - u)®. We claim thatw € L, andw € .Z(.7),
contradicting the fact that/, complements#,. We first point to an accepting run
of @7, onw. The runr first followsr; and gets ta while readingh. Then, the rum
repeatedly follows the run; when it moves frong via a}, back tog while reading
ug, and the rurrg, when it moves frong back tog while readingu,. It is easy to
see that is a run orw that visitsa}, infinitely often, thusw € .Z(.«;).

Now, letrs = (o}, ...,0}) andre = (02,...,62), and letj be the minimal index
for which o # o?. There must exist < k,I < nsuch thato} = of, ando? = o*.
Since u; includes the permutatioms and u, includes the permutatioms, the

1 1 2

i 1 1 1 1 142 (— A2 2 2 2 2
pairs 070y, 0j10j.2,.--,01_ 10}, 0705 1(= 0707 1), 0{107, 5., 010k,

ogo}, (= gia},,) repeat infinitely often. Hencey € L, and we are done. [

Remark 1Note that the alphabets of the languaggaused in the proof of Theo-
rem 5 depend om. As shown in [50], it is possible to encode the languages and
prove a £2(Mo9n) |ower bound with a fixed alphabet.

We note that the upper and lower bounds here are based oitalassl relatively
simple constructions and proofs, but are still not tightighter upper bound, based
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on a restriction and a more precise counting of the requaeel Frankings has been
suggested in [18], and tightened further in [66]. An altékaapproach, yielding a
similar bound, is based on tracking levels of “split treestr trees in which only
essential information about the history of each run is nad@ied [17, 30]. A tighter
lower bound, based on the notion of full automata, is desdrih [80].

2.3 Determinization

Nondeterministic automata on finite words can be deterrathi®/ applying the sub-
set construction [63]. Starting with a nondeterministitomuatone’ = (5, Q, Qo, 0, q),
the subset construction generates a deterministic aubomat with state space?
The intuition is that the single run af’ is in stateS € 29 after reading a word
w e X" iff Sis the set of states that could have been at, in one of its runs, after
readingw. Accordingly, the single initial state a¥’ is the seQQp, and the transition
of &/’ from a stateS€ 29 and a lettew € 5 is the set Jo.55(S, 0). Sincew’ accepts
exactly all words on which there is a run of that ends imo, the set of accepting
states ofe7’ consists of these se&such thatSn a # 0. The exponential blow-up
that the subset construction involves is justified by a matctower bound.

It is not hard to see that the subset construction does nait irsan equivalent
automaton when applied to an NBW. For example, applyingdihset construction
to the NBW o> from Example 2 results in the DBWY, in Figure 5. Recall that
afp recognizes the language of all words with finitely mas; On the other hand,
<7, recognizes the language of all words with infinitely mdrs; Thus,.Z (<7, ) #
Z(a#). For example, the worta-b)? is in 2 (o7y) \ £ ().

/. b
oA

[ w7 Tiwely)n

a

Fig. 5 The DBW obtained by applying the subset construction/o

Note that not only? (7)) # £ (<), there is no way to define aiBhi accep-
tance condition on top of the structure .of) and obtain a DBW that would be
equivalent taes,. In fact, as we shall see now, there is no DBW that is equivaten
.

Theorem 6.[49] There is a language L that is NBW-recognizable but not DBW-
recognizable.

Proof: Consider the languadedescribed in Example 2. 1.4 is over the alphabet
{a,b} and it consists of all infinite words in whichoccurs only finitely many times.
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The languagé is recognized by the NBWy, appearing in Figure 2. We prove that
L is not DBW-recognizable. Assume by way of contradictiont thais a DBW
such that? (&) = L. Let.# = ({a,b},Q,qo, d, ). Recall thatd can be viewed as
a partial mapping fron® x {a,b}* to Q.

Consider the infinite wordvg = b®. Clearly, wq is in L, so the run ofeZ on
Wp is accepting. Thus, there is > 0 such that the prefik't of wg is such that
6(qo,bi1) € a. Consider now the infinite wordy, = b't - a-b®. Clearly,w; is also
in L, so the run ofe onws is accepting. Thus, there is > 0 such that the prefix
b'1-a-b'2 of wy is such thad (g, b't -a-b'2) € a. In a similar fashion we can continue
to find indicesiy, iy, ... such thaBd(gg, bt -a-b2-a.--abi) € a forall j > 1. Since
Q is finite, there are iterationsandk, such that I< j < k < |a|+ 1 and there is
a stateq such thaig = 5(qo,b'* -a-b'z - a---a-bli) = 5(qo,b'* -a- b2 - a---a- bk).
Sincej < k, the extensiombli+t - --bk-1.a-blk is not empty and at least one state in
o is visited wheng? loops ing while running through it. It follows that the run of
<7 on the word

W= bil .a- bi2 .a- ..abij .(abij+l . ..bikfl .a- bik)"J

is accepting. Butv has infinitely many occurrences af so it is not inL, and we
have reached a contradiction. |

Note that the complementary languaget- b)® \ L, which is the language of in-
finite words in whicha occurs infinitely often, is recognized by the DBW described
in Example 1. It follows that DBWs are not closed under compgetation.

A good way to understand why the subset construction doewaordt for deter-
minization on NBWs is to note that the DBW, discussed above accepts exactly all
words that have infinitely many prefixes on which there is aaiin’, that reaches
an accepting state. Sine# is nondeterministic, the different runs need not extend
each other, and thus they need not induce a single rus tfiat visits the accepting
state infinitely often. In Section 3.2, we are going to retorthis example and study
NBW determinization in general. Here, we use the “extendh@tleer” intuition for
the following characterization of languages that are DRAbgnizable.

For a languag® C 5*, let lim(R) C X% be the set of infinite words that have
infinitely many prefixes inR. Formally, Im(R) = {w=01-02---: 01---G; €
R for infinitely manyi > 0}. Thus,lim is an operator that takes a language of finite
words and turns it into a language of infinite words. For exiamip R is the lan-
guage of words ending with, thenlim(R) is the language of words with infinitely
manya’s.

Theorem 7.[49] A language LC >“ is DBW-recognizable iff there is a regular
language RC >* such that L= lim(R).

Proof: Assume first that is DBW-recognizable. Let/ be a DBW that recognizes
L, let o= be .« when viewed as an automaton on finite words, an®let.% (o).
It is easy to see that since’, and therefore alse#, are deterministic, we have
that (<) = lim(R). Assume now that there is a regular languge >* such
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thatL =lim(R). Let.«/ be a deterministic automaton on finite words that recognizes
R, and letesg be .o when viewed as a DBW. Again, sine€ is deterministic, and
thus runs on different prefixes of a word extend each othés, éasy to see that
Z(aB) =lim(Z(</)). Hencel is DBW-recognizable. U

Note that a DBW-recognizable language may be the limit oessvdifferent
regular languages. As we demonstrate in Theorem 8 belaexipiains why, unlike
the case of automata on finite words, a language may havestitfminimal DBWSs.
In fact, while minimization of automata on finite words candme in polynomial
time, the problem of DBW minimization in NP-complete [68].

Theorem 8. A DBW-recognizable language L may not have a unique minirB&/D

Proof: LetX = {a,b}. Consider the languadeof all words that contain infinitely
manya’s and infinitely manyb's. It is not hard to prove thdt cannot be recognized
by a DBW with two states. Figure 6 describes two three-statd, thus minimal,

DBWs for the language. In fact, each of the states in the automay be the initial

state, so the figure describes six such (non-isomorphiojzatt.

LOC0C00: + (000

Fig. 6 Two minimal DBWs forL

O

Theorem 6 implies that we cannot hope to develop a deteratiaizconstruction
for NBWSs. Suppose, however, that we have changed the defirdfiacceptance,
and work with a definition in which a run is accepting iff it issthe set of accepting
states only finitely often; i.einf(r) na = 0. It is not hard to see that using such a
definition, termedco-Blichi, we could have a deterministic automaton that recog-
nizes the language used in the proof of Theorem 6. In particular, the language is
recognized by the deterministic automatef) from Figure 1 when we view it as a
co-Bichi automaton. While the coihi condition enables us to recognize the lan-
guagel with a deterministic automaton, it is not expressive enaogiecognize all
languages that are recognizable by NBWs. In Section 3, weang ¢o introduce
and study several acceptance conditions, and see how NBWsecdeterminized
using acceptance conditions that are stronger than tfohiBand co-Bichi condi-
tions.
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3 Additional Acceptance Conditions

The Blchi acceptance condition suggests one possible way to teefaf (r) for
defining when a rum is accepting. The fact that DBWs are strictly less expressive
than NBWs motivates the introduction of other acceptancalitions. In this sec-
tion we review some acceptance conditions and discuss fressive power and
succinctness of the corresponding automata.

Consider an automaton with state spgreNe define the following acceptance
conditions.

e Co-Buchi, wherea C Q, and a rumr is accepting iffinf (r) N a = 0.

e Generalized Bchi, wherea = {ay,...,ax}, with a; C Q, and a rurr is accepting
if inf(r)yna; Z0forall 1<i <k

e Rabin wherea = {(ay, B1),{02,B2), ..., {0 Bk}, with ai, 5 C Q, and a rurr
is accepting if for some X i <k, we have thainf (r) Na; # 0 andinf (r)N g = 0.

e Streett wherea = {{(a1, 1), {a2,B2),...,{(0k, Bx) }, with ai, 5 C Q and a rurr
is accepting if for all 1<i <k, we have thainf (r) N o; = 0 orinf(r) N G # 0.

e Parity, wherea = {a1,ay,...,ax} witha; Caop, C--- Cax=Q, and arurr is
accepting if the minimal indekfor whichinf (r) na; # 0 is even.

e Muller, wherea = {a1,0y,...,ax}, with ai C Q and a rurr is accepting if for
some 1< i <k, we have thainf(r) = ;.

The number of sets in the generalizeddBi, parity, and Muller acceptance con-
ditions or pairs in the Rabin and Streett acceptance camdiis called théndexof
the automaton. We extend our NBW and DBW notations to the@blasses of au-
tomata, and we use the letters C, R, S, P, and M to denotdichiBRabin, Streett,
parity, and Muller automata, respectively. Thus, for exempPW stands for de-
terministic parity automata. We sometimes talk about fsation of an acceptance
conditiona by a setSof states. As expecte8satisfiesr iff a runr with inf(r) =S
is accepting. For example, a sesatisfies a Bchi conditiona iff Sna # 0.

It is easy to see that the caiBhi acceptance condition is dual to thédBi
acceptance condition in the sense that a rus accepting with a Bchi condi-
tion a iff r is not accepting when is viewed as a co-Bchi condition, and vice
versa. This implies, for example, that for a deterministitcoanatonss, we have
that Z (o) = 29\ £ (o), where o/ and o are the automata obtained by
viewing </ as a Bichi and co-Bichi automaton, respectively. Similarly, the Ra-
bin acceptance condition is dual to the Streett acceptaandition. Indeed, if
a = {{a1,B1),{02,B2),...,{0x B«)}, then for every rurr, there is no 1< i <k
such thatinf(r)Na; # 0 andinf(r)N B = 0 iff for all 1 <i <k, we have that
inf(r)na; =0 orinf(r)Ng # 0.

For two classey and k of automata, we say thatis at least as expressive
ask if for every k-automatone/, there is ay-automatones’ such that? (') =
Z(«7). If both y is at least as expressive asandk is at least as expressive as
y, theny is as expressive as. One way to prove thay is at least as expressive
ask is to show a translation of-automata to-automata. In the next section we
are going to see such translations. As we shall see there, NBB&Vas expressive
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as NRWs, NSWs, NPWs, and NMWs. On the other hand, NCWs are strasty |
expressive than NBWs. Also, as we shall see in Section 3.2Jeterminism does
not add expressive power in automata with the richer acnepteonditions. Thus,
DRWs, DSWs, DPWs, and DMWs recognize alfregular languages, and are as
expressive as NBWs. This is in contrast with th&ecBi condition, where, as we
have seen in Theorem 6, NBWs are strictly more expressive BigN's. Finally,
nondeterminism does not add expressive power also inimBautomata, thus
NCWs are as expressive as DCW, where both are weaker than NBWoarcide
with the set of languages whose complement languages are-féBdgnizable (see
Remark 3).

3.1 Translations Among the Different Classes

We distinguish between three types of translations amotmaata of the different
classes: (1) Translations among the different conditidihss is the simplest case,
where it is possible to translate the acceptance conditmif, regardless of the
automaton on top of which the condition is defined. For exanalBichi accep-
tance conditiortr is equivalent to the Rabin conditidia, 0)}. (2) Translations in
which we still do not change the structure of the automaten tlye definition of
the acceptance condition may depend on its structure.JWiolipthe terminology of
[35], we refer to such translations gped (3) Translations that manipulate the state
space. This is the most general case, where the translaagrinvolve a blow-up
in the state space of the automaton. Accordingly, here wanggeested also in the
succinctnessf the different classes, namely the worst-case bound obltve-up
when we translate. In this section we survey the three types.

3.1.1 Translations Among the Different Conditions

Some conditions are special cases of other conditions ngalke translation among
the corresponding automata straightforward. We list tlbases below. Consider an
automaton with state space

e A Buchi conditiona is equivalent to the Rabin conditiona,0)}, the Streett
condition{(Q, a)}, and the parity conditiod0, a, Q}.

e A co-Bichi conditiona is equivalent to the Rabin conditiqQ, a) }, the Streett
condition{(a, D)}, and the parity conditiofia, Q}.

e A generalized Bchi condition{a, ..., 0k} is equivalent to the Streett condition
H{Q 1), (Q.az),....(Q o) }-

e A parity condition{as,...,ax} (for simplicity, assume thatis even; otherwise,
we can duplicatey) is equivalent to the Rabin conditidi{az, a1),(04,a3),. . .,
(ak,ak-1)}, and to the Streett conditiofi(a,0),(as, a2), ..., (Ok_1,0k_2)}.
(Recall thato, = Q, so there is no need to include the pdd, ay) in the Streett
condition.)
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e A Bichi, co-Bichi, Rabin, Streett, or parity acceptance conditios equivalent
to the Muller condition{F : F satisfiesa }.

3.1.2 Typeness

In [35], the authors studied the expressive power of DBWs amdduced the notion
of typeness for automata. For two clasgendk of automata, we say thatis k-
type if for everyy-automatone/, if £ (/) is K-recognizable, then it is possible to
define ak-automatone/’ such that?(«/’) = £ (<) and</’ differs from.e7 only

in the definition of the acceptance condition. Clearly, i@septance condition can
be translated to another acceptance condition, as digtussgection 3.1.1, then
typeness for the corresponding classes follows. Interglgtitypeness may be valid
also wheny is more expressive than We demonstrate this below.

Theorem 9.[35] DRWs are DBW-type.

Proof: ConsideraDRWe = (X,Q,qo,d, a). Leta ={{a1,B1),..., {0k, B« }. We
say that a statg € Q is good in.es if all the cyclesC C Q that containg satisfy the
acceptance conditiom. Consider the DBWy’ = (X,Q,qo,d,a’), wherea’ = {q:
gis good ing7}. We prove that ife7 is DBW-recognizable, thel («7) = £ (<").
Hence, if</ is DBW-recognizable, then there is a DBW equivalentAathat can
be obtained by only changing the acceptance conditios of

We first prove that? (') C £ (7). In fact, this direction is independent of
being DBW-recognizable. Consider a wawdk .Z (/') Letr be the accepting run
of &/’ onw. Sincer is accepting, there is a statec inf(r) N a’. Recall that the
states ininf(r) constitute an SCS and thus also constitute a cycle thatiosrga
Therefore, ag| is good,inf (r) satisfiesx, andr is also an accepting run ef onw.
Hencew € (/) and we are done.

We now prove that?(«7) C £ (</"). Consider a wordv € .Z (). Letr be
the accepting run of7 on w. We prove thainf(r) na’ # 0. Assume by way of
contradiction thainf (r) N a’ = 0. Thus, no state imf(r) is good, so for each state
geinf(r), there is a cycl€, that containg| and does not satisfy. By [49], a deter-
ministic automatonz’ recognizes a language that is in DBW iff for every strongly
connected compone@tof «7, if C satisfiesn, then all the strongly connected com-
ponentsC’ with C' D C satisfya too. Consider the strongly connected component
C’ = Ugeint (r) Cq- SinceC’ containgnf (r), andinf (r) satisfiesr, then, by the above,
C' satisfiesa too. Therefore, there is€ i < ksuch thaC'Na; # 0 andC' NG = 0.
Consider a statec C'Na;. Letq be such thas € Cq. Observe tha€, N a; # 0 and
CqN Bi = 0, contradicting the fact th&l; does not satisfyr. |

Theorem 10.[35] DSWs are not DBW-type.

Proof: Consider the automator appearing in Figure 1, now with the Streett
condition{({qo,q1},{do}), ({qo,a1},{a1})}. The language of <7 then consists of
exactly all words with infinitely mang’'s and infinitely manyb's. As we have seen
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in the proof of Theorem 8, is DBW-recognizable. Yet, none of the four possibilities
to define a DBW on top of the structure.ef resultin a DBW that recognizés []

Note that, by dualization, we get from Theorems 9 and 10 ti&0® are DCW-
type and DRWs are not DCW-type.

The definition of typeness may be applied to nondetermia@itomata too. As
we show below, typeness need not coincide for nondetertitirzind deterministic
automata.

Theorem 11.[38] DBWSs are DCW-type, but NBWSs are not NCW-type.

Proof: The first claim follows from the fact that DBWs are a speciakoafsDSWSs,
and the latter are DCW-type. For the second claim, consiteNBW <7 appearing

in Figure 7. The NBW<7 has two initial states, in two disjoint components. Thus,
the language of7 is the union of the languages of the two NBWs associated with
its two components. The NBW on the left accepts all words tverlphabefa, b}
that satisfy “eventuallya and infinitely manyb’'s”. The NBW on the right accepts
all words that satisfy “eventuallip and infinitely manya’s”. While each of these
languages is not NCW-recognizable, their union recognizedanguagd. of all
words satisfying “eventuallg and eventuallyo”, which is NCW-recognizable. It is
not hard to see that none of the four possibilities to define-Bitchi acceptance
condition on top ofe7 result in an NCW that recognizés

o[ 8 (W ]

Fig. 7 An NBW that recognizes an NCW-recognizable language bunbasquivalent NCW on
the same structure

O

Researchers have considered additional variants of tggeiée mention two
here. Lety and k be two acceptance conditions. powerset typenessve ask
whether a deterministig-automaton can be defined on top of the subset construc-
tion of a nondeterministig-automaton. For example, NCWs are DBW-powerset-
type: if the language of an NCW/ is DBW-recognizable, then a DBW fa¥’ (<)
can be defined on top of the subset construction/of51]. In combined typeness
we ask whether the ability to define a certain language on tdfpeosame automa-
ton using two different acceptance conditions implies wedgfine it using a third,
weaker, condition. For example, DRWs+DSWs are DPW-type: dingliage. can
be defined on top of a deterministic automatehusing both a Streett and a Ra-
bin acceptance condition, théncan be defined on top a# also using a parity
acceptance condition [4, 81]. For more results on typersess|38].
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3.1.3 Translations That Require a New State Space

We now turn to the most general type of translations — thoaerfay involve a
blow-up in the state space. We do not specify all the traioslaf and rather describe
the translation of nondeterministic generalizeidcBi, Rabin, and Streett automata
into NBWs. For the case of NSW, where the translation invobvé$ow-up that is
exponential in the index, we also describe a lower bound.

Theorem 12.Let & be a nondeterministic generalizedi&i automaton with n
states and index k. There is an NBW with n-k states such tha?¥’ (') = £ ().

Proof: Let o = (X,Q,Qo,0,{a1,...,ax}). The idea of the construction o’
is similar to the one used for defining the intersection of NBWgormally, <7’
consists ok copies ofe/, and it stays in thé-th copy until it visits a state i, in
which case it moves to the next copy (modk)o The acceptance condition of”
then makes sure that all copies are visited infinitely often.

Formally, 7’ = (X,Q',Qq, &', a), where

e O =0x{1,... k.

o Qp=0Qx{1}.

e Foreveryqe Q,ie€{1,...,k}, ando € =, we haved((q,i},o0) = 6(q,0) x {j},
wherej =i if q¢ a; andj = (i modk) +1 if g € a;.

e a =0 x {1}. Note that after a visit tar; in the first copy, the run moves to the
second copy, where it waits for visits t, and so on until it visitax, in the
k-th copy, and moves back to the first copy. Therefore, infiniteany visits in
a1 in the first copy indeed ensure that all copies, and thus dlsg's.are visited
infinitely often.

O

Theorem 13.Let .7 be an NRW with n states and index k. There is an NBW
with at most ik + 1) states such tha?(«7’) = £ ().

Proof: Lete/ =(5,Q,Qo,9,{{(a1,B1),...,(ak, Bk }). Itis easy to seethal’ (=) =
UK., Z (o), wheres/ = (2,Q,Qo,3,{(ai,)}). By Theorem 1, NBWs are closed
under union. It therefore suffices to show a translation toAéBof NRWs with
index 1.

Consider an NRWZ = (2,Q,Qo, 9, {{a,B)}) with index 1. We translate” to
an NBW%/'. The idea of the construction is similar to the one used forgement-
ing DBWSs: the NBW%/ consists of two copies 6#, and it nondeterministically
moves to the second copy, which contains only states thaicdia 3, and in which
it has to visit infinitely many states ia. Formally, 2" = (>,Q',Qg, 0’ a’), where

Q' =(Qx{0})U((Q\B) x{1}).

Qb = Qo x {0}

For allge Qando € %, we haved’({q,0),0) = (8(q,0) x {0}) U ((d(g,0) \
B) x {1}),51?(15’((%1%0) =(8(g,0)\B) x {1} forqe Q\B.

o' =ax{1}.
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Since for an NRW% with n states, the NBWZ’ has at most 2 states, the

union NBW has at mostrik states. Now, in order to reduce the state space to

n(k+ 1), we observe that the first copy &' can be shared by ali%’s. Thus,

<" guesses both the padr;, 3 with which the acceptance condition is satisfied

and the point from which states froffy are no longer visited. Formally, we define
=(2,Q,Qox {0},%,a’), where

= (Qx{0}) UU1<i<k((Q\ Bi) x {i}).
e Forallge Qando € X, we haved'((q,0),0) = (8(q,0) x {0}) UU1<i<k((8(9,0) \
[3.) x {i}), andd’({q,i),0) = (8(q,0)\ ) x {i} for L<i < kandqe Q\ .

o o' =Uci<k i x{i}.
]

Translating NRWs to NBWs, we took the union of the NRWs of indeléit are
obtained by decomposing the acceptance condition. For NiS8\empting to pro-
ceed dually, and define the NBW as the intersection of the NSWislex 1 that are
obtained by decomposing the acceptance condition. Suaftenséction, however,
may accept words that are not in the language of the NSW. Tthigeonsider an
automatone/, a Streett acceptance conditian= {{a1, 1), (az,B2)}, and a word
w. It may be that there is a run of .« on w that satisfies the Streett acceptance
condition{(a1,B1)} and also a rumy of &7 on w that satisfies the Streett accep-
tance condition{ (a2, 32)}. Yet, the rung; andr, may be different, and there need
not be a run ofe onw that satisfies boti(a1, B1) } and{(a2, B2) }. Consequently,
the translation of NSWs to NBWs has to consider the relationrentbe different
pairs ina, giving rise to a blow-up that is exponential kn Formally, we have the
following.

Theorem 14.Let.«” be an NSW with n states and index k. There is an NBWith
at most 11+ k2¥) states such tha® (') = £ (/).

Proof: Let«/ = (X,Q,Qo,9,{(a1,B1),...,{0k, B«)}). Recall that in an accepting
runr of <7, we have thatnf(r)naj =0 orinf(r)n g # 0 for all 1 <i < k. For

I € {1,...,k}, we define an NBW that accepts exactly all words such that
there is a rum of & onw for whichinf(r)na; =0 for alli € | andinf(r)NG #0
foralli ¢ 1. Thus,| indicates how the acceptance conditioiis satisfied. It is easy
to see that? (/) = Ucqa,.. k£ (A4).

The idea behind the construction &4 is similar to the “two copies” idea we
have seen above, except that now, in the copy in whitkavoids the states ia;,
foralli e, italso has to visit all the statesfi, fori & |. This can be easily achieved
by first defining.y as a nondeterministic generalizeddhi automaton. Formally,
we defined = (2,Q;,Qp, a1, 6 ) as follows. Leta; = (i ai. Then,

e Q =(Qx{0)U((Q\ar)x{1}).
° Q’OZQ()X{O}.
e Foreveryge Qando € X, we haved ((q,0),0) = (d(q

) )
o)) x {1}). Forqge Q\ a;, we also havey ((q,1),0) = (

o JU((8(g,0)\
S(

{0}
o)\ai)x {1}.

X
q,
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o B={Bx{1}:igl}

Sinces has at most2states and indek an equivalent Bchi automaton has at
most Ak states. A slightly more careful analysis observes thatémeralized Bchi
condition applies only to the second copy.f, thus a translation to NBW results
in an automaton with at most+ nk states. The automatow” is then the union
of all the % NBWs obtained from the different; and thus has at mogt + nk)2
states. Moreover, as in the proof of Theorem 13, the first af@ll the NBWs in
the union can be shared, tightening the bound furthertmk2. |

In Theorem 15 below we show that the exponential blow-up énttanslation of
NSWs to NBWs cannot be avoided. In fact, as the theorem show/b|av-up may
occur even when one starts with a DSW.

Theorem 15.[65] There is a family of languages; 1L, ... such that |y can be
recognized by a DSW witBn states and inde2n, but an NBW for |, has at least
2" states.

Proof: LetX ={0,1,2}. We can view an infinite word oveX as a wordv € (=")?,
thusw = u; - uy - us-- -, where each; is a word inZ". We refer to such words as
blocks We say that index € {0,...,n— 1} is 0-active inw iff there are infinitely
many j’s such that thé-th letter inuj is 0. Similarly,i is 1-active inw iff there are
infinitely many j’s such that thé-th letter inu; is 1. Forn > 1, let

L,={w: forall0<i <n-1, the index is 0-active inw iff i is 1-active inw}.

We first describe a DSWy, with 3n states such tha¥’ (<) = L,. We define
% = <{07 17 z}aan {<0a 0>}a 5ﬂ7an>' where

e Qn={1,...,n} x{0,1,2}. Intuitively, </, moves to the staté@, o) after it reads
the(i — 1)-th letter in the current block, and this letterds Accordingly, an index
0 <i <n-1liso-active inwiff the run of o, onw visits states ifi+1} x {o}
infinitely often.

e ForallO<i<n-—1lando,o’ €{0,1,2}, we haved((i,o0),0’) = {((i+1) modn,a’).

o an=Uricol (0,01 {011, {01} {0,001}

It is easy to see that7, has 3 states and that’(«;) = L,. Now, assume by
way of contradiction that there is an NBW, that recognize&, and has fewer
than 2' states. We say that a position in a word or in a run#ffis relevantif it is
0 modn. That is,«, starts to read each block in a relevant position. For &set
{0,...,n—1}, Ietvvge {0,2}" be the word of length in which forall 0<i <n-1,
thei-th letter is 0 iffi € S, and is 2 otherwise. Similarly, let} € {1,2}" be the word
in which thei-th letter is 1 iffi € S, and is 2 otherwise. Note that\i\ig appears in
a wordw in infinitely many relevant positions, then all the indicasSiare 0-active,
and similarly forw} and 1-active. Consider the infinite wovgs = (W2)2" - wg).
Clearly, for indexi € {0,...,n— 1}, we have that is 0-active inws iff i is 1-active
in ws iff i € S Hencews € L. Letrs be an accepting run of/] on ws. We say
that a positionp > 0 in rg is importantif it is relevant and there is a statgand a
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position p’ > p such thatg is visited in both positiong and p’ and the subword
read between them is (m@)*. We then say that supports pLet Qs be the set of
states that support infinitely many important positionac8Q is finite and there are
infinitely many relevant positions, the €@& is not empty. Since,, has fewer than

2" states, there must be two subs@endT, such thafl £ SandQsNQr # 0. LetS
andT be two such subsets. Assume without loss of generalitylth&+ 0, and let
gbe a state iQsN Qr. By the definition ofQr, there is > 1 such that, can move
from g back to itself when it readgr®)'. We claim that we can then obtain from
ws a wordwg that is not inL, and is accepted by, We obtainwg by inserting the
word (w2)! inside the(w2)?" subwords whenever the run of! reaches the statg

in important positions. The accepting run@f is then similar ta's, except that we
pump visits tog in important positions to traverse the cycle along wf‘ﬂmﬂ)‘ is
read. Sincew, is a Bichi automaton, the run stays accepting, whereas the word it
reads has indices (thoseTn\ S) that are 0-active but not 1-active, and is therefore
notinLj,. O

3.2 Determinization of NBWs

Recall that NBWs are strictly more expressive than DBWSs. Ia flgiction we de-
scribe the intuition behind a determinization constructibat translates a given
NBW to an equivalent DPW. Detailed description of the camsion can be found
in [64, 59, 67]. As in the case of NBW complementation, efdid determinize
NBWs started in the 1960s, and involve several landmarks52f McNaughton
proved that NBWs can be determinized and described a doublyrential trans-
lation of NBWs to DMWs. Only in 1988, Safra improved the bound @escribed
an optimal translation of NBWs to DRWSs: given an NBW witlstates, the equiv-
alent DRW has 2("lo9" states and inder. A different construction, with similar
bounds, was given in [58]. The same considerations thatfholBW complemen-
tation can be used in order to show a matchifif?9" lower bound [54, 50]. While
Safra’s determinization construction is asymptoticalpyimal, efforts to improve it
have continued, aiming at reducing the state space anda#&meautomata with
the parity acceptance condition. Indeed, the parity aeceet condition has impor-
tant advantages: it is easy to complement, and when used ims@gvcondition in
a two-player game, both players can proceed according toamgess strategies.
Also, solving parity games is easier than solving Rabin gajh2, 29] (see Chapter
25). In [59], Piterman described a direct translation of NBWDPW, which also
reduces the state blow-up in Safra’s determinization.riPié@’s construction has
been further tightened in [67]. The translation is a var@r8afra’s determinization
construction, and we present the intuition behind it heris.important to note that
in addition to efforts to improve Safra’s determinizatioonstruction, there have
been efforts to develop algorithms that avoid determiiorain constructions and
methodologies that traditionally involve determinizati@.g., complementation of
NBW [44], LTL synthesis [45], and more [36].
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Before we describe the intuition behind the determinizationstruction, let us
understand why NBW determinization is a difficult problenonSider the NBW
</ from Example 2. In Figure 5 we described the DB¥ obtained by applying
the subset construction t@,. While 7% recognizes the language of all words with
finitely manya’s, the DBW <7, recognizes the language of all words with infinitely
many b’s. Why does the subset construction work for finite words aibHere?
Consider the worev = (b-a)®. The fact the run of7, onw visits the stat€qo,q }
infinitely often implies that there are infinitely many prefsxofw such thate, has
a run on the prefix that ends é¢a. Nothing, however, is guaranteed about our ability
to compose the runs on these prefixes into a single run. licpkat, in the case of
w, the run on each of the prefixes visgs only once, as the destination of its last
transition, and there is no way to continue and read the sofffixfrom q;.

Consider an NBWe = (2,Q,Qo, 9, ) and an input worev = 01 - 02+ 03+ - -. AS
the example above demonstrates, an equivalent deterimimigbmaton should not
only make sure that’ has infinitely many prefixes on whiclf can reachu, but also
that.«7 does so with runs that can be composed into a single rurgl.&8t,S, ... €
(29)% pe the result of applying the subset constructionsobnw. That is,S is the
set of states that/ can be at after reading - 02 - - - 6;. The deterministic automaton
that is equivalent ta7 tries to find a sequence= To, Ty, To,. .. € (29)% such that
To € S and for alli > 0, we have thaffi;1 C 6(T;,gi11). In addition, there are
infinitely many positionsjy, jo, j3,... such that for alk > 1, each of the states in
Tj.., is reachable from some stateTy, via a run that visitsx. We refer tor as a
witness sequencand refer to the positiong, jo, j3,... asbreak-points Note that
foralli > 0 we haveT; C §, and that indeedy acceptsv iff such a withess sequence
exists. First, ife7 acceptsv with a runqp, qa, . . ., then we can tak& = {q;}. Also,
if T exists, then we can generate an accepting rus @inw by reaching some state
in Tj,, then reaching, viar, some state ifTj,, then reaching, via, some state in
Tj;, and so on. The big challenge in the determinization cootn is to detect a
witness sequence without guessing.

One naive way to detect a withess sequence is to maintaimfatination about
the runs ofer onw. In Section 2.2.2, we defined the roaG G that embodies all
the possible runs of7 onw. The prefix ofG up to leveli clearly contains all the in-
formation one needs abo8tand the history of all the states in it. The prefixe€of
however, are of increasing and unbounded sizes. A key pothei determinization
construction is to extract from each prefix Gfa finite presentation that is suffi-
ciently informative. For the case of finite words, this isyeasthe set of states in
the last level of the prefix (that i§) is sufficient. For the case of infinite words, the
presentation is much more complicated, and is based on thsudacture ohistory
trees

Essentially, the history tree that is reached after readipcefix of length of w
maintains subsets & that may serve a§. One challenge is to maintain these sub-
sets in a compact way. A second challenge is to use the padgptance condition
in order to guarantee that one of the maintained subsetsxdaed serve ag in a
witness sequence. The first challenge is addressed by argaadbcandidate subsets
in a tree in which each state B is associated with at most one node of the tree.
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This bounds the number of history treest®™. The second challenge is addressed
by updating the history trees in each transition in a waytblates the choice of the
subset that would serve dswith the choice of the even index that witnesses the
satisfaction of the parity condition: the subsets are @diegssentially, according to
their seniority — the point at which the deterministic auédom started to take them
into account as a possible In each update, each subset may be declared as “sta-
ble”, meaning that it continues to serve as a posSiland may also be declared as
“accepting”, meaning that the positidts a break-point in the witness sequence in
which T; is a member. The parity acceptance condition then usesslabskniority

in order to look for a subset that is eventually always stabie infinitely often ac-
cepting. The above is only a high-level intuition, and intgarar it misses the way

in which the subsets are ordered and how the updates irgexién this order. As
pointed out above, details can be found in the original pafi, 59, 67].

4 Decision Procedures

Automata define languages, which are sets of words. Natuegtipns to ask about
sets are whether they are trivial (that is, empty or univgraad whether two sets
contain each other. Note that equivalence between two setgras to containment
in both directions. In this section we study the followinged problems, which
address the above questions for languages defined by aatomat

e Thenon-emptinesgroblem is to decide, given an automateh whether? (&) #
0.

e The non-universalityproblem is to decide, given an automater, whether
L(o) #+ 2.

e The language-containmerproblem is to decide, given automat# and <%,
whetherZ (<) C L ().

It is not hard to see that the non-emptiness and non-uniitgrpaoblems are
dual, in the sense that an automaton is non-empty iff its ¢ement is non-
universal, and that both can be viewed as a special case laftipgage-containment
problem. Indeed, i&7, and</r are such that? (7, ) = 0 and.Z(«71) = Z¢, then
an automatony is empty if £ (<) C £ (<, ) and is universal ifZ (o/1) C L ().
As we shall see below, however, the non-emptiness probleasier than the other
two. We note that the hardness results and proofs describthisisection hold al-
ready for automata on finite words. We still present direciofs for NBWs. An
alternative would be to carry out a reduction from the sgttiffinite words.

in

Theorem 16.[14, 15, 77]The non-emptiness problem for NBWs is decidable
linear time and is NLOGSPACE-complete.

Proof: Consider an NBWeZ = (X,Q,Qo, 9, a). Recall thates induces a directed
graphG., = (Q,E) where(q,d) € E iff there is a letteio such thatf € 5(q, 0). We
claim that.# (<) is non-empty iff there are stateg € Qp andgacc € a such that
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G, contains a path leading fromy to gacc and a cycle going thougiyce. Assume
firstthatZ (<) is non-empty. Then, there is an acceptingraado, ds, . .. of &7 on
some input word, which corresponds to an infinite pat®gf. Sincer is accepting,
some state),cc € o occurs inr infinitely often; in particular, there arej, where

0 <i < j, such thatiaec = 0i = qj. Thus,do, ..., g corresponds to a (possibly empty)
path fromd t0 Qace, @andg;, . .., g; to a cycle going througbjacc.

Conversely, assume th@t,, contains a path leading frogy to a statejacc € o
and a cycle going thougdipcc.. We can then construct an infinite path®f, starting
at qp and visitinggacc infinitely often. This path induces a run on a word accepted
by <.

Thus, NBW non-emptiness is reducible to graph reachabili algorithm that
proves membership in NLOGSPACE first guesses stitesQo andgacc € o, and
then checks the reachability requirements by guessingreffmah gg to gacc and a
path fromgacc to itself. Guessing these paths is done by remembering tirentu
state on the path and the value of a counter for the lengthegfath traversed so far,
and proceeding to a successor state while increasing thtezoMWhen the counter
value exceedfQ)|, the algorithm returns “no” (that is, the guess is not goditjte
that the algorithm has to rememtapr; gacc, the current state and counter value, each
requiring logarithmic space.

NLOGSPACE-hardness can be proved by an easy reduction freneachability
problem in directed graphs [28]. There, one is given a déedraphG = (V,E)
along with two vertices andt, and the goal is to decide whether there is a path from
stot. Itis easy to see that such a path exists iff the NBy= ({a},V, {s},0,{t})
with V' € (v, a) iff E(v,V) orv =v =t is not empty.

To check non-emptiness in linear time, we first find the deamsitjpn of G,
into SCCs [10, 73]. An SCC is nontrivial if it contains an edgfich means, since
it is strongly connected, that it contains a cycle. It is naitchto see thats is non-
empty iff from an SCC whose intersection wi@y is not empty it is possible to
reach a nontrivial SCC whose intersection watlis not empty. UJ

Theorem 17.[70] The non-universality problem for NBWs is decidable in expen
tial time and is PSPACE-complete.

Proof: Consider an NBWy. Clearly, & (/) # 2 iff 2%\ £ (&) # 0, which
holds iff £ («7") # 0, wheres/’ is an NBW that complements/. Thus, to test
</ for non-universality, it suffices to test’ for non-emptiness. The construction
of o7’ can proceed “on-the-fly” (that is, there is no need to cowsiand stores’’
and then perform the non-emptiness test, but rather it isiplesto construct only
the components required for the non-emptiness test on d&reach a construction
requires only polynomial space). Hence @5is exponentially bigger than?, the
time and space bounds from Theorem 16 imply the two upperdsun

For the lower bound, we do a reduction from polynomial-spaaéng machines.
The reduction does not use the fact théicBi automata run on infinite words and
follows the same considerations as the reduction showiaigttie non-universality
problem is PSPACE-hard for nondeterministic automata atefimords [53]. Note
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that we could also have reduced from this latter problempbefierred to give the
details of the generic reduction.

Given a Turing machin&@ of space complexitg(n), we construct an NBWA
of size linear inT ands(n) such thate/r is universal iff T does not accept the
empty tape. We assume, without loss of generality, thahallcomputations of
eventually reach a final state. Also, oriceeaches a final state it loops there forever.
The NBW .o/ accepts a word iff wis not an encoding of a legal computationTof
over the empty tape or i is an encoding of a legal yet rejecting computatiofT of
over the empty tape. Thus/r rejects a wordv iff w encodes a legal and accepting
computation ofT over the empty tape. Hence’r is universal iffT does not accept
the empty tape.

We now give the details of the construction®f. LetT = (I, Q,—, o, Gacc; Oreq) »
whererl is the alphabefQ is the set of statesp C Qx " x Qx I x {L,R} is the
transition relation (we uség,a) — (q,b,4) to indicate that whefT is in stateq
and it reads the inpw in the current tape cell, it moves to stafe writesb in the
current tape cell, and its reading head moves one cell teeftiedght, according to
A), andqp, Gace, andgrej are the initial, accepting, and rejecting states.

We encode a configuration df by a word #1ys...(q, %) ... Ygn)- That is, a
configuration starts with #, and all its other letters ard inexcept for one let-
ter in Q x I'. The meaning of such a configuration is that fhth cell in T, for
1< j <s(n), is labeledy;, the reading head points at celandT is in stateq. For
example, the initial configuration df is #(do,b)b...b (with s(n) — 1 occurrences
of b) whereb stands for an empty cell. We can now encode a computatidnbyfa
sequence of configurations.

Let Z = {#}Uru(Qxr) and let #71...as<n)#ai...aé(n) be two succes-
sive configurations off. We also seigy, 0j, and dgpn)1 to #. For each triple
(0i-1, 01, 0i+1) with 1 <i < s(n), we know, by the transition relation df, what
o/ should be. In addition, the letter # should repeat exactgrnes(n) + 1 letters.
Let next((gi_1, Gi, 0i+1)) denote our expectation far'. That is,

o next((yi-1,%,¥+1)) = next{(#,yi, ¥i+1)) = next((yi-1, %, #)) = %
e next(((d,y-1), %, Vi+1)) = next{(q, ¥-1), ¥, %) =

{V. if (0 y-1) = (4,1 _1,L)
(q/7yl) if (q Vl—l) (q/ay|, 1aR

o next((yi-1,(q, %), ¥+1)) = next(# (q, %), ¥i+1)) =
next((yi-1,(a, %),#) = y{ where(q, v) ( ,4).3
o next((y-1,¥%,(d,¥+1))) = next((# v, (q, V+1)>) =

{w if (a,¥i+1) — (g
(d,v) if (9,¥i41) — (Q’,%, )

d neXt(<aS(n)a#7 O-:D) - #

3 We assume that the reading head’adoes not “fall” from the right or the left boundaries of the
tape. Thus, the case whefie= 1) and(q, yt) — (d',/,L) and the dual case whefe= s(n)) and
(a9,%) — (d, ¥,R) are not possible.
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Consistency witmext now gives us a necessary condition for a trace to encode a
legal computation. In addition, the computation shouldtstéth the initial config-
uration.

In order to check consistency wittext the NBW .« can use its nondeterminism
and guess when there is a violationneixt Thus,«# guessesoi_1, G, 0i+1) € 53
guesses a position in the trace, checks whether the thteesléb be read starting
in this position aregi_1, gj, andgi;1, and checks whethewext((gi_1, 6, gi11)) is
not the letter to comse(n) + 1 letters later. Oncesr sees such a violation, it goes to
an accepting sink. In order to check that the first configareits not the initial con-
figuration,</ simply compares the firs{n) + 1 letters with #qo,b)b. .. b. Finally,
checking whether a legal computation is rejecting is alssyethe computation
should reach a configuration in whighvisits gye;. ]

Theorem 18.[70] The containment problem for NBWs is decidable in exponlentia
time and is PSPACE-complete.

Proof: Consider NBWsg; and «%. Note that.Z(«) C L (o) iff L (A1) N
(Z9\ Z (o)) =0, which holds iff.Z («7’) = 0, wherege/" is an NBW for the inter-
section ofe; with an NBW that complements,. Thus, to check the containment
of &7 in a% we can teskz’ for emptiness. Since the constructionasf can proceed
on-the-fly and its size is linear in the size.@f and exponential in the size ef5,

the required complexity follows, as in the proof of Theorem Sinces, is univer-

sal iff X% C .Z(a) andZ® can be recognized by an NBW with one state, hardness
in PSPACE follows from hardness of the universality prohlem L]

Recall that the algorithm for deciding non-emptiness of &W\.«/ operates on
the graphG,, induced by« and thus ignores the alphabetwf In particular, the al-
gorithm does not distinguish between deterministic andietarministic automata.
In contrast, the algorithms for deciding universality amhtainment complement
the NBW and thus, can benefit from determinization.

Theorem 19.The non-emptiness, non-universality, and containmenrlenos for
DBWs are NLOGSPACE-complete.

Proof: When applied to DBWSs, the intermediate automatdhused in the proofs
of Theorems 17 and 18 is polynomial in the size of the inputs its non-emptiness
can be tested in NLOGSPACE. Hardness in NLOGSPACE followmfthe fact
that reachability in directed graphs can be reduced to tiee throblems. L]

Theorems 16, 17, and 18 refer taiéhi automata. For the other types of au-
tomata, one can translate to NBWs and apply the algorithninéant While in many
cases this results in an optimal algorithm, sometimes itasenefficient to work
directly on the input automaton. In particular, for NSW, tinenslation to NBW
results in an NBW withO(n?2X) states, whereas non-emptiness can be checked in
sub-quadratic time [16, 25]. We note, however, that unlilg/M and NRWs, for
which the non-emptiness problem is NLOGSPACE-compleig AT IME-complete
for NSWs [42]. For NPWs, the translation to NBWs results in an N&ith O(nk)
states, whereas non-emptiness can be checked irGimlegk) [32].
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5 Alternating Automata on Infinite Words

In [7], Chandra et al. introduced alternating Turing maekinin the alternating
model, the states of the machine, and accordingly also itfgiorations, are par-
titioned into existential and universal ones. When the nreelg in an existential
configuration, one of its successors should lead to acceptakihen the machine
is in a universal configuration, all its successors shoudd l® acceptance. In this
section we define alternatingiBhi automata [55] and study their properties.

5.1 Definition

For a given seX, let " (X) be the set of positive Boolean formulas ovéfi.e.,
Boolean formulas built from elementsXusingA andV), where we also allow the
formulastrue andfalse ForY C X, we say thaY satisfies formulad € 2" (X) iff
the truth assignment that assignse to the members of and assignfalseto the
members oiX \ Y satisfiesd. We say thaly' satisfiesd in a minimal manneif no
strict subset oY satisfies. For example, the sefs)1,0s}, {02,003}, and{qi1, gz, s}
all satisfy the formuldq; v g2) A gg, yet only the first two sets satisfy it in a minimal
manner. Also, the sdig;, gz} does not satisfy this formula.

Consider an automatow’ = (X,Q,Qo, d,a). We can represerdt using2 " (Q).
For example, a transitiod(q, o) = {qi1, 0, g3} of a nondeterministic automatas
can be written a®(qg,0) = g1 V02 V gs. The dual of nondeterminism is universal-
ity. A word w is accepted by a universal automatehif all the runs of.<Z onw
are accepting. Accordingly, i#/ is universal, then the transition can be written as
0(q,0) = g1 Agz2 Ags. While transitions of nondeterministic and universal attam
correspond to disjunctions and conjunctions, respegtiuelnsitions of alternating
automata can be arbitrary formulas#i™ (Q). We can have, for instance, a transi-
tion 8(g,0) = (1 A02) V (03 A da), meaning that the automaton accepts a word of
the formo - w from stateq, if it acceptsw from bothq; andg, or from bothgz and
gs. Such a transition combines existential and universaloeoi

Formally, aralternating automaton on infinite worisa tuple” = (X,Q,qo, 9, o),
whereX . Q, anda are as in nondeterministic automaggc Q is an initial state (we
will later explain why it is technically easier to assume agée initial state), and
d:Qx X — #*(Q) is a transition function. In order to define runs of altemati
automata, we first have to define trees and labeled treeess a prefix-closed set
T CIN* (i.e., ifx-c € T, wherex € IN* andc € IN, then alsax € T). The elements
of T are calledhodes and the empty word is theroot of T. For everyx € T, the
nodesx-c, for c € IN, are thesuccessorsf x. A node is deaf if it has no successors.
We sometimes refer to the lengtti of x as itslevelin the tree. Apath it of a treeT
is a setrt C T such thate € mand for everyx € m, eitherx is a leaf or there exists
a uniquec € IN such thatx- ¢ € 1. Given an alphabeX, a >-labeled trees a pair
(T,V) whereT is atree and/ : T — X~ maps each node df to a letter inZ.
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While a run of a nondeterministic automaton on an infinite wisrdn infinite
sequence of states, a run of an alternating automato@ita@eled tree. Formally,
given an infinite wordv = 01 - 02+ -+, a run of.«Z onw is a Q-labeled tregT;,r)
such that the following hold:

e £cTrandr(e) =qo.

e Letxe Ty with r(x) = g andd(q, gj.1) = 6. There is a (possibly empty) set
S={q,...,0«} such thaSsatisfiesd in a minimal manner and for all & c <Kk,
we have thak-c € T, andr(x-¢) = (.

For example, i®(do, 01) = (41 V t2) A (g3 da), then possible runs a7 onw have
a root labeledyp, have one node in level 1 labeleg or gz, and have another node
in level 1 labeledys or g4. Note that if6 = true, thenx does not have children. This
is the reason whyf, may have leaves. Also, since there exists ndSsstisfyingd
for 6 = false, we cannot have a run that takes a transition \fith false

A run (T, r) is acceptingiff all its infinite paths, which are labeled by words
in Q%, satisfy the acceptance condition. A wondis accepted iff there exists an
accepting run on it. Note that while conjunctions in the sitian function of </
are reflected in branches ¢F,r), disjunctions are reflected in the fact we can have
many runs on the same word. The languagesofdenoted?’ (<), is the set of
infinite words thates accepts. We use ABW to abbreviate alternatingl@ word
automata.

Example 4Forn> 1, let>, = {1,2,...,n}. We describe an ABWx, such thate,
accepts exactly all words € > such thatw contains the subword-i-i for all
lettersi € 2.

We defined, = (2, Qn, o, 0, 0), where

e Qn={qo}U(Z x{3,2,1}). Thus, in addition to an initial statez, contains
three states for each lettee %, where statdi,c), for c € {1,2,3}, waits for a
subwordi®.

e Initsfirst transition e, spawns inta copies, with copy waiting for the subword
i® (ori?, in case the first letter readijs Thus, for alli € 5, we haved,(qo,i) =
(i,2) AN (J,3). Inaddition, for alli € 2, andc € {3,2,1}, we have

(i,c—1) if j=iandce {3,2},
on((i,c),j) = | true if j=iandc=1,
0,3 if ] #£i.

Note that no state iQ, is accepting. Thus, all copies have to eventually take the
transition totrue, guaranteeing thati -i is indeed read, for alle >,,.

Note also that whilezz;, has 31+ 1 states, it is not hard to prove that an NBW
for the language is exponential im as it has to remember the subsets of letters for
which the subwordl-i-i has already appeared.

A slightly more general definition of alternating automataild replace the sin-
gle initial state by arinitial transition in % (Q), describing possible subsets of
states from which the word should be accepted. Staying Wwétdefinition of a set
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of initial states used in nondeterministic automata wowadehbroken the symmetry
between the existential and universal components of aitiem

5.2 Closure Properties

The rich structure of alternating automata makes it easyefmel the union and
intersection of ABWSs. Indeed, the same way union is easy ftoraata with non-
determinism, intersection is easy for automata with usiaebranches.

Theorem 20.Let o4 and o%» be ABWs with pand npy states, respectively. There
are ABWse/(, and o~ such that? () = L (91) UL (), L (dn) = L (1) N
X (o), and«/, and o have n + ny + 1 states.

Proof: Leteh = (Z,Qq,a), 61, 01) and.es = (Z,Qp, 03, &, a2). We assume, with-
out loss of generality, tha®; and Q. are disjoint. We definez, as the union
of o and .o, with an additional initial state that proceeds like theamof the
initial states ofe4 and.«%. Thus, o/, = (Z,Q1UQ2U{do},do, 0, a1 U az), where
5(go,0) = d1(af,0) vV &(09,0), and for every statg € Q; UQ2, we have that
0(q,0) = &(q,0), for the indexi € {1,2} such thatg € Q;. It is easy to see that
for every wordw € 2%, the ABW &7 has an accepting run amiff at least one of
the ABWs.; and.e%, has an accepting run om. The definition ofe/ is similar,
except that frontp we proceed with the conjunction of the transitions frqfrand
g3- O

We note that with a definition of ABWs in which an initial tratieh in 1 (Q)
is allowed, closing ABWs under union and intersection candreetby applying the
corresponding operation on the initial transitions.

We proceed to closure of ABWs under complementation. Giverasition
function o, let & denote the function dual t6. That is, for everyg and o with
5(q,0) = 6, we have thad(q, o) = 6, where8 is obtained fromd by switching
v and A and switchingtrue andfalse If, for example,6 = pV (true A @), then
6 = pA (falseVv g). Given an acceptance condition let &@ be an acceptance con-
dition that dualizesr. Thus, a set of stateSsatisfiesa iff Sdoes not satisfyr. In
particular, ifa is a Biichi condition, theri is a co-Bichi condition.

For deterministic automata, it is easy to complement annaaton.« by dualiz-
ing the acceptance condition. In particular, given a DBXVviewing .« as a DCW
complements its language. For an NBW, the situation is more involved as we
have to make sure that all runs satisfy the dual conditiois @&n be done by view-
ing </ as a universal co-lichi automaton. As Lemma 3 below argues, this approach
can be generalized to all alternating automata and acaeptamditions.

Lemma 3.[58] Given an alternating automato#’ = (,Q,qo, 9, a), the alternat-

ing automatons = (5, Q, 0o, 8, d) is such that?(«/) = 59\ Z ().
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Lemma 3 suggests a straightforward translation of an AB\Wb a complement-
ing ACW 7, and vice versa. In order to end up with an ABW, one has to latas’
to an ABW [44], which uses the ranking method described inctivgext of NBW
complementation and involves a quadratic blow-up:

Theorem 21.[44] Given an ABW/ with n states, there is an ABW’ with O(n?)
states such tha?(«7') = 29\ L ().

We note that the ABW constructed in the proof of Theorem 21vgak alter-
nating automator56]. In a weak automaton, each SCC of the automaton is either
contained ina or is disjoint froma. Every infinite path of a run ultimately gets
“trapped” within some SCC. The path then satisfies the aaoeptcondition iff this
component is contained im.

Itis easy to see that weak automata are a special case of bolth&hd co-Bichi
alternating automata. A run gets trapped in a componentoted ina iff it visits
a infinitely often iff it visits Q\ a only finitely often. The study of weak alternating
automata is motivated by the fact that the translation afifdas in several temporal
logics to alternating automata results in weak automata46p Another motivation
is the fact that dualizing a weak automaton is straightfedwéaking & = Q\ a
amounts to switching the classification of accepting andctejg sets, and thus
dualizes the acceptance condition.

Remark 2In the non-elementary translation of monadic second-olalgic for-
mulas to NBWs [6], an exponential blow-up occurs with eachatieg. While a
blow-up that is non-elementary in the quantifier altermati@pth is unavoidable,
the fact that complementation is easy for alternating aatamaises the question
whether ABWs may be used in a simpler decision procedure. Egative an-
swer follows from the fact that thexistential projectioroperator, which is easy
for nondeterministic automata, involves an exponentiaivblip when applied to
alternating automata. For a langudge (2; x 2,)“, we define the existential pro-
jection of L on X; as the languagk; of all wordsw; € X7’ such that there is a
word w, € £ for which wy @ W € L, wherew; ® ws is the word overZ; x 2,
obtained by “merging” the letters of; andws in the expected way. For example,
abba® 0010= (a0) (h0)(b1)(a0). Given an NBW forL, it is easy to see that an
NBW for L; can be obtained by replacing a letter;, 0,) by the lettero;. Such
a simple replacement, however, would not work for alterrgpiutomata. Indeed,
there, one has to ensure that different copies of the autonm@bceed according
to the same word oveX,. Consequently, existential projection requires altéomat
removal. In the context of translations of formulas to aatem the exponential
blow-up with each negation when working with NBWs is tradedda exponen-
tial blow-up with each existential quantifier when workinglwABWS. It is easy to
see, say by pushing negations inside, that negations astketial quantifiers can
be traded also at the syntactic level of the formula.
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5.3 Decision Procedures

The rich structure of alternating automata makes them exquttailly more suc-
cinct than nondeterministic automata. On the other harakoming about alter-
nating automata is complicated. For example, while theralyao for testing the
non-emptiness of a nondeterministic automaton can igri@elphabet and be re-
duced to reachability questions in the underlying graptefautomaton, ignoring
the alphabet in an alternating automaton leads to an ahgoritith a one-sided error.
Indeed, as noted in the context of existential projectioR@émark 2, the algorithm
should make sure that the different copies it spawns intoviahe same word. Con-
sequently, many algorithms for alternating automata weallternation removal — a
translation to an equivalent nondeterministic automaBmtow we describe such a
translation for the case ofii8hi automata.

Theorem 22.[55] Consider an ABWy with n states. There is an NBW’ with 3"
states such that/' (') = £ ().

Proof: The automatonz’ guesses a run of7. At a given point of a run ofz’,

it keeps in its memory the states in a whole level of the rua tfeer. As it reads
the next input letter, it guesses the states in the next leivéte run tree ofe’.

In order to make sure that every infinite path visits states infinitely often, <7’

keeps track of states that “owe” a visitéo Let & = (£,Q,qo,0,a). Then?’ =

(2,20x 29 ({qo},0),5",29 x {0}), whered' is defined, for all(S 0O) € 2% x 29

ando € 2, as follows.

e If O#0,thend’((S0O),0) = {(S,0'\a) : S satisfies\q56(q,0),0 C S,
andO'’ satisfies\c0 (0, 0)}.
e If O=0,thend’ ((SO),0)={(S,S\a) : S satisfiesAgs0(q,0)}.

Note that all the reachable state%0) in <7’ satisfyO C S. Accordingly, if the
number of states in7 is n, then the number of states.ir’ is at most 8. ]

Note that the construction has the flavor of the subset aartgin [63], but in a
dual interpretation: a set of states is interpreted coniuely: the suffix of the word
has to be accepted from all the stateSiWhile such a dual subset construction is
sufficient for automata on finite words, the case OtBi requires also the mainte-
nance of a subs@ of S, leading to a 8", rather than a2, blow-up. As shown
in [3], this additional blow-up cannot be avoided.

Remark 3t is not hard to see that i#/ is a universal automaton (that is, the tran-
sition functiond only has conjunctions), then the automateh constructed in the
proof of Theorem 22 is deterministic. Indeed, in the defimitof &' ((S O), 0), there

is a single seS that satisfies\qesd(q, o) in a minimal manner. It follows that
universal Richi automata are not more expressive than DBWs. Dually, NOW/s a
not more expressive than DCW: Given an NGW we can apply the construction
above on the dual universaliBhi automatornzs (see Lemma 3), and then dualize
the obtained DBW. We end up with a DCW equivalentto
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We can now use alternation removal in order to solve decigioblems for al-
ternating automata.

Theorem 23.The non-emptiness, non-universality, and containmertileros for
ABW are PSPACE-complete.

Proof: We describe the proof for the non-emptiness problem. SinBg/a are
easily closed for negation and intersection, the proof for-aniversality and con-
tainment is similar. Consider an ABW . In order to checks for non-emptiness,
we translate it into an NBWw’ and check the non-emptiness .¢f'. By Theo-
rem 22, the size of7’ is exponential in the size of/. Since the construction o/’
can proceed on-the-fly, and, by Theorem 16, its non-emg&inas be checked in
NLOGSPACE, membership in PSPACE follows.

In order to prove hardness in PSPACE, we do a reduction frorWWN®n-
universality. Given an NBW«7, we have that? (/) # X% iff X%\ Z (&) # 0.
Thus, non-universality of7 can be reduced to non-emptiness of an automaton
that complements?. Since we can defing’’ as an ABW with quadratically many
states, hardness in PSPACE follows. UJ

6 Automata-Based Algorithms

In this section we describe the application of automatarthimdformal verification.
Recall that the logic LTL is used for specifying propertiésaactive systems. The
syntax and semantics of LTL are described in Chapter 2. Forpteteness, we
describe them here briefly. Formulas of LTL are construatechfa sefAP of atomic
propositions using the usual Boolean operators and thedexhpperators (“next
time”) andU (“until”). Formally, an LTL formula overAP is defined as follows:

e true, false or p, for p € AP.
o U, Yy Ao, X, or YU Uk, wherey, andys, are LTL formulas.

The semantics of LTL is defined with respect to infinite comapiohs 1 =
01,02, 03, ..., Where for everyj > 1, the setj C APis the set of atomic propositions
that hold in thej-th position ofrr. Systems that generate computations are modeled
by Kripke structures A (finite) Kripke structure is a tupl& = (ARW,Wp, R, ¢),
whereAP is a finite set of atomic propositiond/ is a finite set of state§lp C W
is a set of initial statedR C W x W is a transition relation, ané: W — 2P maps
each statev to the set of atomic propositions that holdvin We require that each
state has at least one successor. That is, for eachvstal/ there is at least one
statew’ such thaR(w,w'). A path inK is an infinite sequence = wo, w1, W>, ... of
states such thatp € Wy and for alli > 0, we haveR(w;,wi;1). The pathp induces
the computatiorf(wp), £(w1), £(Wy), . ...

Consider a computatiorr = 01, 02, 03, .... We denote the suffig;, j.q,... of
by 1. We usert =  to indicate that an LTL formulg holds in the computation
1. The relation= is inductively defined as follows:
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For all i, we have thait = true and T |~ false

For an atomic propositiop € AP, we have thait = piff p € 0.

=~y iff TR Y.

TE A Iff me= g andr = gy.

= Xy iff 7'[2):(,[11 '

T ynU g, iff there existk > 1 such thar Eypandrt =y forall 1 <i<k

Writing LTL formulas, it is convenient to use the abbreviasd (“always”), F
(“eventually”), andR (“release”). Formally, the abbreviations follow the fallimg
semantics.

e Fyy =trueUys. Thatis,ml= Fy iff there existsk > 1 such thatt¥ E .

o Gy =—F-yy. Thatis, = Gy iff for all k> 1 we have that¥ = (.

o UnRYp = =((—W1)U(~4r)). That is, 1 |= Yy Ry, iff for all k> 1, if 7€ = g,
then there is K i < k such thatrt = y.

Each LTL formulay overAP defines a language (y) C (2AP)® of the compu-
tations that satisfyy, Formally,
L) ={ne (@)® : n=y}.
Two natural problems arise in the context of systems and $ipeicifications:

e Satisfiability:given an LTL formulay, is there a computatiorrsuch thatt = ¢?
e Model Checkinggiven a Kripke structur& and an LTL formulay, do all the
computations oK satisfy(?

We describe a translation of LTL formulas int@iéhi automata and discuss how
such a translation is used for solving the above two prohlems

6.1 Translating LTL to Bichi Automata

In this section we describe a translation of LTL formulas BW We start with
a translation that goes via ABWs. For completeness, we akssept the original
translation of [77], which directly generates NBWs. The #fation involves an ex-
ponential blow-up, which we show to be tight.

6.1.1 A Translation via ABWs

Consider an LTL formulap. For simplicity, we assume thdt is given inpositive
normal form Thus, negation is applied only to atomic propositionsnfally, given
a setAP of atomic propositions, an LTL formula in positive normairiois defined
as follows:

e true, false p, or—p, for p € AP.
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o Wi, Yt AUk, WV W, XU, YU Y, or Yy RYk,, wherey, andys, are LTL formu-
las in positive normal form.

Note that the fact negation is restricted to atomic propmsst has forced us to
add not only the Boolean operatorbut also the temporal operat®& Still, it is
easy to see that transforming an LTL formula to a formula isifp@ normal form
involves no blow-up. Thelosureof an LTL formulay, denotectl (), is the set of
all its subformulas. Formallyl(y) is the smallest set of formulas that satisfy the
following.

o Yecl(y).

o If Y1 AUp, Y1V yn, yhUypr or Y1RYk is in cl(y), theny, € cl(y) andyp €
cl(y).

o If Xy isincl(y), thenyn € cl(y).

For examplecl(pA (Xp)Ua)) is {pA ((Xp)Ua), p, (Xp)Ug,Xp,q}. Itis easy to
see that the size @l () is linear in|y|.

Theorem 24.For every LTL formulay, there is an ABWe7y, with O(|y|) states
such that? («7y) = Z ().

Proof: We definesry, = (27, cl(y), y, 8, a), where
e The transitiond(¢, o) is defined according to the form ¢fas follows.

- &p.o)-|

-0

true if pe o,
false if p¢ o.

true if p¢ o,
(=p,0) = [false if peo.
(d)l/\ ¢2a ) (¢17 )/\6(¢270)'
($1V @2, ) 5(¢1,0) Vv 6(¢2,0).
(X¢,0) =
(02U ¢2, ) 5(¢2,0)V (3(¢1,0) A\ ¢1U¢2).
O(¢1Rp2,0) = 5(¢2,0) A (3(¢1,0) V 91Rp2).
e The seta of accepting states consists of all the formulaglify) of the form

91R92.

The proof of the correctness of the construction proceedsdction on the struc-
ture of . For a formulag < cl(y), we prove that wheny, is in stateg, it accepts
exactly all words that satisfg. The base case, whenis an atomic proposition or
its negation, follows from the definition of the transitiaamttion. The other cases
follow from the semantics of LTL and the induction hypotlsesn particular, the
definition of a guarantees that in order for a word to satigfyJ ¢», it must have
a suffix that satisfieg,. Indeed, otherwise, the run ofy has an infinite path that
remains forever in the statgU ¢, and thus does not satisty. |

o
o
-0
o

Example 5We describe an ABWy,, for the LTL formulay = GF p. Note thaty =
falseR(trueU p). In the example, we use tieandG abbreviations. The alphabet of
o7y consists of the two letters in2. The set of accepting states{i6F p}, and the
states and transitions are described in the table in Fig. 8.
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| {p}| O |
GFp|| GFp|GFpAFp
Fp || true Fp

Fig. 8 The transition function of an ABW foGF p

Example 6 We describe an ABWy, for the LTL formulay = pA ((Xp)UQq). The
alphabet ofey, consists of the four letters inf29}. The states and transitions are
described in the table in Fig. 9. No state is accepting. Nwéednly the initial state
is reachable.

[{p.at  {p} | {a}| 0 |
pA((XpUQ)) || true | pA((XpUQ) | false false
p true true false false
(XpUq true |pA((XpUa))] true | pA (XpUQ))

Fig. 9 The transition function of an ABW fop A ((Xp)Uq))

Combining Theorems 24 and 22, we get the following.

Theorem 25.For every LTL formulap, there is an NBW#, such that? (<) =
Z () and the size of7,, is exponential ify|.

In Section 6.1.3 we show a matching exponential lower bouatus note here
that while the 8 blow-up in Theorem 22 refers to general ABWs, the ABWs ob-
tained from LTL in the proof of Theorem 24 have a special $tme all the cycles
in the automata are self-loops. For such automata (tev@gdwealalternating au-
tomata, as they are weak alternating automata in which allsS&re singletons),
alternation can be removed with only a2 blow-up [20, 3].

6.1.2 A Direct Translation to NBWs

The original translation of LTL to NBW [77] does not go viaénmediate alternat-
ing automata. For completeness, we detail it here. Theltéms does not assume
a positive normal form, and uses tagtended closuref the given formula: For an
LTL formula ¢, the extended closure af, denotedecl(y), is the set of’s sub-
formulas and their negationst is identified withy). Formally,ecl(y) is the
smallest set of formulas that satisfy the following.

Y € ecl(y).

If yn € ecl(y) then—yy € ecl(y).

If —yn € ecl(y) thenys € ecl(y).

If yn Ao € ecl(y) thenyy € ecl(y) andy, € ecl(y).
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o If Xy € ecl(y) theny € ecl(y).
o If YU y» € ecl(y) theny, € ecl(y) andy; € ecl(y).

For example,ecl(p A (XpUQ)) is {pA (XpUa),~(pA ((XpUa)), p,~p,
(XpUaq, =((XpUa),Xp,~Xp,g,~q}.

The translation is based on the observation that the questisatisfaction of an
LTL formula ¢ in a computatiorntcan be reduced to questions about the satisfaction
of formulas inecl(y) in the suffixes ofi. More formally, given a computatior, it
is possible to (uniquely) label each suffix @y the subset of formulas iecl(y)
that are satisfied in this suffix. The correctness of thisliabecan be verified by
local consistency checks, which relate the labeling of sssiwe suffixes, and by
a global consistency check, which takes care of satistactie@ventualities. Since
it is easier to check the satisfaction of each eventualitisaation, we describe
a translation to nondeterministic automata with the gdizexc Blichi acceptance
condition. One can then use Theorem 12 in order to obtain aWWNB

Formally, given an LTL formulap over AP, we defines/y, = (227,Q,Qo, 3, a),
as follows.

e We say that a se3C ecl(y) is good in ec(y) if Sis a maximal set of formulas
in ecl(y) that does not have propositional inconsistency. Tlausatisfies the
following conditions.

1. Forallys € ecl(¢), we havey, € Siff -y ¢ S and
2. Forallyy A yn € ecl(y), we haveyn A Y, € Siff gy € Sandyn € S

The state spac® C 2°°¥) is the set of all the good sets &tl(y).
e Let SandS be two good sets iecl(y), and leto C AP be a letter. Ther8 €
d(S, o) if the following hold.

1. 0 =SNAP,

2. For allXy € ecl(y), we haveXys € Siff ¢y € S, and

3. ForallynU yr € ecl(y), we haveysU Y, € Siff either g, € Sor bothyy € S
andynUy» € S.

Note that the last condition also means that for-dlnU ) € ecl(y), we have
that— (U yr) € Siff —y» € Sand either-yn € Sor—=(ynUy») € S.

e Qo C Qisthe set of all stateSe Q for whichy € S

e Every formulay;U yr, contributes to the generalizedighi conditiona the set

AQuuy, ={S€Q:yr e Sor—-(ynUyn) € S}.

We now turn to discuss the size of. It is easy to see that the sizeedl(y) is
O(|y|), soey has %) states. Note that sinag has at mosty| subformulas of
the formysU ¢, the index ofa is at mosty|. It follows from Theorem 12 thap
can also be translated into an NBW witR(#)) states.

Remark 4Note that the construction of, can proceean-the-fly Thus, given a
stateS of 7, and a lettero € 2P, it is possible to compute the s&tS o) based
on the formulas ir. As we shall see in Section 6.2, this fact is very helpful,tas i
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implies that reasoning abouty need not construct the whole state space/gfbut
can rather proceed in an on-demand fashion.

6.1.3 The blow-up in the LTL to NBW Translation

In this section we describe an exponential lower bound fertthnslation of LTL

to NBW, implying that the blow-up that both translations e®dnvolve cannot in

general be avoided. We do so by describing a doubly-exp@iémiver bound for

the translation of LTL to DBW. Recall that NBWs are strictly rm@xpressive than
DBWs. The expressiveness gap carries over to languagesahdiecspecified in
LTL. For example, the formul& Gb (“eventually alway$”, which is similar to the

language used in the proof of Theorem 6), cannot be trawsiatiea DBW. We now

show that when a translation exists, it is doubly-exporaniihus, the exponential
blow-ups in Theorem 25 and determinization (when posséreadditive:

Theorem 26.When possible, the translation of LTL formulas to deterstioBlchi
automata is doubly-exponential.

Proof: Lety be an LTL formula of lengtim and lete/, be an NBW that recognizes
. By Theorem 25, the automatari, has 2" states. By determinizing/y, we

get a DPW%, with 22°" states [64, 59]. By Bchi typeness of DPWs [35] (see
also Theorem 9), ifZy has an equivalent DBW, it can be translated into a DBW
with the same state space. Hence the upper bound.

For the lower bound, consider the followirgregular languagé,, over the al-
phabet{0, 1, # $}:4

Ln={{0,1L#}" - # w-# {0,1,#}" - $-w-#° :we {0,1}"}.

Aword 1 is in Ly, iff the suffix of lengthn that comes after the single $irappears
somewhere before the $. By [7], the smallest deterministioraaton that accepts
L, has at least? states. (The proof in [7] considers the language of the fimitels
obtained fromL,, by omitting the # suffix. The proof, however, is independent of
this technical detail: reaching the $, the automaton shoerdember the possible
set of words in{0,1}" that have appeared before.) We can spegifyvith an LTL
formula of length quadratic in. The formula is a conjunction of two formulas. The
first conjunct,y, makes sure that there is only one $ in the word, followed by a
word in {0,1}", which is followed by an infinite tail of #s. The second comt,
Y5, states that eventually there exists a position with # andlfd <i < n, thei-th
letter from this position is 0 or 1 and it agrees with ik letter after the $. Also,
the (n+ 1)-th letter from this position is #. Formally,

o Y= (-$USAX((OVI)AX(OV LA - X((0V 1) AXGH)) ).
o Yo=FHAXHA N\1in(XIOAG($— X'0)) vV (XILAG($— X'1)))).

4 Note that, for technical convenience, the alphabéet,d6 not of the form 2. It is easy to adjust
the proof to this setting, say by encodif@ 1,#,$} by two atomic propositions.
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Note that the argument about the size of the smallest detestici automaton that
recognized.,, is independent of the automaton’s acceptance conditions,Tine
theorem holds for deterministic Rabin, Streett, and Mudlglomata as well.  []

6.2 Model Checking and Satisfiability

In this section we describe the automata-theoretic appré@ad.TL satisfiability
and model checking. We show how, using the translation of it NBW, these
problems can be reduced to problems about automata andahgirages.

Theorem 27.The LTL satisfiability problem is PSPACE-complete.

Proof: An LTL formula ( is satisfiable iff the automatow, is not empty. In-
deed,#y accepts exactly all the computations that satigfyBy Theorem 16, the
non-emptiness problem for NBWs is in NLOGSPACE. Since the sfzv), is expo-
nential in|(Y|, and its construction can be done on-the-fly, membershifSiPACE
follows. Hardness in PSPACE is proved in [69], and the preditinilar to the hard-
ness proof we detailed for NBW non-universality in Theorem Ihdeed, as there,
given a polynomial-space Turing machifiewe can construct an LTL formulg

of polynomial size that describes exactly all words thatesitdo not encode a le-
gal computation off on the empty tape, or encode a rejecting computation. The
formula—y is then satisfiable iff” accepts the empty tape. |

Theorem 28.The LTL model-checking problem is PSPACE-complete.

Proof: Consider a Kripke structur = (ARW,Wp, R, ¢). We construct an NBW
a such thatek accepts a computation € (24P)« iff ris a computation oK.
The construction ofeg essentially moves the labels Kf from the states to the
transitions. Thusgrk = (227 W,Wp, 5, W), where for allw € W ando € 24P, we

nave W RWw)} if 0 = £w)
T R(W, if o= 0(w).
5(‘”’0)_{0 it o ((w).

Now, K satisfiegy iff all the computations oK satisfyy, thus.Z (e ) C £ ().

A naive check of the above would construgj and complement it. Complementa-
tion, however, involves an exponential blow-up, on top & &xponential blow-up
in the translation of} to .«7. Instead, we exploit the fact that LTL formulas are easy
to complement and check that (k) N2 (oLy) = 0, whereay, is the NBW for
. Accordingly, the model-checking problem can be reduceldémon-emptiness
problem of the intersection &f« and.’.y. Let @ ¢ be an NBW accepting the
intersection of the languages ok and.<Z . Sincew has no acceptance condi-
tion, the construction ok# -y can proceed by simply taking the product.ek
with - . Then,K satisfiesp iff < -y is empty. By Theorem 25, the size .of

is exponential iny/|. Also, the size ofw is linear in|K|. Thus, the size of#k -y

is |[K|-2°0%D. Since the construction af/y, and hence alsos -y, can be done
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on-the-fly, membership in PSPACE follows from the membgamiNLOGSPACE
of the non-emptiness problem for NBW. Hardness in PSPACIEoiggal in [69], and
again, proceeds by a generic reduction from polynomiatedarring machines.]

As described in the proof of Theorem 28, the PSPACE complefithe LTL
model-checking problem follows from the exponential siz¢he product automa-
ton o7 —y. Note thatak -y is exponential only ing|, and is linear inK|. Never-
theless, aK is typically much bigger thag, and the exponential blow-up of the
translation ofiy to <y, rarely appears in practice, itis the linear dependendi in
rather than the exponential dependencyify that makes LTL model checking so
challenging in practice.

We note that the translations described in Section 6.1 arel#ssic ones. Since
their introduction, researchers have suggested manysdtiesrand optimizations,
with rapidly changing state of the art. Prominent ideas Ivev@ reduction of the
state space by associating states with smaller subsets olittbure [21], possibly as
a result of starting with alternating automata [46, 20]ucttbns based on relations
between the states, in either the alternating or nondetéstiai automaton [71, 19],
working with acceptance conditions that are defined witlpeesto edges rather
than states [22], and a study of easy fragments [34]. In madivariants of NBWs
are used for particular applications, suchtestersin the context of composition
reasoning [60]. Finally, the automata-theoretic apprdaahbeen extended also to
branching temporal logicsThere, formulas are interpreted over branching struc-
tures, and the techniques are based on automata on infeete[#t6, 12, 13, 57, 46].

Acknowledgement! thank Javier Esparza and Moshe Y. Vardi for many helpful
comments and discussions.
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