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Abstract

Clustering is a central technique in NLP.
Consequently, clustering evaluation is of
great importance. Many clustering algo-
rithms are evaluated by their success in
tagging corpus tokens. In this paper we
discusstype levelevaluation, which re-
flects class membership only and is inde-
pendent of the token statistics of a partic-
ular reference corpus. Type level evalua-
tion casts light on the merits of algorithms,
and for some applications is a more natural
measure of the algorithm’s quality.

We propose new type level evaluation
measures that, contrary to existing mea-
sures, are applicable when items are pol-
ysemous, the common case in NLP. We
demonstrate the benefits of our measures
using a detailed case study, POS induc-
tion. We experiment with seven leading
algorithms, obtaining useful insights and
showing that token and type level mea-
sures can weakly or even negatively corre-
late, which underscores the fact that these
two approaches reveal different aspects of
clustering quality.

Introduction

clustering (Montavlo et al., 2006), coreference res-
olution (Nicolae and Nicolae, 2006) and named

entity recognition (Elsner et al., 2009). Conse-

quently, the methodology of clustering evaluation

is of great importance. In this paper we focus

on external clustering evaluation, i.e., evaluation
against manually annotated gold standards, which
exist for almost all such NLP tasks. External eval-

uation is the dominant form of clustering evalu-

ation in NLP, although other methods have been
proposed (see e.g. (Frank et al., 2009)).

In this paper we discusype levelevaluation,
which evaluates the set membership structure cre-
ated by the clustering, independently of the token
statistics of the gold standard corpus. Many clus-
tering algorithms are evaluated by their success
in tagging corpus tokens (Clark, 2003; Nicolae
and Nicolae, 2006; Goldwater and Griffiths, 2007;
Gao and Johnson, 2008; Elsner et al., 2009). How-
ever, in many cases a type level evaluation is the
natural one. This is the case, for example, when
a POS induction algorithm is used to compute a
tag dictionary (the set of tags that each word can
take), or when a lexical acquisition algorithm is
used for constructing a lexicon containing the set
of frames that a verb can participate in, or when a
sense induction algorithm computes the set of pos-
sible senses of each word. In addition, even when
the goal is corpus tagging, a type level evaluation
is highly valuable, since it may cast light on the

Clustering is a central machine learning techniquerelative or absolute merits of different algorithms
In NLP, clustering has been used for virtually ev-(as we show in this paper).

ery semi- and unsupervised task, including POS Clustering evaluation has been extensively in-
tagging (Clark, 2003), labeled parse tree inductiorvestigated (Section 3). However, the discussion
(Reichart and Rappoport, 2008), verb-type claseenters around the monosemous case, where each
sification (Schulte im Walde, 2006), lexical ac- item belongs to exactly one cluster, although pol-
quisition (Davidov and Rappoport, 2006; Davi- ysemy is the common case in NLP.

dov and Rappoport, 2008), multilingual document The contribution of the present paper is as fol-
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lows. First, we discuss the issue of type level eval-
uation and explain why even in the monosemous
case a token level evaluation presents a skewed



picture (Section 2). Second, we show for thepus statistics from the induced clustering when the
common polysemous case why adapting existindptter is to be used for annotating corpora that ex-
information-theoretic measures to type level evalhibit different statistics. In other words, if we eval-
uation is not natural (Section 3). Third, we pro- uate an algorithm that will be invoked on a diverse
pose new mapping-based measures and algorithrset of corpora having different token statistics, a
to compute them (Section 4). Finally, we performtype level evaluation might provide a better picture
a detailed case study with part-of-speech (POS{or at least a complementary one) on the quality of
induction (Section 5). We compare seven leadthe clustering algorithm.

ing algorithms, showing that token and type level Tg motivate type level evaluation, consider POS
measures can weakly or even negatively correlatgnduction, which exemplifies both cases above.
This shows that type level evaluation indeed reClearly, a word form may belong to several parts
veals aspects of a clustering solution that are nohf speech (e.g., ‘contrast’ is both a noun and a
revealed by the common tagging-based evaluationerp, ‘fast’ is both an adjective and an adverb,

Clustering is a vast research area. As far as wehat' can be a determiner, conjunction and adverb,
know, this is the first NLP paper to propose typeetc.). As an evaluation of a POS induction algo-

level measures for the polysemous case. rithm, it is natural to evaluate the lexicon it gener-
ates, even if the main goal is to annotate a corpus.

2 Type Level Clustering Evaluation The lexicon lists the possible POS tags for each
word, and thus its evaluation is a polysemous type

This section motivates why both type and t0ken|eve| one

level external evaluations should be done, even in _ _
the monosemous case. Even if we ignore polysemy, type level evalua-

Clustering algorithms compute a setipluced tion is useful for a POS induction algorithm used

clusters(a clustering. Some algorithms directly [© &g a corpus. There are POS classes whose
compute a clustering, while some others produc&'€Mbers are very frequent, e.g., determiners and
a tagging of corpus tokens from which a clusteringPrePositions. Here, a very small number of word
can be easily derived. A clusteringrigonosemous types usually accounts _for a large portion of corpus
if each item is allowed to belong to a single clusterikens. For example, in the WSJ Penn Treebank
only, andpolysemoustherwise. Arexternaleval- ~ (Marcus etal., 1993), there are 43,740 word types
uation is one which is based on a comparison of a@"d over 1M word tokens. Of the types, 88 are
algorithm's result to a gold standard. In this paperf@99€d i‘s prepositions. These types account ;‘or
we focus solely on external evaluation, which is@nly 0-2% of the types, but for as many as 11.9%
the most common evaluation approach in NLP. of the tokens. An algorithm which is accurate only
Token and type level evaluations reflect differ-O" Prepositions would do much better in a token

ent aspects of a clustering. External token Ieve‘eveI evaluation than in a type level one.

evaluation assesses clustering quality according to This phenomenon is not restricted to preposi-
the C|ustering’s accuracy on a given manua”y anIiOﬂS or Engllsh In the WSJ corpus, determiners
notated corpus. This is certainly a useful evalua@ccount for 0.05% of the types but for 9.8% of the
tion measure, e.g. when the purpose of the clustefokens. In the German NEGRA corpus (Brants,

ing algorithm is to annotate a corpus to serve ad997), the article class (both definite and indefi-
input to another application. nite) accounts for 0.04% of the word types and for

External type level evaluation views the com- 12.5% of the word tOkenS, and the Coordinating

puted clustering as a set membership structure arfghjunctions class accounts for 0.05% of the word
evalutes it independently of the token statistics ifyPes but for 3% of the tokens.

the gold standard corpus. There are two main The type and token behavior differences result
cases in which this is useful. First, a type levelfrom the Zipfian distribution of word tokens to
evaluation can be the natural one in light of theword types (Mitzenmacher, 2004). Since the word
problem itself. For example, if the purpose offrequency distribution is Zipfian, any clustering al-
the clustering algorithm is to automatically build gorithm that is accurate only on a small number of
a lexicon (e.g., VerbNet (Kipper et al., 2000)), frequent words (not necessarily members of a par-
then the lexicon structure itself should be evalu-icular class) would perform well in a token level
ated. Second, it may be valuable to decouple corevaluation but not in a type one. For example,



the most frequent 100 word types (regardless ofhese are Rand Index (Rand, 1971), Adjusted Rand
POS class) in WSJ (NEGRA) account for 43.9%Index (Hubert and Arabie, 1985, statistic (Hu-
(41.3%) of the tokens in the corpus. These wordbert and Schultz, 1976), Jaccard (Milligan et al.,
appear in 32 out of the 34 non-punctuation POS1983), Fowlkes-Mallows (Fowlkes and Mallows,
classes in WSJ and in 38 out of the 51 classes i6983) and Mirkin (Mirkin, 1996). Schulte im
NEGRA. Walde (2006) used such a measure for type level
Other natural language entities also demonstratevaluation of monosemous verb type clustering.
Zipfian distribution of tokens to types. For exam- Meila (2007) described a few problems with
ple, the distribution of syntactic categories in parsesuch measures. A serious one is that their values
tree constituents is Zipfian, as shown in (Reicharare unbounded, making it hard to interpret their
and Rappoport, 2008) for English, German andesults. This can be solved by adjusting their val-
Chinese corpora. Thus, the distinction between toues to lie in[0, 1], but even adjusted measures suf-
ken and type level evaluation is important also forfer from severe distributional problems, limiting
grammar induction algorithms. their usability in practice. We thus do not address
It may be argued that a token level evaluationcounting pairs measures in this paper.
is sufficient since it already reflects type informa- Information-theoretic (IT) measures. IT
tion. In this paper we demonstrate that this is nomeasures assume that the items in the dataset are
the case, by showing that they correlate weakly otaken from a known distribution (usually the uni-

even negatively in an important NLP task. form distribution), and thus the gold and induced
clusters can be treated as random variables. These
3 Existing Clustering Evaluation measures utilize a co-occurrence mafrbetween
Measures the gold and induced clusters. We denote the in-

_ o . duced clustering by< and the gold clustering by
Clustering evaluation is challenging. Many mea-(. I;; contains the number of items in the in-

sures have been proposed in the past decadgssection of thei-th gold class and thg-th in-
(Pfitzner et al., 2008)._ In this section, we briefly quced cluster. When assuming the uniform dis-
survey the three main types: mapping basedyipytion, the probability of an event (a gold class

counting gairs, and info(rjmation theforetic me";‘l'c or an induced clustek) is its relative size, so

sures, and motivate our decision to focus on t _ UK I _ Ol I .

firstin this paper. %o(tcazl number of cﬁjnsc':]ejr(g Ee%sc):1 ¥ (s the
Mapping based measuresire based on a post-  ynder this assumption we define the entropies

processing step in which each induced cluster i$ 4 the conditional entropies:

mapped to a gold class (or vice versa). The stan-

dard mappings are greedy many-to-one (M-1) anq,(c) _ sl z‘,% Loy logzL’% Tep

greedy one-to-one (1-1). Several measures which

rely on these mappings were proposed. The MOSY ) — S 1L Tk g Lo

common and perhaps the simplest one is accu- N Tt lek

racy, which computes the fraction of items cor-H(K) andH (K|C) are defined similarly.

rectly clustered under the mapping. Other mea- |, gection 5 we use two IT measures for token

sures include: L (Larsen, 1999), D (Van Dongen,jeye| evaluation, V (Rosenberg and Hirschberg,
2000), mlsclgssmcatmn index (MI) (Zeng et gl., 2007) and NVI (Reichart and Rappoport, 2009)
2002), H (Meila and Heckerman, 2001), clustering, normalized version of VI (Meila, 2007)). The
F-measure (Fung et al., 2003) and micro-averagegnealing properties of these measures have been

precision and recall (Dhillon et al., 2003). In Sec-gyiensively discussed in these references; see also
tion 4 we show why existing mapping-based meaipfitzner et al., 2008). V and NVI are defined as
sures cannot be applied to the polysemous typg)jows:

case and present new mapping-based measures for

this case. h= {1 PTG ggg; ;8
Counting pairs measuresare based on a com-

binatorial approach which examines the number = {1 o) gég;g

of data element pairs that are clustered similarly e

in the reference and proposed clustering. Among v = 2he




show below, these measures do not suffer from the
NVI(C, K) = {W ggg; fg problems discussed for IT measures in Section 3.
B All measures are mapping-based: first, a map-
In the monosemous case (type or token), the aping between the induced and gold clusters is per-
plication of the measures described in this sectioformed, and then a measufeis computed. As
to type level evaluation is straightforward. In theis common in the clustering evaluation literature
polysemous case, however, they suffer from seri¢Section 3), we use M-1 and 1-1 greedy mappings,
ous shortcomings. defined to be those that maximize the correspond-
Consider a case in which each item is assignethg measurev.
exactlyr gold clusters and each gold cluster has Let C' = {cy, ..., c,} be the set of gold classes
the exact same number of items (i.e., each has@nd K = {k1, ..., k,,} be the set of induced clus-
size of‘%‘, wherel is the number of items). Now, ters. Denote the number of words typesiby et
consider an induced clustering where therel@le A; C C,B; C K,i = 1...I be the set of gold
induced clusters| | = |C|) and each item is as- classes and set of induced clusters for each word.
signed to all induced clusters. The co-occurrencdhe polysemous nature of task is reflected by the
matrix in this case should have identical values irfact thatA; and B; are subsets, rather than mem-
all its entries. Even if we allow the weight each bers, ofC' and K respectively.
item contributes to the matrix to depend onits gold Our measures address quality from two persec-
and induced entry sizes, the situation will remaintives, that of the individual items clustered (Sec-
the same. This is because all items have the exatibn 4.1) and that of the clusters (Section 4.2).
same entry size and both gold and induced clustettem-based measures especially suit evaluation of
ings have uniform cluster sizes. clustering quality for the purpose of lexicon induc-
In this case, the random variables defined by théion, and have no counterpart in the monosemous
induced and gold clustering assignments are inease. Cluster-based measures are a direct general-
dependent (this easily follows from the definitionization of existing mapping based measures to the
of independent events, since the joint probabilitypolysemous case.
is the multiplication of the marginals). Hence, The difficulty in designing item-based and
H(K|C) = H(K)andH(C|K) = H(C), and cluster-based measures is that the number of clus-
both V and NVI obtain their worst possible val- ters assigned to each item is determined by the
ues. However, the score should surely depend orlustering algorithm. Below we show how to over-
r (the size of each word’s gold entry). Specifi- come this.
cally, whenr = |C| we get that the induced and _
gold clusterings are identical. This case should nof-1 tem-Based Evaluation
get the worst score, and it should definitely scord=or a given mapping: : K — (C, denote
higher than the case in which= 1, whereK is  h(B;) = {h(z) : = € B;}. A fundamental quan-
dramatically different fronC'. tity for item-based evaluation is the number of cor-
The problem can in theory be solved by pro-rect clusters for each item (word type) under this
viding the number of clusters per item as an inpuimapping, denoted by )/; (IM stands for ‘item
to the algorithm. However, in NLP this is unre- match’):
alistic (even if the total number of clusters can be
provid<(ad) and the number should be determined 7 = [4i M A(B:)]
by the algorithm. We therefore do not consider The total item matcli M is defined to be:
IT-based measures in this paper, deferring themto ;,, _ 2221 IM, = 2221 |A; 0 h(BY)|

future work. . _
In the monosemous cask)! is normalized by

4 Mapping Based Measures for the number of items, yielding an accuracy score.
Polysemous Type Evaluation Applying a similar definition in the polysemous
case, normalizing instead by the total number of

In this section we present new type level evalu'gold clusters assigned to the items, can be easily

ation measures for the polysemous case. AS Wianinylated. Even a clustering which has the cor-
1V values are if{0, 1], 0 being the worst. NVI obtains its  réct number of induced clusters (equal to the num-

highest and worst possible values “5/%. ber of gold classes) but which assigns each item to



all induced clusters, receives a perfect score under In the example in Section 3 showing an unrea-
both greedy M-1 and 1-1 mappings. This holds forsonable behavior of IT-based measures, the score
any induced clustering for whicti, A; C h(B;). depends omr for both Macrol and Microl. With
Note that using a mapping fror@' to K (or a our new measures, recall is always 1, but precision
combination of both directions) would exhibit the is =-. This is true both for 1-1 and M-1 mappings.
same problem. Hence, the new measures show reasonable behav-
To overcome the problem, we use the harmonigor in this example for all- values.
average of two normalized terms (F-score). We Microl was used in (Dasgupta and Ng, 2007)
use two average variants, micro and macro. Macrevith a manually compiled mapping. Their map-
average computes the total number of matcheping was not based on a well-defined scheme but
over all words and normalizes in the end. Recalbn a heuristic. Moreover, providing a manual
(R), Precision (P) and their harmonic average (Fmapping might be impractical when the number of

score) are accordingly defined: clusters is large, and can be inaccurate, especially
R= ZliMIA'\ P= % when the clustering is not of very high quality.
- - In the following we discuss how to compute the
Macrol — ;T; _ 1-1 and M-1 greedy mappings for each measure.
oIM ! 1-1 Mapping. We computeh by finding the
= — ; =F(h)- Y IM; : . L -
S A+ (B P maximal weighted matching in a bipartite graph.

P q ding én As all In this graph one side represents the induced clus-
( )lsacon_stant epending anAs a ltems ters, the other represents the gold classes and
are equally weighted, those with larger gold andthe matchings correspond to 1-1 mappings. The

induced entries have more impact on the Measurg, shlem can be efficiently solved by the Kuhn-
The micro average, aiming to give all items an|¥Iunkres algorithm (Kuhn, 1955; Munkres, 1957).

_equal status, first computes an F-score for eac To be able to use this technique, edge weights
item and then averages over them. Hence, each

i i . must not depend ok. In 1-1 mapping,
item contributes at most 1 to the measure. Th'?hL(JB-)\ a \BF)] andui)hereforeF(h) ! FE)Fan
Microl measure is given by: i)l = |Dils =

wi(h) = w;. That is, both quantities are inde-

R =M, p _ _IM; Fo— 2RiPi 2IM; .
T Al PTG T R4P T TARRE)HT  pendent of3. For Macrol, the weight on the edge
! ! between thes-th gold class and thg-th induced
MicroI:lZF:lzﬂ: luster is: W(ey;) = S F . T I; F
[ 25T T Z A+ h(B) cluster is: Wies;) = Dy '+ IoeaiTjen,. For
L MICFO! it |_s: Wiesj) = Zi:lu_)i “Isenljen;-
=7 > wi(h) - IM; Isca,is 1if s € A; and O otherwise.

_ _ _ M-1 Mapping. There are two problems in ap-
Wherew;(h) is a weight depending oh but  plying the bipartite graph technique to finding an

also oni. M-1 mapping. First, under such mapping(h)
For both measures, the maximum scoré.ist  and F(h) do depend omh. The problem may
is obtained if and only ifd; = h(B;) foreveryi.  pe solved by selecting some constant weighting

In 1-1 mapping, when the number of inducedscheme. However, a more serious problem also
clusters is larger than the number of gold clusgrises.

ters, some of the induced clusters are not mapped. Consider a case in which an itemhas a gold

To preserve the nature of 1-1 mapping that pungntry {C1} and an induced entryK, K,}. Say

ishes for excessive clustérsve definelh(B;)|t0  the chosen mapping mapped bdth and K, to

be equal tdB;| even for these unmapped clusters.c; . By summing over the graph’s edges selected
Recall that any induced clustering in which py the mapping, we add weighk'(h) for Macrol

Vi, A; C h(B;) gets the best score under a greedyand w; (h) for Microl) both to the edge between

mapping with the accuracy measure. In Macrolg, and¢; and to the edge betwedsi, and C;.

and Microl the obtained recalls are perfect, but theqowever, the item’d M; is only 1. This prohibits
precision terms reflect deviation from the correct

solution. 3Consequently, the increase in Macrol and Microl follow-
- ing an increase of 1 in an item’s gold/induced intersection size
2And to allow us to compute it accurately, see below. (IM;) is independent of.



the use of the bipartite graph method for the M-1cluster and the gold class to which it is mapped.

case. We denote this value by'M; (CM stands for
Since we are not aware of any exact method forcluster match’):

solving this problem, we use a hill-climbing al- -

gorithr?w. Wepstart with a random mapping gnd a M= Ik 0 h(k;)l

random order on the induced clusters. Then we The total intersection({ M) is accordingly de-

iterate over the induced clusters and map each dined to be:

them to the gold class which maximizes the mea- h h _

sure given that the rest of the mapping remains OM =352, CM; = 350, |k N h(kj)|

constant. We repeat the process until no improve- As with the item-based evaluation (Section 4.1),

ment to the measure can be obtained by changingsingC M or a derived accuracy as a measure is

the assignment of a single induced cluster. Sinceroblematic. A clustering that assignsinduced

the score depends on the initial random mappinglasses to each word: (is the number of gold

and random order, we repeat this process severalasses) will get the highest possible score under

times and choose the maximum between the obevery greedy mapping (1-1 or M-1), as will any

tained scores. clustering in whichvi, A; C h(B;).
As in the item-based evaluation, a possible so-
4.2 Cluster-Based Evaluation lution is based on defining recall, precision and F-

§gore measures, computed either in the micro orin

The cluster-based evaluation measures we propoth level. Th luster-based
are a direct generalization of existing monose- ¢ MAacro [€Vel. The macro cluster-based measure

mous mapping based measures to the ponsemoH'émS outlt/(l) beélldentlcal to the macro item-based
type case. measure Macr

For a given mapping : K — C, we defineh : The following derivation shows the equivalence
K" — C. K" is defined to be a clustering which for the 1-1 case. The M-1 case is similar. We note

: : . . thath = h in the 1-1 case and we therefore ex-
is obtained by performing set union between every

; change them in the definition 6fM. It is enough
two clusters inK that are mapped to the same gold . ) .
L= to show thatC M = I M, since the denominator is
cluster. The resulting is always 1-1. We denote

the same in both cases:

|Kh| = mh.
Our motivation for using in the definition of CM =370 [k N (k)| =
the measures instead 6fis to stay as close as =37, 3| Liek,; lieni,) =

possible to accuracy, the most common mapping- _ S S Tier, Trengey) =
based measure in the monosemous case. M-1
(monosemous) accuracy does not punish for split-
ing classes. For instance, in a case where there is The micro cluster-based measures are defined:

a gold cluster; and two induced clusters; and R.o_OM  po_
ko such that; = k; U ko, the M-1 accuracy is the Tkl T
same as in the case where there is one cluster  The micro cluster measure MicroC is obtained
such thate; = k;. M-1 accuracy, despite its in- by taking a weighted average over tRgs:
difference to splitting, was shown to reflect better |

than 1-1 accuracy the clustering’s applicability for MicroC = > kekh N

subsequent applications (at least in some contexts) \where N* — S .cxen || is the number of clus-

(Headden lil et al., 2008). tered items after performing the set union and
Recall that in item-based evaluatiahl/; mea-  including repetitions. If, in the 1-1 case where

sures the intersection between the induced ang, - 5, an induced cluster is not mapped, we de-

gold entries of each item. Therefore, the set uniofjne F;, = 0. A definition of the measure using

operation is not needed for that case, since wheg reverse mapping (i.e., froffi to K) would have

an item appears in two induced clusters that argsed a weighted average with weights proportional
mapped to the same gold cluster, ft8; is in-  to the gold classes’ sizes.

creased only by 1. _ , .
A fund tal tity f luster-b d | “Hence, we have six type level measures: Macrol (which
undamental quantity for cluster-based eva “is equal to MacroC), Microl, and MicroC, each of which in

uation is the intersection between each induceéwvo versions, M-1 and 1-1.

=Y JAinh(By)| =IM

oM,

_ 2R;P;
K] Fj

= RBAE



The definition ofh causes a similar computa- tags set excluding punctuatin
tional difficulty as in the M-1 item-based mea- Punctuation. Punctuation marks occupy a
sures. Consequently, we apply a hill climbinglarge volume of the corpus tokens (12.4% in our
algorithm similar to the one described in Sec-experimental corpus), and are easy to cluster.
tion 4.1. Clustering punctuation marks thus greatly inflates

The 1-1 mapping is computed using the saméaoken level results. To study the relationship be-
bipartite graph method described in Section 4.1tween type and token level evaluations in a fo-
The graph’s vertices correspond to gold and incused manner, we excluded punctuation from the
duced clusters and an edge’s weight is the F-scorevaluation (they are still used during training, so
between the class and cluster corresponding to italgorithms that rely on them are not harmed).
vertices times the cluster’s weight(/N*). Number of Induced Clusters. The number

of gold POS tags in WSJ is 45, of which 11 are
5 Evaluation of POS Induction Models punctuation marks. Therefore, for the ARR10 and
larkO3 models, 34 clusters were induced. For
JO8 we received the output with 45 clusters. The
MM models of GVG09 determine the number
of clusters automatically (resulting in 47, 91 and
192 clusters, see below). For GGO07, our com-
5.1 Experimental Setup puting resources did not enable us to induce 45
clusters and we therefore used®1Dur focus in

) . ) this paper is to study the type vs. token distinction
\évg?(;heé?”ivggggoielzoggngégseng ?(tjal., rather than to provide a full scope comparison be-

) ar (Clark, ), (Goldwa- tween algorithms, for which more clustering sizes
ter and Griffiths, 2007), GJO8 (Gao and JohnsonWoulol need to be examined

2008), and GVGO09 (Van Gael et al., 2009) (three Configurations. We ran the ARR10 tagger

models). Additional recent good results for Va”'with the configuration detailed in (Abend et al.,

ous varlgnts of the F.)OS mdug:non proble'm are de_%010). For Clark03, we ran higseyessenmorph
scribed in e.g., (Smith and Eisner, 2004; Graca e 7 . )
al., 2009). model 10 times (using an unknown words thresh-

Clarko3 and ARRLO are Monosemous algo-OId of 5) and report the average score for_ each
. . ) measure. The models of GVGO09 were run in the
rithms, allowing a single cluster for each word

. three configurations reported in their paper: one
type. The other algorithms are polysemous. The.)Gvith a Dirichlet process prior and fixed parame-

perform'se'quence labeling Where each tOkeh I?ers, another with a Pittman-Yore prior with fixed
tagged in its context, and different tokens (in-

) garameters, and a third with a Dirichlet process
stances) of the same type (word form) may receive . . :
. prior with parameters learnt from the data. All five
different tags.

. models were run in an optimal configuration.
Data Set. All models were tested on sections

) . Wi in h f Goldwater an rif-
221 of the PTB-WSJ, which consists of 39832, ¢ obtained the code of Goldwater and G
. fiths’ BHMM model and ran it for 10K iterations
sentences, 950028 tokens and 39546 unique types. . . .
" “Wwith an annealing technique for parameter estima-
Of the tokens, 832629 (87.6%) are not punctuation). L
marks tion. That was the best parameter estimation tech-

. . nique available to us. This is the first time that this
Evaluation Measures. Type level evaluation

L model is evaluated on such a large experimental
used the measures Macrol (which is equal tocorpus and it performed well under these condi-
MacroC), Microl and MicroC both with greedy tions ’

1-1 and M-1 mappings as described in Section 4. The output of the model of GJO8 was sent to

The type level gold (induced) entry is defined to
be the set of all gold (induced) clusters with which!YS PY the authors. The model was run on sec-

It appears. _ _ SWe use all WSJ tokens in the training stage, but omit
For the token level evaluation, six measures ar@unctuation marks during evaluation.

- . 6 0 .
( ) y stances and more than 99% of the word types in the WSJ

mappings, NVI, V, H(@K) and H(K|C), usinge gold standard tagging.
as the logarithm’s base. We use the full WSJ POS “www.cs.rhul.ac.uk/home/alexc/RHUL/Downloads.html

As a detailed case study for the ideas presente;é
in this paper, we apply the various measures fo
the POS induction task, using seven leading PO
induction algorithms.

POS Induction Algorithms. We experimented



tions 2-21 of the WSJ-PTB using significantly measure this model is the best and in the type level
inferior computing resources compared to thoseMicrol and Macrol 1-1 measures it is the second
used for producing the results reported in theirbest.

paper. While this model cannot be compared to

the aforementioned six models due to the Suboptil_\/lonosemous vs. polysemous algorithms. The

mal configuration, we evaluate its output using ourlabl,'[e shO\I/;/s _that thtetARRlodn:okdeI ?chlleveslthe
measures to get a broader variety of experimenté?es results in most ype and token level evalua-
results. tion measures. The fact that this monosemous al-
gorithm outperforms the polysemous ones, even
52 Results and Discussion ip a type level evaluation, may seem strange at
first sight but can be explained as follows. Pol-
: - ?/éemous tokens account for almost 60% of the
els under all evaluation measures (six token Ievecorpus (565K out of 950K), so we could expect
six type level). What is important here to note 4 3 monosemous algorithm should do badly in
are the differences between type and token level 1, an_jevel evaluation. However, for most of the
_evaluatlons_ for the_algorlthms. _We are ma'r_"ypolysemous tokens the polysemy is only weakly
interested in two things: (1) seeing how relatlveIoresent in the corpdsso it is hard to detect even

rankipgs change in the two evaluatioq types, thu?or polysemous algorithms. Regarding types, pol-
showing that the two types are not highly corre-

o '="ysemous types constitute only 16.6% of the cor-
lated and are both useful; and (2) insights game%

{ o\ 7 us types, so a monosemous algorithm which is
by using a type level evaluation in addition to thequite good in assigning types to clusters has a good
usual token level one.

chance of beating polysemous algorithms in a type
Note that the table should not be used to deducgye| evaluation.

which algorithm is the ‘best’ for the task, even ac-  Hence. monosemous POS induction algorithms

cording to a single evaluation type. This is be-gre not at such a great disadvantage relative to pol-

cause, as explained above, the algorithms do ngisemous ones. This observation, which was fully

induce the same number of clusters and this affects, stivated by our type level case study, might be

their results. used to guide future work on POS induction, and

Results indicate that type level evaluation re-t thys serves as another demonstration for the util-
veals aspects of the clustering quality that are nogy of type level evaluation.

expressed in the token level. For the Clark03
model the disparity is most apparent. While inHill climbing algorithm.  For the type level
the token level it performs very well (better than measures with greedy M-1 mapping, we used the
the p0|ysem0us a|gorithms for the 1-1,V and NVI hIII—CIImbIng algorithm described in Section 4.
token level measures), in the type level it is theRecall that the mapping to which our algorithm
second worst in the item-based 1-1 scores and tHeonverges depends on its random initialization.
worst in the M-1 scores. We therefore ran the algorithm with 10 differ-
Here we have a clear demonstration of the valu&nt random initializations and report the obtained
of type level evaluation. The Clark03 algorithm Maximum for Macrol, Microl and MicroC in Ta-

is assessed as excellent using token level evalu&le 1. The different initializations caused very lit-
tion (second only to ARR10 in M-1, 1-1, V and tle fluctuation: not more than 1% in the 9 (7) best

NVI), and only a type level one shows its rela- funs for the item-based (MicroC) measures. We
tively poor type performance. Although readerstake this result as an indication that the obtained
may think that this is natural due to the algorithm'sMaximum is a good approximation of the global
monosemous nature, this is not the case, since tfgaximum. _ _
monosemous ARR10 generally ranked first in the VVe tried to improve the algorithm by selecting
type level measures (more on this below). an intelligent initialization heuristic. We used the
The disparity is also observed for polysemousM-1 mapping obtained by mapping each induced
algorithms. The GG07 model's token level score<cluster to the gold class with which it has the high-

are mediocre, while in the type level MicroC 1-1  soniy ahout 27% of the tokens are instances of words that
- are polysemous but not weakly polysemous (we call a word

8We would like to thank all authors for sending us the weakly polysemolismore than 95% of its instances (tokens)
data. are tagged by the same tag).

Table 1 presents the scores of the compared mo



Token Level Evaluation Type Level Evaluation

Macrol Microl MicroC
M-1 1-1 NVI Vv H(CIK) | HKIC) || M-1 | 1-1 M-1 | 1-1 M-1 | 1-1
ARR10 0.675| 0.588| 0.809 | 0.608 | 1.041 | 1.22 0.579| 0.444| 0.596 | 0.455| 0.624 | 0.403
Clark03 0.65 | 0.484| 0.887 | 0.586| 1.04 1.441 0.396 | 0.301| 0.384| 0.288 | 0.463 | 0.347
GGO07 0.5 0.415| 0.989| 0.479| 1.523 | 1.241 0.497| 0.405| 0.461| 0.398 | 0.563 | 0.445
GVGO09(1) | 0.51 | 0.444| 1.033| 0.477| 1.471 | 1.409 0.513| 0.354| 0.436| 0.352| 0.486| 0.33
GVGO09(2) | 0.591| 0.484| 0.998| 0.529| 1.221 | 1.564 0.637| 0.369| 0.52 | 0.373| 0.548| 0.32
GVG09(3) | 0.668| 0.368| 1.132| 0.534| 0.978 | 2.18 0.736| 0.280| 0.558| 0.276 | 0.565 | 0.199

[GJO8* | 0.605] 0.383] 1.09 | 0.506] 1.231 | 1.818 || 0.467] 0.298] 0.446] 0.311] 0.561] 0.291 |

Table 1: Token level (left columns) and type level (right columns) redoltsseven POS induction

algorithms (rows) (see text for details). Token and type level perfocmane weakly correlated and
complement each other as evaluation measures. ARR10, a monosemottisralgdelds the best results
in most measures. (GJ08* results are different from those reportee iorigiinal paper because it was
run with weaker computing resources than those used there.)

est weight edge in the bipartite graph. Recall fronthat if | A;| + |h(B;)| (which equals A;| + | B;| un-
Section 4.1 that this is a reasonable approximatioder a 1-1 mapping) is constant for all word types,
of the greedy M-1 mapping. Again, we ran it for then a clustering will score equally on both 1-1
the three type level measures for 10 times with dype measures. Indeed, in our experimental cor-
random update order on the induced clusters. Thipus 83.4% of the word types have one POS tag,
had only a minor effect on the final scores. 12.5% have 2, 3.1% have 3 and only 1% of the
words have more. Thereforg4,| is roughly con-

Number of clusters. Previous work (Relc_hart stant. The ARR10 and Clark03 models assign a
and Rappoport, 2009) demonstrated that in data .

) ) word type to a single cluster. For the other models,
sets where a relatively small fraction of the gold

) . the number of clusters per word type is generall
classes covers most of the items, it is reasonable P yp g y

to choose this number to be the number of induce imilar to that of the gold standard. Consequently,

. . B;| is roughly constant as well, which explains
clusters. In our experimental data set, this numbey, "' .~ . .
the similar behavior of the two measures.

(the ‘prominent cluster number’) is around 17 (see Note that for other clustering taskd;| may not

Section 5.1). Up to this number, increasing the : .
- I necessarily be constant, so the Macrol and Microl
number of clusters is likely to have a positive ef-

fect on token level M-1, 1-1, H(®), and H(KIC) scores are not likely to be as similar under the 1-1
) mapping.

scores. Inducing a larger number of clusters, how-

ever, is likely to positively affect M-1 and H(€) 6 Summary

but to have a negative effect on 1-1 and H{X _ _
This tendency is reflected in Table 1. For the'We discussed type level evaluation for polysemous

GGO7 model the number of induced clusters, 17¢lUstering, presented new mapping-based evalu-
approximates the number of prominent cluster§tion measures, and applied them to the evalua-
and is lower than the number of induced clus-tion of POS induction algorithms, demonstrating
ters of the other models. This is reflected bythat type level measures provide value beyond the
its low token level M-1 and H((K) performance Common token level ones.

and its high quality H(KC) and NVI token level ~ e hope that type level evaluation in general
scores. The GVG (1)-(3) models induced 47, 912nd the proposed measures in particular will be
and 192 clusters respectively. This might explainSed in the future for evaluating clustering perfor-
the high token level M-1 and H(&) performance Mance in NLP tasks.

of GVG(3), as well as its high M-1 type level

performance, compared to its mediocre scores iﬁeferences

other measures. . o .
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