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Abstract

VerbNet (VN) is a major large-scale En-
glish verb lexicon. Mapping verb instances
to their VN classes has been proven use-
ful for several NLP tasks. However, verbs
are polysemous with respect to their VN
classes. We introduce a novel supervised
learning model for mapping verb instances
to VN classes, using rich syntactic features
and class membership constraints. We
evaluate the algorithm in both in-domain
and corpus adaptation scenarios. In both
cases, we use the manually tagged Sem-
link WSJ corpus as training data. For in-
domain (testing on Semlink WSJ data), we
achieve 95.9% accuracy, 35.1% error re-
duction (ER) over a strong baseline. For
adaptation, we test on the GENIA corpus
and achieve 72.4% accuracy with 10.7%
ER. This is the first large-scale experimen-
tation with automatic algorithms for this
task.

Introduction

much research aimed at automatic discovery of
verb classes (see Section 2).

VerbNet (VN) (Kipper et al.,, 2000; Kipper-
Schuler, 2005) is a large scale, publicly available
domain independent verb lexicon that builds on
Levin classes and extends them with new verbs,
new classes, and additional information such as
semantic roles and selectional restrictions. VN
classes were proven beneficial for Semantic Role
Labeling (SRL) (Swier and Stevenson, 2005), Se-
mantic Parsing (Shi and Mihalcea, 2005) and
building conceptual graphs (Hensman and Dun-
nion, 2004). Levin-inspired classes have been
used in several NLP tasks, such as Machine Trans-
lation (Dorr, 1997) and Document Classification
(Klavans and Kan, 1998).

Many applications that use VN need to map verb
instances onto their VN classes. However, verbs
are polysemous with respect to VN classes. Sem-
link (Loper et al., 2007) is a dataset that maps each
verb instance in the WSJ Penn Treebank to its VN
class. The mapping has been created using a com-
bination of automatic and manual methods. Yi et
al. (2007) have used Semlink to improve SRL.

In this paper we present the first large-scale ex-

The organization of verbs into classes whose menﬂ)’erimentation with a supervised machine learning

bers exhibit similar syntactic and semantic behav.

Classification algorithm for disambiguating verb

i9r has been discussed e_xtensively inthe IingUis'ticiﬁstances to their VN classes. We use rich syntactic
I|terat.ure (_see €.g. (Levin and Rapp_apo_rt Hova\features extracted from a treebank-style parse tree,
2005; Levin, 1993)). Such an organization help3nd utilize a learning algorithm capable of impos-

in avoiding lexicon representation redundancy anﬁi]

enables generalizations across similar verbs.
can also be of great practical use, e.g. In COMsq the training set.

pensating NLP statistical models for data sparse-
ness. Indeed, Levin's seminal work had motivategnd corpus adaptation scenarios
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g class membership constraints, thus taking ad-
\Iltantage of the nature of our task. We use Semlink

We evaluate our algorithm in both in-domain
In the former,

Licensed under the&reative Commons e test on the WSJ (using Semlink again), ob-

taining 95.9% accuracy with 35.1% error reduc-
tion (ER) over a strong baseline (most frequent



class) when using a modern statistical parser. [#5.5% coverage of VN classes over PropBank
the corpus adaptation scenario, we disambiguabestances (Loper et al., 2007). Each class con-
verbs in sentences taken from outside the trainains rich semantic information, including seman-
ing domain. Since the manual annotation of neuic roles of the arguments augmented with se-
corpora is costly, and since VN is designed to bkctional restrictions, and possible subcategoriza-
a domain independent resource, adaptation resutisn frames consisting of a syntactic description
are important to the usability in NLP in practice.and semantic predicates with temporal informa-
We manually annotated 400 sentences from GHion. VN thematic roles are relatively coarse, vs.
NIA (Kim et al., 2003), a medical domain cor- the situation-specific FrameNet role system or the
pus. Testing on these, we achieved 72.4% aorerb-specific PropBank role system, enabling gen-
curacy with 10.7% ER. Our adaptation scenari@ralizations across a wide semantic scope. Swier
is complete in the sense that the parser we usad Stevenson (2005) and Yi et al. (2007) used VN
was also trained on a different corpus (WSJ). Wéor SRL.
also report experiments done using gold-standard Verb type classification. Quite a few works
(manually created) parses. have addressed the issue of verb type classification
The most relevant previous works addressingnd in particular classification to ‘Levin inspired’
verb instance class classification are (Lapata arafasses (e.g., (Schulte im Walde, 2000; Merlo and
Brew, 2004; Li and Brew, 2007; Girju et al., 2005).Stevenson, 2001)). Such work is not comparable
The former two do not use VerbNet and their exto ours, as it deals with verb type (sense) rather
periments were narrower than ours, so we carthan verb token (instance) classification.
not compare to their results. The latter mapped to Verb token classification. Lapata and Brew
VN, but used a preliminary highly restricted setug2004) dealt with classification to Levin classes of
where most instances were monosemous. Fpolysemous verbs. They established a prior from
completeness, we compared our method to theirdhe BNC in an unsupervised manner. They also
achieving similar results. showed that this prior helps in the training of a
We review related work in Section 2, and dis-haive Bayes classifier employed to distinguish be-
cuss the task in Section 3. Section 4 introduces th&een possible verb classes of a given verb in a
model, Section 5 describes the experimental setugiven frame (when the ambiguity is not solved by

and Section 6 presents our results. knowing the frame alone). Li and Brew (2007) ex-
tended this model by proposing a method to train
2 Related Work the class disambiguator without using hand-tagged

) ) ) ) data. While these papers have good results, their
Ver.bNet. VI_\I IS @ major glectronlc E”Q"Sh verb experimental setup was rather narrow and used
lexicon. It is organized in a hierarchical struc-me at most 67 polysemous verbs (in 4 frames).

ture of classes and sub-classes, each sub—class\yN includes 912 polysemous verbs, of which 695
heriting the full characterization of its SUper'CIaSSappeared in our in-domain experiménts

VN is built on a refinement of the Levin classes, Girju et al. (2005) performed the only previous
the mterschye _Levm classes (Dang et al., 1998?/!/ork we are aware of that addresses the problem of
a'me‘?' at achieving more coherent classes both Soken level verb disambiguation into VN classes.
mantically and syntactically. VN was also Sub-ry,q yreated the task as a supervised learning prob-
Sta’?“a”y extended (K!pper etal, 20(_)6) using thﬁ’em, proposing features based on a POS tagger, a
Levin c_:lasses extension proposed n (Korhone@:hunker and a named entity classifier. In order
and Briscoe, 2004). VN today contains 3626 vertPO create the dafathey used a mapping between

Iemmas(forms), organized in 237 main Clas_seSPropbank rolesets and VN classes, and took the in-
having 4991 verttypes(we refer to a lemma with stances in WSJ sections 15-18,20,21 that were an-

an ascribed class as a type)_. Of the 36_26 Ien?fotated by Propbank and for which the roleset de-
mas, 912 are polysemous (i.e., appear in MOt mines the VN class uniquely. This resulted in

than a single class). VN's significant coverage of,,qt instances being in fact monosemous. Their
the English verb lexicon is demonstrated by the

- 3Propbank (Palmer et al., 2005) is a corpus annotation of
10Our annotations will be made available to the communitythe WSJ sections of the Penn Treebank with semantic roles of
2Using the same sentences and instances, obtained fr&ach verbal proposition.

the authors. “Semlink was not available then.



experiment was conducted in a WSJ in-domainumber of classes relative to the number of tfpes
scenario, and in a much narrower scope than iA classifier may gather valuable information for all
this paper. They had 870 (39 polysemous) uniqguemembers of a certain VN class, without seeing all
verb lemmas, compared to 2091 (695 polysemousy its members in the training data. From this per-
in our in-domain scenario. They did not test theispective the task resembles POS tagging. In both
model in an adaptation scenario. The scope artdsks there are many dozens (or more) of possible
difficulty contrast between our setup and theirs ariabels, while each word has only a small subset of
demonstrated by the large differences in the nunpossible labels. Different words may receive the
ber of instances and in the percentage of polyssame label.
mous instances: 972/12431 (7.8%) in theirs, com- The per-verb perspective takes into consider-
pared to 49571/84749 (58.5%) in our in-domairation the special properties of every verb type.
scenario (training+test). We compared our methoHven the best lexicons necessarily ignore certain
to theirs for completeness and achieved similar rédiosyncratic characteristics of the verb when as-
sults. signing it to a certain class. If a verb appears
Semlink. The Semlink project (Yi et al., 2007; many times in the corpus, it is possible to estimate
Loper et al., 2007) aims to create a mapping ats parameters to a reasonable reliability, and thus
PropBank, FrameNet (Baker et al., 1998), Wordto use its specific distributional properties for dis-
Net (henceforth WN) and VN to one another, thusmbiguation. Viewed in this manner, the task re-
allowing these resources to synergize. In additiorsembles a word sense disambiguation (WSD) task:
the project includes the most extensive token magach verb has a small distinct set of senses (types),
ping of verbs to their VN classes available todayand no two different verbs have the same sense.
It covers all verbs in the WSJ sections of the Penn The similarity to WSD suggests that our task
Treebank within VN coverage (out of 113K verbmight be solved by WN sense disambiguation fol-

instances, 97K have lemmas present in VN). lowed by a mapping from WN to VN. However,
good results are not to be expected, due to the
3 Nature of the Task medium quality of today’s WSD algorithms and

. L . because the mapping between WN and VN is both
Polysemy is a major issue in NLP. Verbs are not an
incomplete and many-to-mahyEven for a perfect

exception, resulting in a single verb form (IemmanN WSD algorithm, the resulting WN synset may

appearing in more than_ a smglg _class. Th|s pOInot be mapped to VN at all or may be mapped onto
ysemy is also present in the original Levin clas-_ . . . .
o multiple VN classes. We experimented with this
sification, where polysemous classes account for .
. method and obtained results below the MF base-

more than 48% of the BNC verb instances (Lapatﬁlne we usedl

and Brew, 2004). ) .
. . . ... The above discussion does not rule out the pos-
Given a verb instance whose lemma is within

) ; . Sibility of obtaining reasonable results through ap-
the coverage of VN, given the sentence in WhlchI ing a high quality WSD engine followed by a

it appears, given a parse tree of this sentence ( to VN mapping. However, there are much

be'o"Y)’ and given the VN resource, our task is t?ewer VN classes than WN classes per verb. This
classify the verb instance to its correct VN class,

) may result in the WSD engine learning many dis-

There are currently 237 possible classeg€ach . y gine ‘e 9 yC
. tinctions that are not useful in this context, which
verb has only a few possible classes (no more tharrqa in turn ieopardize its performance with re-
10, but only about 2.5 on the average over the poly- y Jeop P

. L spect to our task. Moreover, a word sense ma
semous verbs). Depending on the application, t)—ijé) y

. c?Iong to a single verb only while a VN class con-
parse tree for the sentence may be either a go
ins many verbs. Consequently, the performance
standard parse or a parse tree generated by a parser.
We have experimented with both options. 6237 classes vs. 4991 types.
The task can be viewed in two complemen- In the WN to VN mapping built into VN, 14.69% of the

. overed WN synsets were mapped to more than a single VN
tary ways: per-class and per-verb type. The pefp ™" y PP g

class perspective takes into consideration the small &g ysed the publicly available SenseLearner 2.0, the VB-
- @ Collocations model. We chose VN classes containing the

SWe ignore sub-class distinctions. This is justified since ilemma in random when a single mapping is not specified. We
98.2% of the in-coverage instances in Semlink, knowing thebtained 67.74% accuracy on section 00 of the WSJ, which is
verb and its class suffices for knowing its exact sub-class. less than the MF baseline. See Sections 5 and 7.



on a certain lemma may benefit from training in{ First Feature Set

stances of other lemmas.

Note that our task is not reducible to VN frameg
identification (a non-trivial task given the rich-
ness of the information used to define a fram
in VN). Although the categorizing criterion for

The stemmed head words, POS, parse tree la
function tags, and ordinals of the verb’s right
siblings ;. is the maximum number of right sil

elings in the corpus. These are at mokt differ-
ent features).

bels,

Levin’s classification is the subset of frames th

e The stemmed head words, POS, labels, func

verb may appear in (equivalently, the diathesis al-tags and ordinals of the verb’s lgft siblings, as

ternations the verbal proposition may perform)

, above.

ion

knowing only the frame in which an instance ap

- The stemmed head word & POS of the ‘seca

nd

pears does not suffice, as frames are shared amg
classes.

Mgead word’ nodes on the left and right (see text
for precise definition).
All of the above features employed on the s
lings of the parent of the verb (only if the verh
| parent is the head constituent of its grandpare
;dThe number of right/left siblings of the verb.
" The number of right/left siblings of the verb
| parent.
The parse tree label of the verb’s parent.
The verb’s voice (active or passive).

riThe verb’s lemma.

b-

nt)

4 The Learning Model

As common in supervised learning models, we er
code the verb instances into feature vectors ar
then apply a learning algorithm to induce a clag
sifier. We first discuss the feature set and then tf
learning algorithm.

Features. Our feature set heavily relies on syn-
tactic annotation. Dorr and Jones (1996) show

that perfect knowledge of the allowable syntactiigre 1: The first set of features in our model. All
frames for a verb allows 98% accuracy in type aSsf them are binary. The final feature set includes

signment to Levin classes. This motivates the ey, sets: the set here. and a set obtained by its
coding of the syntactic structure of the Semenc@onjunction with the verb's lemma.

as features, since we have no accesdltframes,
only to the one appearing in the sentence.

Since some verbs may appear in the same synre 1). We attempt to encode both the syntactic
tactic frame in different VN classes, a model relyframe, by encoding the tree structure, and the ar-
ing on the syntactic frame alone would not be ablgument preferences, by encoding the head words
to disambiguate instances of these verbs when apf the arguments and their POS. The restriction on
pearing in those frames. Hence our features irthe verb’s parent being the head constituent of its
clude lexical context words. The parse tree ergrandparent is done in order to focus on the correct
ables us to use words that appear in specific synerb in verb series such as ‘intend to run’.
tactic slots rather than in a linear window around The 3rd cell in the table makes use of a ‘sec-
the verb. To this end, we use the head words @nd head word’ node, defined as follows. Consider
the neighboring constituents. The definition of they |eft sibling (right siblings are addressed analo-
head of a constituent is given in (Collins, 1999). gously) M of the verb’s node. Take the nod&

Our feature set is comprised of two parallel seti the subtree of\/ where M's head appearsH
of features. The first contains features extracted a descendent of a node which is a child of
from the parse tree and the verb’s lemma as a stanf. The ‘second head word’ node.iSs sibling on
dalone feature. In the second set, each feature iste right. For example, in the sentende went to
conjunction of a feature from the first set with theschool(see Figure 2) the head word of the PP ‘to
verb’'s lemma. By doing so we created a generachool’ is ‘to’, and the ‘second head word’ node is
feature space shared by all verbs, and replicatiorschool’. The rationale is that ‘school’ could be a
of it for each and every verb. This feature selectionseful feature for ‘went’, in addition to ‘to’, which
strategy was chosen in view of the two perspeds highly polysemous (note that it is also a feature
tives on the task (per-class and per-verb) discussésr ‘went’, in the 1st and 2nd cells of the table).
in Section 3. The voice feature was computed using a simple

Ouir first set of features encodes the verb’s corheuristic based on the verb’'s POS tag (past partici-
text as inferred from the sentence’s parse tree (Figle) and presence of auxiliary verbs to its left.




P parser (Charniak and Johnson, 2005) (Note that

NP VP this parser does not output function tags). The
PTP VBD/\pp parser was also trained on sections 02-21 and tuned
we Lbyoo15T R on section 0. Consequently, our adaptation sce-
b NN nario is a full adaptation situation in which both the
school parser and the VerbNet training data are not in the

) ‘ test domain. Note that generative parser adaptation
Figure 2: ',A‘n example parse tree for the Secon?’esults are known to be of much lower quality than
head word’ feature. in-domain results (Lease and Charniak, 2005). The

quality of the discriminative parser we used did

The current set of features does not detect veihdeed decrease in our adaptation scenario (Sec-
particle constructions. We leave this for future retion 7).
search. The training data included 71209 VN in-scope

Learning Algorithm. Our learning task can be instances (of them 41753 polysemous) and the de-
formulated as follows. Let; denote the feature velopment 3624 instances (2203 polysemous). An
vector of an instancé and letX denote the space ‘in-scope’ instance is one that appears in VN and
of all such feature vectors. The subset of possis tagged with a verb POS. The same trained model
ble labels forz; is denoted by(;, and the correct was used in both the in-domain and adaptation sce-
label byc; € C;. We denote the label space bynarios, which only differ in their test sets.
S. LetT be the training set of instancds= {< In-Domain.  Tests were held on sections
x1,C1,01 >, < x9,C9,00 >, ..., < Ty, Cp,cp > 01,22,23,24 of WSJ PTB. Test data includes all in-
} C (X x 29 x S)", wheren is the size of the scope instances for which there is a SemLink anno-
training set. Lek x,41,C,1 >€ (X x 2%) be tation, yielding 13540 instances, 7798 (i.e., 57.6%)
a new instance. Our task is to select which of thef them polysemous.
labels inC}, . 1 is its correct labet,, . 1 (z,11 does Adaptation. For the testing we annotated sen-
not have to be a previously observed lemma, buénces from GENIA (Kim et al., 2003) (version
its lemma must appear in a VN class). 3.0.2). The GENIA corpus is composed of MED-

The structure of the task lets us apply a learnkINE abstracts related to transcription factors in
ing algorithm that is especially appropriate for itthuman blood cells. We annotated 400 sentences
What we need is an algorithm that allows us to refrom the corpus, each including at least one in-
strict the possible labels of each instance, both iscope verb instance. We took the first 400 sen-
training and in testing. The sequential model algotences from the corpus that met that critetfon
rithm presented by Even-Zohar and Roth (2001After cleaning some GENIA POS inconsistencies,
directly supports this requirement. We use th¢his amounts to 690 in-scope instances (380 of
SNOW learning architecture for multi-class clasthem polysemous). The tagging was done by two
sification (Roth, 1998), which contains an imple-annotators with an inter-annotator agreement rate

mentation of that algorithr. of 80.35% and Kappa 67.66%.
_ Baselines.We used two baselines, random and
5 Experimental Setup most frequent (MF). The random baseline selects

Weused Sk N annoatons and e rodf 10T 00 Osbercenly one of e pssile
on sections 02-21 of the WSJ Penn Treebank f ’ 9

Yhe selects the most frequent class of the verb in

training, and section 00 as a development set, e training data for verbs seen while training, and

is common in the parsing community. We per- .
P 9 y P selects in random for the unseen ones. Conse-

formed two parallel sets of experiments, one us- . )
gently, it obtains a perfect score over the monose-

ing manually created gold standard parse trees ar(r:?nous verbs. This baseline is a strong one and is

one using parse trees created by a state-of-the-art S . .
common in disambiguation tasks.

Experiments on development data revealed that for verbs We repeated all of the setup above in two sce-
for which almost all of the training instances are mapped t
the same VN class, it is most beneficial to select that class. *°For the very few sentences out of coverage for the parser,
Thus, where more than 90% of the training instances of a veMye used the MF baseline (see below).
are mapped to the same class, our algorithm mapped the in-''Discarding the first 120 sentences, which were used to
stances of the verb to that class regardless of the context. design the annotator guidelines.

1



narios. In the firstrfain scenario, in-scope in- enced very little degradation in the results when
stances were always mapped to VN classes, whifeoving to parser output, achieving 72.4% accu-
in the second‘¢ther is possible’'(OIP)) scenario, racy which translates to 10.71% error reduction
in-scope instances were allowed to be tagged (dupver the MF baseline. The random baseline on GE-
ing training) and classified (during test) as not beNIA was again worse than MF, obtaining 66.04%
longing to any existing VN clad8. In all cases, accuracy as compared to 69.09% of MF (in the OIP
out-of-scope instances (verbs whose lemmas dmenario, 39.12% compared to 46.41%).
not appear in VN) were ignored. For the OIP sce- Run-time performance. Given a parsed cor-
nario, we used a different ‘other’ label for each ofpus, our main model trains and runs in no more
the lemmas, not a single label shared by them allthan a few minutes for a training set 660K in-
stances and a test set ®fl1K instances, using a
6 Results Pentium 4 CPU 2.40GHz with 1GB main mem-

Table 1 shows our results. In addition to the overP"Y- The bottleneck in tagging large corpora using

all results, we also show results for the polysemouUr model is thus most likely the running time of
ones alone, since the task is trivial for the monoséUIrent parsers.

mous ones. The results using gold standard parses
effectively set an upper bound on our model’'s per?

formance, while those using statistical parser outy, ihjs paper we introduced a new statistical model
put demonstrate its current usability. for automatically mapping verb instances into
In-Domain. Results are shown in the WS3  verpNet classes, and presented the first large-scale
WSJ columns of Table 1. Using gold standargy,,eriments for this task, for both in-domain and
parses (top), we achieve 96.42% accuracy OVe€Ehrpus adaptation scenarios.
all. Over the polysemous verbs, the accuracy is Using gold standard parse trees, we achieved
93.68%. This translates to an error reduction ovefg 450, accuracy on WSJ test data, showing
the MF baseline of 43.35% overall and 43.22% f0ly3 3504, error reduction over a strong baseline.

the pol_ysemous verbs. .In the ‘other is IOOSSiblel':or adaptation to the GENIA corpus, we showed
scenario (right), we obtained 36.67% error reducy3 194 error reduction over the baseline. A sur-

tion. Using a state-of-the-art parser (C_Zharniak angrising result in the context of adaptation is the lit-
Johnson, 2005) (bottom), we experienced SOM@, iy ence of using gold standard parses versus

degradation of the results (as expected), but th‘?}’sing parser output, especially given the relatively

remained significantly above baseline. We achievlgw performance of today’s parsers in the adapta-

95.9% accuracy overall and 92.77% for the polyses . 14k (91.4% F-score for the WSJ in-domain
mous verbs, which translates to about 35.13% a enario compared to 81.24% F-score when pars-

35'04% error red_uctlon res;?)ectlvely. In the OIPing our GENIA test set). This is an interesting di-
scenario, we obtained 28.95% error reduction.  rection for future work.

The_ results (_)f the random t_’ase"”e for the in- In addition, we conducted some additional pre-
domain scenario are substantially worse than t ﬁninary experiments in order to shed light on
MF baseline. On the WSJ the random basellngome aspects of the task. The experiments reported

scored 66.97% (37.51%) accuracy in the maiIBelow were conducted on the development data

(O'IAZ) sctetr_]arlosl._l test del's abilit given gold standard parse trees.
aptation. Here we 1est our mode's abllity First, motivated by the close connection be-

to generalize across domains. Since VN is SUR%een WSD and our task (see Section 3), we con-

posed to be a domain independent resource, we . ST,
) L Ucted an experiment to test the applicability of
hope to acquire statistics that are relevant across

: using a WSD engine. In addition to the experi-
domains as well and so to enable us to automati- .
cally map verbs in domains of various genres Thgents listed above, we also attempted to encode

) ) e output of a modern WSD engine (the VBCollo-
results are shown in the WS3 GENIA columns P gine (

of Table 1. When using gold standard parses, ocatlons Model of SenseLearner 2.0 (Mihalcea and

model scored 73.16%. This translates to abot?tfsomal’ 2005)), both by encoding the synset (if

. ) . exists) of the verb instance as a feature, and by en-
0, -
13.17% ER on GENIA. We interestingly experi coding each possible mapped class of the WSD

13 e., including instances tagged by SemLink as ‘none’. engine output synset as a feature. There fare

Discussion



Main Scenario ‘Other is Possible’ (OIP) Scenarip
WSJ—-WSJ WSJ-GENIA || WSJ-WSJ WSJ—-GENIA
MF Model | MF Model || MF | Model | MF Model
Gold Std | Total | 93.68 | 96.42 | 69.09 | 73.16 || 88.6 | 92.78 | 46.41 | 52.46
ER 43.35 13.17 36.67 11.29
Poly. | 88.87| 93.68 | 48.58 | 55.35 || — - - -
ER 43.22 13.17 - -
Parser Total | 93.68 | 95.9 69.09] 72.4 88.6 | 91.9 46.41] 52.46
ER 35.13 10.71 28.95 11.29
Poly. | 88.87] 92.77 | 48,58 | 55.35 || — - - -
ER 35.04 10.72 - -

Table 1: Accuracy and error reduction (ER) results (in petsefor our model and the MF baseline.
Error reduction is computed a§92ELME - Results are given for the WSJ and GENIA corpora test
sets. The top table is for a model receiving gold standardesaof the test data. The bottom is for a
model using (Charniak and Johnson, 2005) state-of-thpaades of the test data. In the main scenario
(left), instances were always mapped to VN classes, whilbarOIP one (right) it was possible (during
both training and test) to map instances as not belongingytexzisting class. For the latter, no results
are displayed for polysemous verbs, since each verb can ppeddoth to ‘other’ and to at least one

class.

features if there aré possible classéd There stance can be mapped to only a small subspace).
was no improvement over the previous model. Aur choice of the algorithm in (Even-Zohar and
possible reason for this is the performance of thRoth, 2001) was done in light of this requirement.
WSD engine (e.g. 56.1% precision on the verbs ikVe conducted an experiment in which we omitted
Senseval-3 all-words task data). Naturally, moréhese per-instance restrictions on the label space,
research is needed to establish better methods effectively allowing each verb to take every label
incorporating WSD information to assist in thisin the label space. We obtained 94.54% accuracy,
task. which translates to 27.68% error reduction, com-
Second, we studied the relative usability of claspared to 95.95% accuracy (46.36% error reduc-
information as opposed to verb idiosyncratic infortion) when using the restrictions. These results in-
mation in the VN disambiguation task. By mea<dicate that although our feature set keeps us sub-
suring the accuracy of our model, first given thestantially above baseline even without the above
per-class features (the first set of features exclu@gorithm, using it boosts our results even further.
ing the verb’s lemma feature) and second given thehis result is different from the results obtained
per-verb features (the conjunction of the first sen (Girju et al., 2005), where the results of the un-
with the verb’s lemma), we tried to address thigonstrained (flat) model were significantly below
question. We obtained 94.82% accuracy for thbaseline.
per-class experiment, and 95.51% for the per-verb As noted earlier, the field of instance level
experiment, compared to 95.95% when using botterb classification into Levin-inspired classes is far
in the in-domain gold standard scenario. The MFrom being exhaustively explored. We intend to
baseline scored 92.45% on this development sehake our implementation of the model available
These results, which are close in the per-class ete the community, to enable others to engage in
periment to those of the MF baseline, indicate thaurther research on this task.
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