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1 Introduction

The notion of non-malleable cryptography, is an extension of semantically secure cryptog-
raphy. Informally, in the context of encryption the additional requirement is that given the
ciphertext it is impossible to generate a different ciphertext so that the respective plain-
texts are related. For example, consider the problem of contract bidding: Municipality M
has voted to construct a new elementary school, has chosen a design, and advertises in the
appropriate trade journals, inviting construction companies to bid for the contract. The
advertisement contains a public key F to be used for encrypting bids, and a FAX number to
which encrypted bids should be sent. Company A places its bid of $1,500,000 by FAXing
E(15,000,000) to the published number over an insecure line. Intuitively, the public-key
cryptosystem is malleable if, having access to F(15,000,000), Company B is more likely to
generate a bid E(f) such that 5 < 15,000,000 than Company B would be able to do without
the ciphertext. Note that Company B need not be able to decrypt the bid of Company A
in order to consistently just underbid. In this paper we describe a non-malleable public-key
cryptosystem that prevents such underbidding. Our system does not even require Com-
pany A to know of the existence of Company B. It also does not require the municipality
M to know of A or B before the companies bid, nor does it require A or B to have any kind
of public key. The system remains non-malleable even under a very strong type of chosen
ciphertext attack in which the attacker knows the ciphertext she wishes to break (or maul)
and can query the decryption oracle on any ciphertext other than the target.

A well-established, albeit implicit, notion of non-malleability is existential unforgeability
of signature schemes [45]. Informally, a signature scheme is existentially unforgeable if, given
access to ((mqy,S(my1)),. .., (mg,S(myg)), where S(m;) denotes a signature on message m;,
the adversary cannot construct a single valid (m,S(m)) pair for any new message m —
even a nonsense message or a function of my,...,mg. Thus, existential unforgeability for
signature schemes is the “moral equivalent” of non-malleability for cryptography. We do
not construct signature schemes in this paper. However, we introduce the related notion
of public-key authentication and present a simple method of constructing a provably secure
public-key authentication scheme based on any non-malleable public-key cryptosystem!.

Non-malleability is also important in private-key cryptography. Many common proto-
cols, such as Kerberos or the Andrew Secure Handshake, use private key encryption as a
sort of authentication mechanism: parties A and B share a key K4p. A sends to B the
encryption of a nonce N under K 4p, and the protocol requires B to respond with the en-
cryption under K p of f(N), where f is some simple function such as f(z) =z — 1. The
unproved and unstated assumption (see, e.g. [16]) is that seeing K4p(N) doesn’t help an
imposter falsely claiming to be B to compute K p(f(N)). As we shall see, this is precisely
the guarantee provided by non-malleability.

Non-malleability is a desirable property in many cryptographic primitives other than
encryption. For example, suppose Researcher A has obtained a proof that P # NP and
wishes to communicate this fact to Professor B. Suppose that, to protect herself, A proves
her claim to B in a zero-knowledge fashion. Is zero-knowledge sufficient protection? Pro-
fessor B may try to steal credit for this result by calling eminent Professor E and acting
as a transparent prover. Any questions posed by Professor E to Professor B are relayed by

'For more on existentially unforgeable signature schemes see [27, 45, 60].



the latter to A, and A’s answers to Professor B are then relayed in turn to Professor E.
We solve this problem with a non-malleable zero-knowledge proof of knowledge. Researcher
A will get proper credit even without knowing of the existence of Professor E, and even if
Professor E is (initially) unaware of Researcher A.

Our work on non-malleability was inspired by early attempts to solve the distributed
coin flipping problem. Although ¢+ 1 rounds are necessary for solving Byzantine agreement
in the presence of ¢ faulty processors [33], in the presence of a global source of randomness
the problem can be solved in constant expected time [62]. Thus, in the mid-1980’s several
attempts were made to construct a global coin by combining the individual sources of
randomness available to each of the participants in the system. At a very high level, the
original attempts involved commitment to coins by all processors, followed by a revelation
of the committed values. The idea was that the global coin would be the exclusive-or
(or some other function) of the individual committed values. Disregarding the question of
how to force faulty processors to reveal their committed values, the original attempts erred
because secrecy was confused with independence. In other words, the issue was malleability:
even though the faulty processors could not know the committed values of the non-faulty
processors, they could potentially force a desired outcome by arranging to commit to a
specific function of these (unknown) values.

As the examples show, secrecy does not imply independence. The goal of non-malleable
cryptography is to force this implication.

1.1 Description of Principal Results

Non-Malleable Public Key Cryptography

Goldwasser and Micali define a cryptosystem to be semantically secure if anything com-
putable about the cleartext from the ciphertext is computable without the ciphertext [43].
This powerful type of security may be insufficient in the context of a distributed system, in
which the mutual independence of messages sent by distinct parties often plays a critical
role. For example, a semantically secure cryptosystem may not solve the contract bidding
problem. Informally, a cryptosystem is non-malleable if the ciphertext doesn’t help: given
the ciphertext it is no easier to generate a different ciphertext so that the respective plain-
texts are related than it is to do so without access to the ciphertext. In other words, a
system is non-malleable if, for every relation R, given a ciphertext E(«), one cannot gener-
ate a different ciphertext F/(/3) such that R(«, ) holds any more easily than can be done
without access to E(a)?. We present public-key cryptosystem that is non-malleable even
against what we call a chosen ciphertext attack in the post-processing mode (defined infor-
mally in Section 2.1 and formally in Section 3). Since non-malleability is an extension of
semantic security, this yields the first public-key cryptosystem that is semantically secure
against this strong type of chosen ciphertext attack?.

Our cryptosystem does not assume a trusted center, nor does it assume that any given
collection of users knows the identities of other users in the system. In contrast, all other

2Clearly, there are certain kinds of relations R that we cannot rule out. For example, if R(a,3) holds
precisely when 8 € E(«) then from E(«) it is trivial to compute 3, and hence E(f8), such that R(«a,f) is
satisfied. For formal definitions and specifications see Section 2.

8For this type of attack it turns out that semantic and non-malleable security are equivalent, which is
not the case for weaker attacks. See Section 3.4.2.



research touching on this problem of which we are aware requires at least one of these
assumptions (e.g., [20, 21, 63]).

Non-Malleable String Commitment

A second important scenario for non-malleability is string commitment. Let A and B
run a string commitment protocol. Assume that A is non-faulty, and that A commits to the
string . Assume that, concurrently, C' and D are also running a commitment protocol in
which C' commits to a string 8. If B and C are both faulty, then even though neither of these
players knows «, it is conceivable that S may depend on «. The goal of a non-malleable
string commitment scheme is to prevent this.

We present a non-malleable string commitment scheme with the property that if the
players have names (from a possibly unbounded universe), then for all polynomial-time
computable relations R our scheme ensures that C' is no more likely to be able to arrange
that R(a, ) holds than it could do without access to the (A, B) interaction. Again, the
scheme works even if A is unaware of the existence of C' and D. If the players are anonymous,
or the names they claim cannot be verified, then again if 5 # « then the two strings are no
more likely to be related by R.

Intuitively, it is sufficient to require that that C' know the value to which it is committing
in order to guarantee that « and f are unrelated. To see this, suppose C' knows 8 and
C' also knows that R(«, ) holds. Then C knows “something about” «, thus violating
the semantic security of the (A, B) string commitment. Proving possession of knowledge
requires specifying a knowledge extractor, which, given the internal state of C', outputs 5.
In our case, the extractor has access to the (A, B) interaction, but it cannot rewind A.
Otherwise it would only be a proof that someone (perhaps A) knows 3, but not necessarily
that C' does.

Non-Malleable Zero-Knowledge Protocols

Using non-malleable string commitment as a building block, we can convert any zero-
knowledge interaction into a non-malleable one. In particular we obtain non-malleable zero-
knowledge proofs of possession of knowledge, in the sense of Feige, Fiat, and Shamir [31].
Zero-knowledge protocols [44, 40] may compose in an unexpectedly malleable fashion. A
classic example is the so-called “man-in-the-middle” attack (also known as the “intruder-in-
the-middle,” “Mafia scam,” and “chess-masters problem”) [24] on an identification scheme,
similar in spirit to the transparent intermediary problem described above. Let A and D be
non-faulty parties, and let B and C be cooperating faulty parties (they could even be the
same party). Consider two zero-knowledge interactive proof systems, in one of which A is
proving to B knowledge of some string «, and in the other C is proving to D knowledge of
some string 8. The two proof systems may be operating concurrently; since B and C are
cooperating the executions of the (A, B) and (C, D) proof systems may not be independent.
Intuitively, non-malleability says that if C' can prove knowledge of 8 to D while A proves
knowledge of a to B, then C' could prove knowledge of 8 without access to the (A, B)
interaction. The construction in Section 5 yields a non-malleable scheme for zero-knowledge
proof of possession of knowledge.



1.2 Some Technical Remarks

Non-Malleability in Context

In the scenarios we have been describing, there are (at least) two protocol executions in-
volved: the (A, B) interaction and the (C, D) interaction. Even if both pairs of players are,
say, running string commitment protocols, the protocols need not be the same. Similar ob-
servations apply to the cases of non-malleable public-key cryptosystems and non-malleable
zero-knowledge proofs of knowledge. Thus non-malleability of a protocol really only makes
sense with respect to another protocol. All our non-malleable protocols are non-malleable
with respect to themselves. A more general result is mentioned briefly in Section 5.

Identities

One delicate issue is the question of identities. Let « and  be as above. If the players
have names, then our commitment and zero-knowledge interaction protocols guarantee that
B is independent of . The names may come from an unbounded universe. Note that
there are many possibilities for names: timestamps, locations, message histories, and so
on. If the players are anonymous, or the names they claim cannot be verified, then it is
impossible to solve the transparent prover problem described earlier. However, the faulty
prover must be completely transparent: if 8 # « then the two strings are unrelated by any
relation R. In particular, recall the scenario described above in which (relatively unknown)
Researcher A seeks credit for the P # NP result and at the same time needs protection
against the transparent prover attack. Instead of proving knowledge of a witness s that
P # NP, Researcher A can prove knowledge of a statement & = Ao s. In this case the only
dependent statement provable by Professor B is «, which contains the name A. Note that
we do not assume any type of authenticated channels.
Computational complexity assumptions

We assume the existence of trapdoor functions in constructing our public-key cryptosys-
tems. The string commitment protocols and the compiler for zero-knowledge interactions
require only one-way functions.

2 Definitions and System Model

Since non-malleability is a concept of interest in at least the three contexts of encryption,
bit/string commitment, and zero-knowledge proofs, we give a single general definition that
applies to all of these. Thus, when we speak of a primitive P we can instantiate any of these
three primitives. We start in Section 2.1 by providing definitions for the primitives, as well
as for some of the tools we use. Our presentation of the notion of security is non-standard
and we call it semantic security with respect to relations. In Theorem 2.2 we show that our
version is equivalent to the “traditional” definition We prefer this version for several reasons:

e It provides a uniform way of treating the security of all the primitives, i.e., the defi-
nition of zero-knowledge and semantic security do not seem different.

e It generalizes to the non-malleable case in a natural way, whereas the usual notion of
semantic security (provably) does not.



In Section 2.2 we provide the definition of non-malleable security. In Section 2.3 we de-
fine the system model which is most relevant to those primitives which involve a lot of
interaction.

The following definitions and notation are common to all the sections. We use X € B
to mean that X is chosen from B at random. If B is a set then X is simply chosen uniformly
at random from the elements of B. If B is a distribution, then X €p B means that X is
chosen according to B from the support of B.

An interactive protocol (A, B)[c, a, b] is an ordered pair of polynomial time probabilistic
algorithms A and B to be run on a pair of interactive Turing machines with common input
¢ and with private inputs a and b, respectively, where any of a, b, ¢ might be null.

We distinguish between the algorithm A and the agent ¢(A) that executes it. We also
use 1(A) to denote a faulty agent that is “supposed” to be running A (that is, that the
non-faulty participants expect it to be running A), but has deviated from the protocol.
Thus A is the protocol, and 1(A) is the player.

2.1 Definitions of Primitives

In this section we review the definitions from the literature of probabilistic public key
cryptosystems, string commitment, zero-knowledge interaction and non-interactive zero-
knowledge proof systems, all of which are used as primitives in our constructions. As
mentioned above, we provide a unifying treatment of the security of all the primitives.

Probabilistic Public Key Encryption
A probabilistic public key encryption scheme (see [43]) consists of:

e GP, the key generator. A probabilistic machine that on unary input 1", where n is
the security parameter, outputs a pair of strings (e, d) (e is the public key and d is the
secret key)

e F, the encryption function, gets three inputs: the public key e, b € {0,1}, and a
random string r of length p(n), for some polynomial p. F.(b,r) is computable in
polynomial time.

e D, the decryption function, gets two inputs: ¢ which is a ciphertext and the private
key d which was produced by GP. Dy(c) is computable in expected polynomial time.

e if GP outputs (e,d), then

Vb € {0,1} Vr € {0,1}*™) Dy(E.(b,7)) = b

e The system has the property of indistinguishability: for all polynomial time machines
M, for all ¢ > 0 dn, s.t. for n > n,

|Prob[M (e, E.(0,7)) = 1] — Prob[M (e, E.(1,7)) = 1]| < %

where the probability is taken over the coin flips of GP, M and the choice of r.



This definition is for bit encryption and the existence of such a method suffices for our
constructions. To encrypt longer messages one can concatenate several bit encryptions
or use some other method. The definition of indistinguishability in this case becomes that
with overwhelming probability over choice of encryption keys e, M cannot find two messages
(mg, mq) for which it can distinguish with polynomial advantage between encryptions of my
and m;. Formally:

Definition 2.1 Let (GP, E, D) be a probabilistic public-key cryptosystem. We say the that
system has the property of indistinguishability of encryptions if for all pairs of probabilistic
polynomial time machines (F,T), for all ¢ > 0 3In. s.t. for n > n,

1 1
Pr(|Pr[T (e,mg, m1, Ee(mo,r)) = 1] — Pr[T (e,mo, m1, Ee(m1,7)) = 1]| > ﬁ] <

where the external probability is over the choice of e and the coin flips of F (which gets e
as input), and each internal probability is taken the coin flips of T and the choice of r.

For implementations of probabilistic encryption see [2, 14, 39, 52, 66]. In particular,
such schemes can be constructed from any trapdoor permutation.

When describing the security of a cryptosystem, one must define what the attack is
and what it means to break the system. The traditional notion of breaking (since [43])
has been a violation of semantic security or, equivalently, a violation of indistinguishability.
This work introduces the notion of non-malleable security, and a break will be a violation
of non-malleability. We return to this in Section 2.2. We consider three types of attacks
against a cryptosystem:

e Chosen plaintext. This is the weakest form of attack that makes any sense against a
public-key cryptosystem. The attacker can (trivially) see a ciphertext of any plaintext
message (because she can use the public encryption key to encrypt).

e Chosen ciphertext in the sense of [61], sometimes called lunch-break or lunch-time
attacks in the literature; we prefer the term chosen ciphertext attack in the pre-
processing mode, abbreviated CCA-pre. Here, the adversary may access a decryption
oracle any polynomial (in the security parameter) number of times. Then the oracle
is removed and a “challenge” ciphertext is given to the attacker.

e Chosen ciphertext in the sense of Rackoff and Simon [63]; we prefer the term chosen
ciphertext attack in the post-processing mode, abbreviated CCA-post. This is defined
formally in Section 3. The key point is that the attacker sees the challenge ciphertext
before the oracle is removed, and can ask the oracle to decrypt any (possibly invalid)
ciphertext except the challenge.

Our version of semantic security under chosen plaintext attack is the following: Let R be
a relation computable in probabilistic polynomial time. We define two probabilities. Let A
be an adversary that gets a key e and produces a distribution M on messages of length £(n)
by producing a description (including a specific time bound) of a polynomial time machine
that generates M. A is then given a challenge consisting of a ciphertext ¢ € E.(m),
where m €r M and E.(m) denotes the set {E.(m,r) s.t. |r| = p(n)}. In addition, A



receives a “hint” (or history) about m in the form of hist(m), where hist is a polynomially
computable function. A then produces a string 5. We assume that the prefix of B is the
description of M. A is considered to have succeeded with respect to R if R(m, ). Since [
contains a description of M, R is aware of M and may decide to accept or reject based on
its description. This rules out achieving “success” by choosing a trivial distribution. Let
(A, R) be the probability that A succeeds with respect to R. The probability is over the
choice of e, the coin-flips of A, and the choice of m, so in particular it is also over the choice
of M.

For the second probability, we have an adversary simulator A’ who will not have access
to the encryption. On input e, A’ chooses a distribution M'. Choose an m € M’ and give
hist(m) to A’. A’ produces 3. As above, A’ is considered to have succeeded with respect
to R if R(m, (). Let 7'(A’, R) be the probability that A" succeeds.

Remark 2.1 1. In their seminal paper on probabilistic encryption, Goldwasser and Micali
separate the power of the adversary into two parts: a message finder that, intuitively, tries
to find a pair of messages on which the cryptosystem is weak, and the line tapper, that
tries to guess which of the two chosen messages is encrypted by a given ciphertext [}3].
Accordingly, we have let A choose the message space M, on which it will be tested. By
letting A" choose M' (rather than “inheriting” M from A), we are letting the simulator
completely simulate the behavior of the adversary, so in this sense our definition is natural.
A second reason for this choice is discussed in Section 3.4.3.

2. As noted above, the fact that the description of M or M’ is given explicitly to R
prevents A’ from choosing a trivial distribution, e.g. a singleton, since R can “rule out”
such M’s.

Definition 2.2 A scheme S for public-key cryptosystems is semantically secure with re-
spect to relations under chosen plaintext attack if for every probabilistic polynomial time
adversary A as above there exists a probabilistic polynomial time adversary simulator A’
such that for every relation R(m, ) and function hist(m), both computable in probabilistic
polynomial time, |w(A, R) — n'(A', R) | is subpolynomial.

In this definition, the chosen plaintext attack is implicit in the definition of A. This is a
convention that will be followed throughout the paper.

Note the differences between our definition of semantic security with respect to relations
and the original definition of semantic security [43]: in the original definition the challenge
was to compute f(z) given F(z), where the function f is not necessarily even recursive. In
contrast, here R is a relation and it is probabilistic polynomial time computable. Neverthe-
less, the two definitions are equivalent, as we prove in Theorem 2.2%.

We prove the following theorem for the case of chosen plaintext attacks; the proof carries
over to chosen ciphertext attacks in both the pre- and post-processing modes.

“The literature shows for 3 versions of semantic security and 3 corresponding versions of indistinguisha-
bility that each version of semantic security is equivalent to the corresponding version of indistinguishabil-
ity [64, 36]. We are using a fourth version of indistinguishability — a uniform version of the non-uniform
one-pass version in [54]. Equivalence of this definition to a corresponding version of semantic security has
not been proved in the literature, but we conjecture it holds.



Theorem 2.2 A public key cryptosystem is semantically secure with respect to relations
under chosen plaintext attack if and only if it has the indistinguishability property.

Proof. We first show that if the cryptosystem has the indistinguishability property, then it
is semantically secure with respect to relations. Consider the following three experiments.
Choose an encryption key e using GP. Given the public-key e, A produces a distribution
M. Sample a1, a9 Eg M.
In the first experiment, A is given hist(a;) and F.(«1) and produces ;. By definition,
for any relation R
Pr[R(a1, 1) holds] = w(A, R).

In the second experiment, A is given hist(c;) and E.(a2) and produces 2. Let
x = Pr[R(aq, B2) holds].

Note that if R is probabilistic polynomial time computable and Pr[R(«a1, 1) holds]
differs polynomially from Pr[R(«,32) holds|, where the probabilities are taken over the
coin flips by R, and the random bits used in generating the encryptions (but not over the
choice of e, M, and a7 and as), then we can create a distinguisher for encryptions of a;
and a9 under encryption key e, so in particular, given e, we have found a pair of messages
whose encryptions are easy to distinguish. Thus, with overwhelming probability over choice
of e, M, and ay, ag, the individual probabilities (with fixed e) are close. It follows that the
probabilities 7 (A, R) and x (which are aggregated over choice of e) are also close.

For the third experiment, consider an A’ that, on input e, simulates A on e to get a
distribution M. It gives M as the distribution on which it should be tested. A’ is then given
hist(«) for an o €g M. A’ generates o' € g M and gives to the simulated A the hint hist(«)
and the encryption E.(a’). The simulated A responds with some 3, which is then output
by A’. Note that 7'(A’, R) = x. Thus, if the cryptosystem has the indistinguishability
property then | (A, R) — n'(A’, R)| is subpolynomial, so the cryptosystem is semantically
secure with respect to relations.

We now argue that if a cryptosystem does not have the indistinguishability property
then it is not semantically secure with respect to relations. If a system does not have the
indistinguishability property then there exists a polynomial time machine M that given
the public-key can find two message (mg,m1) for which it can distinguish encryptions of
my from encryptions of my. The specification of A is as follows: Given a key e, A runs
M to obtain (mg, m1). Let M = {mg, m1}, where my and m; each has probability 1/2,
be the message distribution on which A is to be tested. The function hist is the trivial
hist(z) = 1 for all z. Given an encryption v € E.(m), where m €g M, A uses M to guess
the value of m and outputs 3, the resulting guess plus the description of M. The relation
R that witnesses the fact that the cryptosystem is not semantically secure with respect to
relations is equality plus a test of consistency with M. Recall that the description of M
is provided explicitly and hence R can also check that M is of the right form. Since M
is by assumption a distinguisher, having access to the ciphertext v gives A a polynomial
advantage at succeeding with respect to R over any A’ that does not have access to the
ciphertext (which has probability 1/2). O



Thus, a scheme is semantically secure with respect to relations if and only if it has the
indistinguishability property. It follows from the results in [36, 43, 54] that the notions of
of (traditional) semantic security, indistinguishability and semantically secure with respect
to relations are all equivalent.

String Commitment

The literature discusses two types of bit or string commitment: computational and infor-
mation theoretic. These terms describe the type of secrecy of the committed values offered
by the scheme. In computational bit commitment there is only one possible way of opening
the commitment. Such a scheme is designed to be secure against a probabilistic polynomial
time receiver and an arbitrarily powerful sender. In information theoretic commitment it is
possible to open the commitment in two ways, but the assumed computational boundedness
of the sender prevents him from finding the second way. Such a scheme is designed to be
secure against an arbitrarily powerful receiver and a probabilistic polynomial time prover.
We restrict our attention to computational string commitment.

A string commitment protocol between sender A and receiver B consists of two stages:

e The commit stage: A has a string a to which she wishes to commit to B. She and B
exchange messages. At the end of this stage B has some information that represents
«, but B should gain no information on the value of & from the messages exchanged
during this stage.

e The reveal stage: at the end of this stage B knows a. There should be only one string
that A can reveal.

The two requirements of a string commitment protocol are binding and secrecy. Binding
means that following the commit stage the A can reveal at most one string. In our scenario
we require the binding to be unconditional, but probabilistic: with high probability over
B’s coin-flips, following the commit stage there is at most one string that B accepts (as the
value committed) in the reveal stage.

The type of secrecy we require is semantic security. We specify what this means, using
the notions of security with respect to relations (however, as above, it is equivalent to the
“traditional” way of defining semantic security). Let A be an adversary that produces a
distribution M on strings of length #(n) computable in probabilistic polynomial time. A
string @ €r M is chosen and A receives hist(«), where hist is a probabilistic polynomial
time computable function. The commitment protocol is executed where 9)(A) follows the
protocol and ¢(B) is controlled by A. The adversary A then produces a string 5. We
assume that the prefix of § is the description of M.

A is considered to have succeeded with respect to R if R(«, ). Let w(A, R) be the
probability that A succeeds with respect to R. The probability is over the coin-flips of A,
and the choice of a.

For the second probability, we have an adversary simulator A" who will not have access
to the (¢(A), 1 (B)) execution of the string commitment protocol. A’ chooses a distribution
M'. An o €p M’ and hist(«) is given to A’. A’ produces . As above, A’ is considered to
have succeeded with respect to R if R(«a, 3).



Definition 2.3 A commitment scheme is semantically secure with respect to relations if
for every probabilistic polynomial time adversary A as above there exists a probabilistic
polynomial time adversary simulator A such that for every probabilistic polynomial time
computable relation R(«, ) and function hist(m) computable in probabilistic polynomial
time |m(A,R) — 7' (A", R)| is subpolynomial.

Zero-Knowledge Interaction We next present a generalization of a (uniform) zero-
knowledge interactive proof of language membership.

Let (A, B)[a, b] be an interactive protocol, where (a,b) belongs to a set I of legal input
pairs to A and B. (In the special case of zero-knowledge proofs of language membership,
the valid pairs (a,b) have the property that the prefixes of ¢ and b are the common input
x € L.) Roughly speaking, we say that (A, B) is zero-knowledge with respect to B if for
every polynomial time bounded B’, there exists a simulator that can produce conversations
between (A, B') which are indistinguishable from the actual (A, B') conversation. More
accurately, and pursuing the terminology of this section, let A be an adversary that controls
(B). A chooses a joint distribution D, consistent with II, on [a,b], and then a pair [a, ]
is drawn according to D, 1(A) gets a, ¥(B) gets b, and the interaction proceeds by 1 (A)
following the protocol (while ¢(B)’s actions are controlled by A). The result is a transcript
T of the conversation between 9(A) and ¢(B). A also produces a string o which contains
as a prefix the description of D (and may contain such information as the state of ¢(B) at
the end of the protocol).

Let R be a ternary relation. A is considered to have succeeded with respect to R if
R([a,b],T,0). Let w(A, R) be the probability that A succeeds with respect to R. The
probability is over the coin-flips of A, the coin-flips of ¥/(A) and the choice of [a, b].

On the other hand, we have A’ that selects D' consistent with II. A pair [a,b] is then
drawn according to D' and A’ receives b. A’ produces a transcript 7" and a string o’. A’
is considered to have succeeded with respect to R if R([a,b],T",0"). Let m(A’, R) be the
probability that A succeeds with respect to R. The probability is over the coin-flips of A’
and the choice of [a, b].

Definition 2.4 A protocol (A, B) is zero-knowledge with respect B if for all probabilistic
polynomial time adversaries A as above there exists a probabilistic polynomial time adversary
simulator A" such that for every relation R computable in probabilistic polynomial time
| (A, R) — 7' (A, R)| is subpolynomial.

(If (a,b) ¢ II then zero-knowledge is not ensured, but other requirements may hold, de-
pending on the protocol.)

Two interesting examples of zero-knowledge interaction are proof of language member-
ship [44, 40] and proofs of knowledge [31]. Both of these can be based on the existence of
string commitment protocols.

Non-Interactive Zero-Knowledge Proof Systems

An important tool in the construction of our public-key cryptosystem are non-interactive
zero-knowledge proof systems. The following explanation is taken almost verbatim from
[61]: A (single theorem) non-interactive proof system for a language L allows one party
P to prove membership in L to another party V for any x € L. P and V initially share
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a string U of length polynomial in the security parameter n. To prove membership of a
string = in L, = L N{0,1}", P sends a message p as a proof of membership. V decides
whether to accept or to reject the proof. Non-interactive zero knowledge proof systems were
introduced in [12, 13]. A non-interactive zero-knowledge scheme for proving membership
in any language in NP which may be based on any trapdoor permutation is described in
[32]. Recently, Kilian and Petrank [49, 50] found more efficient implementations of such
schemes. Their scheme is for the circuit satisfiability problem. Let &k be a security parameter.
Assuming a trapdoor permutation on k bits, the length of a proof of a satisfiable circuit of
size L (and the size of the shared random string) is O(Lk?).

The shared string U is generated according to some distribution U(n) that can be
generated by a probabilistic polynomial time machine. (In all the examples we know of it is
the uniform distribution on strings of length polynomial in n and &, where the polynomial
depends on the particular protocol, although this is not required for our scheme.)

Let L be in NP. For any =z € L let WL(z) = {z| z is a witness for z} be the set of
strings that witness the membership of z in L. For the proof system to be of any use, P
must be able to operate in polynomial time if it is given a witness z € W L(z). We call
this the tractability assumption for P. In general z is not available to V.

Let P(z,z,U) be the distribution of the proofs generated by P on input x, witness z,
and shared string U. Suppose that P sends V a proof p when the shared random string is
U. Then the pair (U,p) is called the conversation. Any x € L and z € W L(x) induces a
probability distribution CON'V(z, z) on conversations (U, p) where U € U is a shared string
and p € P(z,2,U) is a proof.

For the system to be zero-knowledge, there must exist a simulator Sim which, on input
x, generates a conversation (U,p). Let Sim(x) be the distribution on the conversations
that Sim generates on input z, let Simy(xz) = Simy be the distribution on the U part
of the conversation, and let Simp(x) be the distribution on the proof component. In the
definitions of [13, 32] the simulator has two steps: it first outputs Simy without knowing
x, and then, given z, it outputs Simp(z). (This requirement, that the simulator not know
the theorem when producing U, is not essential for our purposes, however, for convenience
our proof in Section 3.3 does assume that the simulator is of this nature.)

Let

ACCEPT (U, z) = {p|V accepts on input U, z, p}

and let
REJECT(U,x) = {p|V rejects on input U, z, p}.

The following is the definition of non-interactive proof systems of [12], modified to
incorporate the tractability of P. The uniformity conditions of the system are adopted
from Goldreich [35].

Definition 2.5 A triple (P,V,U), where P is a probabilistic polynomial time machine, V is
a polynomial time machine, and U is a polynomial time sampleable probability distribution
s a non-interactive zero-knowledge proof system for the language L € NP if:

1. Completeness (if x € L then P generates a proof that V accepts): For all x € Ly, for
all z € WL(x), with overwhelming probability for U €gr U(n) and p € P(z,z,U),
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p € ACCEPT(U,z). The probability is over the choice of the shared string U and the
internal coin flips of P.

2. Soundness (if y & L then no prover can generate a proof thatV accepts): For ally & Ly,
with overwhelming probability over U € U(n) for allp € {0,1}*, p € REJECT(U,y).
The probability is over the choices of the shared string U.

3. Zero-knowledge: there is a probabilistic polynomial time machine Sim which is a sim-
ulator for the system: For all probabilistic polynomsial time machines C, if C generates
z € L and z € WL(z) then,

|ProbC(w) = 1|lw €x Sim(z)] — ProbC(w) = 1jw €z CONV(z, 2)]| < Iﬁ

for all polynomials p and sufficiently large n.

In the construction of the non-malleable cryptosystem in Section 3, non-interactive zero-
knowledge proof systems are used to prove that encryptions generated under independent
keys correspond to the same plaintext. This is similar to their application in [61].

2.2 Definitions Specific to Non-Malleability

In any interactive protocol (A, B) for primitive P, party A has an intended value. In the
case of encryption it is the value encrypted in 1(B)’s public key; in string commitment it is
the string to which 9(A) commits; in a zero-knowledge proof it is the theorem being proved
interactively. The intended value is a generalization of the notion of an input. Indeed, when
1(A) is non-faulty we may refer to the intended value as an input to A. However, we do not
know how to define the input to a faulty processor that can, for example, refuse to commit
to it. In this case we may need to substitute in a default value. The term intended value
covers cases like this.

We sometimes refer to ¢(A) as the Sender and to (B) as the Receiver. We use the
verb to send to mean, as appropriate, to send an encrypted message, to commit to, and to
prove knowledge of. Intuitively, in each of these cases information is being transmitted, or
sent, from the Sender to the Receiver.

Interactive protocols (A, B), including the simple sending of an encrypted message,
are executed in a context, and the participants have access to the history preceding the
protocol execution. When 1(A) has intended value «, we assume both parties have access
to hist(«), intuitively, information about the history that leads to 1)(A) running the protocol
with intended value a.

In some cases we also assume an underlying probability distribution D on intended
values, to which both parties have access (that is, from which they can sample in polynomial
time).

An adversarially coordinated system of interactive protocols

((4,B),(C, D), A:¢(B) < ¢(C))

consists of two interactive protocols (A, B) and (C, D), an adversary A controlling the
agents ¢(B) and 9 (C), the communication between these agents, and the times at which
all agents take steps.

12



Generally, we are interested in the situation in which A = C' and B = D, for example,
when both interactive protocols are the same bit commitment protocol. Thus, for the
remainder of the paper, unless otherwise specified, (A, B) = (C, D), but 9(A),¥(B),4(C)
and (D) are all distinct.

Consider the adversarially coordinated system ((A, B),(C, D), A: ¢(B) < ¢%(C)). In
an execution of this system, 1)(A) sends an intended value a € D in its conversation with
(B), and 9(C) sends an intended value f in its conversation with ¢(D). If (C) fails to
do so — e.g., fails to respond to a query, is caught cheating, or produces invalid ciphertexts
— we take 8 to be all zeros.

We treat “copying” slightly differently in the context of encryption, which is non-
interactive, and in the commitment and zero-knowledge settings, which are interactive.
In particular, our results are stronger for encryption, since our construction rules out any-
thing but exact copying of the ciphertext. Thus, seeing the ciphertext does not help the
adversary to construct a different encryption of the same message. In the interactive setting
we only ensure that if a # 3, then the two values are unrelated. We use identities (chosen
by the users and not enforced provided by any authentication mechanism) to force o and
to be different. In particular, if the adversary wishes to be a transparent intermediary, then
we do not bother to rule out the case in which the adversary commits to or proves exactly
the same string as A does, even if it gives a different commitment (to the same value) or a
different proof (of the same theorem).

We now formally define the non-malleability guarantee in the interactive setting. A re-
lation approzimator R is a probabilistic polynomial time Turing machine taking two inputs®
and producing as output either zero or one. The purpose of the relation approximator is
to measure the correlation between « and . That is, R measures how well the adversary
manages to make [ depend on «. In the interactive settings, we restrict our attention to
the special class of relation approximators which on input pairs of the form (z,z) always
output zero. The intuition here is that we cannot rule out copying, but intuitively this is
not the cases in which the adversary “succeeds.”

When we discuss composition (or parallel execution) we will extend the definition so
that the first input is actually a vector V of length k. The intuition here is that C' may
have access to several interactions with, and values sent by, non-faulty players. In that case,
the approximator must output zero on inputs (V,y) in which y is either a component of
V', corresponding to the case in which ¢ (C') sends the same value as one of the non-faulty
players (in the case of encryption this is ruled out by the definition of the adversary).

Given a probability distribution on the pair of inputs, there is an a priori probability,
taken over the choice of intended values and the coin flips of R, that R will output one. In
order to measure the correlation between o and 8 we must compare R’s behavior on input
pairs («, 3) generated as described above to its behavior on pairs («,<y), where «y is sent
without access to the sending of a (although as always we assume that (C) has access to
D and hist(«)).

An adversary simulator for a commitment (zero-knowledge proof of knowledge) scheme
S with input distribution D and polynomial time computable function hist, is a probabilistic
polynomial time algorithm that, given hist, hist(«), and D, produces an intended value 7.

®Sometimes we will need R to take three inputs, the third being in plaintext.
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Consider an adversarially coordinated system of interactive protocols ((4, B), (C, D), A :
P(B) <> (C)) where (A, B) and (C, D) are both instances of S, and II is the set of legal
input pairs to the two parties executing S. 4 may choose any probabilistic polynomial time
sampleable distribution D on the joint distribution to all four players,

$(A), $(B), 9 (C), (D),

respectively, where the inputs to 1(A) and ¢ (B) are consistent with II. Let (o, z,y,d) €r D.
For any relation approximator R, let w(A, R) denote the probability, taken over all choices
of ¥(A), ¥(D), A, and R, that A, given z, y, hist(«), and participation in the (A, B)
execution in which 1(A) sends «, causes 1(C) to send S in the (C, D) execution, such that
R(a, B) outputs 1, under some specified form of attack (Since 1(C) is under control of the
adversary there is no reason that § should equal y.)

Similarly, for an adversary simulator A’ choosing a joint distribution D’ for all four
players where the inputs to 1(A) and (B) are consistent with II, for (o, z,y,d) €r D', let
A’ have access to z, y, and hist(a), and let A" send 7. Let ©'(A’, R) denote the probability,
taken over the the choices made of A’, and the choices of R, that R(«,vy) = 1.

Definition 2.6 A scheme S for a primitive P is non-malleable with respect to itself under
a given type of attack G, if for all adversarially coordinated systems ((A, B), (C,D), A :
PY(B) + ¢(C)) where (A, B) = (C,D) = S, where A mounts an attack of type G, there exists
an adversary simulator A such that for all relation approzimators R, |w(A, R)—n'(A’, R) |
is subpolynomial®.

This definition is applicable to all three primitives. As stated above, the precise attack
against the system is crucial to the definition of .4 and hence of w(A, R). In particular, when
we discuss encryption in Section 3, we will specify the nature of the adversary precisely.
The definition makes sense for all types of attack, with the appropriate choices of 7(A, R).
Finally, we must specify the “unit” which we are trying to protect, i.e., is it a single
encryption or several.

Remark 2.3 There are three possible interpretations of Definition 2.6, according to the
running time of A’:

1. A’ runs in fized polynomial time; this is strict non-malleability (we usually drop the
appellation “strict”).

2. A" runs in expected polynomial time; in accordance with Goldreich’s tazonomy for
zero-knowledge, we call this liberal [35] non-malleability.

3. For every e there exists A’ running in time polynomial in n and e~' such that
| (A, R) — 7' (A", R)| < e; this is e-malleability, this time in analogy to e-knowledge
([42]; see also [29]).

Our public-key cryptosystem is strictly non-malleable. M. Fischlin and R. Fischlin have
pointed out that we do not prove strict non-malleability in our commitment scheme; however,
we prove both liberal non-malleability and e-malleability.

SIn the previous version of this paper the order of quantifiers was YRV.A3.4’, yielding a possibly weaker
definition. However, all the constructions in our work satisfy the stronger order of quantifiers given here.
Now all our definitions share a common order of quantifiers.
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2.3 System Model

We assume a completely asynchronous model of computing. For simplicity, we assume
FIFO communication links between processors (if the links are not FIFO then this can be
simulated using sequence numbers). We do not assume authenticated channels.

We do not assume the usual model of a fixed number of mutually aware processors.
Rather, we assume a more general model in which a given party does not know which other
parties are currently using the system. For example, consider a number of interconnected
computers. A user (“agent”) can log into any machine and communicate with a user on
an adjacent machine, without knowing whether a given third machine is actually in use at
all, or if the second and third machines are currently in communication with each other. In
addition, the user does not know the set of potential other users, nor need it know anything
about the network topology.

Thus, we do not assume a given user knows the identities of the other users of the
system. On the other hand, our protocols may make heavy use of user identities. One
difficulty is that in general, one user may be able to impersonate another. There are several
ways of avoiding this. For example, Rackoff and Simon [63] propose a model in which each
sender possesses a secret associated with a publicly known identifying key issued by a trusted
center.

In the scenario of interconnected computers described above, an identity could be com-
posed of the computer serial number and a timestamp, possibly with the addition of the
claimed name of the user. In the absence of some way of verifying claimed identities, exact
copying of the pair, claimed identity and text, cannot be avoided, but we rule out essentially
all other types of dependence between intended values.

We can therefore assume that the intended value « sent by 9 (A) contains as its first
component a user identity, which may or may not be verifiable. Fix a scheme S and an
adversarially coordinated system of interactive protocols ((A, B), (C, D), A : ¢(B) < %(C))
where (A, B) and (C, D) are both instances of S, and let o and 3 be sent by 9(A) and ¢(C),
respectively. Then, whether or not the identities can be checked, if § is non-malleable and
a # [, then ’s dependence on « is limited to dependence on hist(«). In addition, if the
identities can be checked then a # f.

In order to avoid assumptions about the lengths of intended values sent, we assume the
space of legal values is prefix-free.

3 Non-Malleable Public Key Cryptosystems

A public-key cryptosystem allows one participant, the owner, to publish a public key, keeping
secret a corresponding private key. Any user that knows the public key can use it to send
messages to the owner; no one but the owner should be able to read them. In this section
we show how to construct non-malleable public key cryptosystems. The definitions apply,
mutatis mutandi, to private key cryptosystems. As was done by [45] in 1984 in the context
of digital signatures, when defining the security of a cryptosystem one must specify (a) the
type of attack considered and (b) what it means to break the cryptosystem.

The cryptosystem we construct is secure against chosen ciphertext attacks. In fact it
is secure against a more severe attack suggested by Rackoff and Simon [63] and which
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we call chosen ciphertext in the post-processing mode (CCA-post): The attacker knows
the ciphertext she wishes to crack while she is allowed to experiment with the decryption
mechanism. She is allowed to feed it with any ciphertext she wishes, except for the exact
one she is interested in. Thus the attacker is like a student who steals a test and can
ask the professor any question, except the ones on the test. This is the first public key
cryptosystem to be provably secure against such attacks. Indeed, (plain) RSA [64] and the
implementation of probabilistic encryption based on quadratic residuousity [43] are insecure
against a chosen ciphertext postprocessing attack.

Malleability, as defined in Section 2.2 specifies what it means to “break” the cryptosys-
tem. Informally, given a relation R and a ciphertext of a message «, the attacker A is
considered successful if it creates a ciphertext of 5 such that R(a, ) = 1. The cryptosys-
tem is non-malleable under a given attack G if for every 4 mounting an attack of type G,
there is an A’ that, without access to the ciphertext of «, succeeds with similar probability
as A in creating a ciphertext of  such that R(«,y) = 1. Given the notion of semantic
security with respect to relations and Theorem 2.2, non-malleability is clearly an extension
of semantic security. See Section 3.4.2 for the relationship between non-malleability and
the type of attack.

We now define precisely the power of the CCA-post adversary A. Let R be a polynomial
time computable relation. Let m be the security parameter. A receives the public key
e €g GP(n) and can adaptively choose a sequence of ciphertexts ¢y, ¢z, . ... On each of them
A receives the corresponding plaintext. It then produces a distribution M on messages of
length £(n), for some polynomial £, by giving the polynomial time machine that can generate
this distribution. A then receives as a challenge a ciphertext ¢ €g F.(m) where m €p M,
together with some “side-information” about m in the form of hist(m), where hist is some
polynomially computable function. A4 then engages in a second sequence of adaptively
choosing ciphertexts ¢}, ch, . ... The only restriction is that ¢ # ¢}, ¢}, .... At the end of the
process, A produces a polynomially bounded length vector of ciphertexts (f1, fo,...) not
containing the challenge ciphertext ¢, with each f; € F(3;), and a cleartext string o which
we assume contains a description of M”. Let 8 = (1, B2,...). A is considered to have
succeeded with respect to R if R(m,3,0). (We separate 8 from o because the goal of the
adversary is to produce encryptions of the elements in 8.) Let (A, R) be the probability
that A succeeds where the probability is over the coin-flips of the key generator, A, M and
the encryption of m.

Let A’ be an adversary simulator that does not have access to the encryptions or to
the decryptions, but can pick the distribution M’. On input e, A’ produces M’ and then
m €r M’ is chosen. A’ receives hist(m) and without the benefit of the chosen ciphertext
attack should produce a vector of ciphertexts (f1, fo,...), where each f; € F.(5;), and a
string o containing M’. Let 5 = (B1, B2,...). As above, A’ is considered to have succeeded
with respect to R if R(m,(,0). Let 7'(A’, R) be the probability that A’ succeeds where
the probability is over the coin-flips of the key generator, A’ and M’.

"In the public key context ¢ serves no purpose other than providing the description of M as an input
to R, since in this situation from any plaintexts p € M that are part of o it is always possible to compute
an encryption of o, so we could always add an additional f; € E.(p) to our vector of ciphertexts. However,
we introduce the possibility of including plaintexts p in o so that the definition can apply to symmetric, or
private key, encryption.
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Note that A’ has a lot less power than A: not only does it not have access to the
ciphertext encrypting «, but it cannot perform any type of chosen ciphertext attack, even
in choosing the distribution M’. Note also that as in the definition of semantically secure
with respect to relations, the fact that M is given to R prevents A’ from choosing trivial
distributions.

Definition 3.1 A scheme S for public-key cryptosystems is non-malleable with respect to
chosen ciphertext attacks in the post-processing mode, if for all probabilistic polynomial time
adversaries A as above there exists a probabilistic polynomial time adversary simulator A’
such that for all relations R(«, ,0) computable in probabilistic polynomial time, | (A, R)—
7' (A", R)| is subpolynomial.

Note that the definition does not require R to be restricted (to a relation approximator) as
described in Section 2.2.

An illustration of the power of non-malleability under CCA-post attacks is presented in
Section 3.5, where we discuss an extremely simple protocol for public key authentication, a
relaxation of digital signatures that permits an authenticator A to authenticate messages
m, but in which the authentication needn’t (and perhaps shouldn’t!) be verifiable by a
third party. The protocol requires a non-malleable public key cryptosystem, and is simply
incorrect if the cryptosystem is malleable.

Simple Ideas That Do Not Work

A number of simple candidates for non-malleable cryptosystems come to mind. Let
FE be a cryptosystem semantically secure against a chosen ciphertext attack. Assume for
concreteness that A wishes to send the message m and B wishes to send “1 + the value
sent by A”. That is, B, without knowing m, wishes to send m + 1.

One “solution” would be to append to F(m) a non-interactive zero-knowledge proof of
knowledge of the encrypted value m. The problem with this approach is that the proof of
knowledge may itself be malleable: conceivably, given F(m) and a proof of knowledge of
m, it may be possible to generate FE(m + 1) and a proof of knowledge of m + 1.

Another frequently suggested approach is to sign each message. Thus, to send a message
m, party A sends (E(m),Sa(E(m))), where S, is a private signing algorithm for which a
public verification key is known. There are two problems with this: first, it assumes that
senders as well as receivers have public keys; second, it misses the point: if F is malleable
then B, seeing (E(m), Sa(F(m))), simply ignores the second component, generates E(m +
1), say, based on E(m), and sends (E(m + 1), Sp(E(m + 1))).

Yet another suggestion is to put the signature inside the ciphertext: A sends F(m o
Sa(m)). This still suffers from the assumption that A has a public verification key corre-
sponding to S4, and it again misses the point: B is not trying to produce E(m +1,S4(m+
1)), but only E(m + 10 Sg(m + 1)). The unforgeability properties of S4 say absolutely
nothing about B’s ability to produce an encryption of Sg(m + 1).

One more suggestion is to append an ID to each message and send, for example, E(A o
m). Again, we do not know how to show that, based only on the semantic security of F
against chosen ciphertext attack, seeing E(A om) does not help B to produce E(B om) or
E(Bom+1).
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Overview of the scheme

The public key consists of 3 parts: a collection of n pairs of keys (€?, el), i =1,...,n,
a random string U for providing zero-knowledge proofs of consistency in a non-interactive
proof system and a universal one-way hash function. U is uniformly distributed because it
is to the advantage of its creator (the verifier in the non-interactive zero-knowledge proof)
that it should be so.

The process of encryption consists of 4 parts.

1. An “identity” is chosen for the message by creating a public signature verification key;
the corresponding signing key is kept private. The signing key is only used to sign a
single message, so a one-time signature scheme may be used here.

2. The message is encrypted under several encryption keys chosen from (e?, e, i=1,...,n,

(3
as a function of the public signature verification key chosen in the first step. The se-

lection is made by hashing the public signature verification key using the universal
one-way hash function that is part of the public key for the cryptosystem.

3. A (non-interactive zero-knowledge) proof of consistency is provided, showing that the
value encrypted under all the selected keys is the same one.

4. The encryptions and the proof are signed using the private signing key chosen in the
first step.

When a message is decrypted, the signature verification key comprising the identity is
used to verify that the signature is valid; the proof of consistency of encryptions is also
checked. Only then is the (now well defined) plaintext extracted.

The hash function is used only for efficiency; without it we would have to increase n,
the number of encryption key pairs (¢?, e!) in the public key for the cryptosystem. Thus,
intuitively, the hash function plays the a role analogous to the usual role of a hash function in
an implementation of a signature scheme; however, we use it to hash the public verification
key of the (freshly chosen) signature scheme, rather than the text of a message to be signed.
As we will see, the critical point is that every identity chosen yields a distinct set of keys
under which consistent encryptions must be created.

The idea of encrypting under several keys and proving consistency appeared in [61].
However, in [61] every plaintext bit is encrypted under every public key (there are only
two), while here each identity for a message yields a distinct set of keys. Thus, the main
changes here to the scheme in [61] are

1. the addition of an “identity” for each message to select a distinct set of keys;
2. using a (hash of the) freshly-chosen public signature verification key as the identity;

3. signing the encryptions under the selected keys and the proof of consistency with the
(secret) signing key that corresponds to the identity.

To develop some intuition for how the identities are used, consider a hypothetical situation
in which all they keys in the pairs (e?, e%), 1 = 1,...,n, are completely malleable, and
suppose further that given a NIZK that one set of encryptions is consistent, it is easy to
generate a proof of the true theorem that a set of related encryptions is also consistent.
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If (as is the case in [61], where only two keys are used) we were not to use signatures
and we were not to select a new set of keys for each message (so that an encryption E(m)
would be a consistent set of encryptions under all the € and e}, i = 1,...,n, and a proof of
consistency), then given an encryption E(m), creating an encryption, say of 2m, would be
easy: use the assumed malleability of all the e?(m) to create encryptions e?(2m), and use
the assumed malleability of the NIZK to prove (the true theorem) that the resulting set of
encryptions is consistent. We combat this hypothetical attack (which we cannot rule out!)
using the identities, as we now describe.

Consider an attacker that has an encryption o €g F/(m) under our scheme, and wishes to
create from it an encryption 5 € E(2m). Suppose, as above, that the encryption functions ef
are completely malleable and that the NIZKs are malleable in the sense previously described.
In our case, the attacker must create an identity for the message. Remember that an identity
is the public verification key for a signature scheme. The attacker can choose to use the same
identity (signature verification key) as in « or a different one. If the identity is preserved,
this means that the attacker is using the public signature verification key appearing in «, for
which he does not know the corresponding signature key. In this case, while the attacker
can exploit the malleability of the ef and the NIZK, in the last step of the encryption
process he must forge a signature on the new encryptions and new proof of consistency
— which he cannot do because he does not know the private signing key. On the other
hand, if the attacker selects a new identity for 3, different than the one used in «, then,
since the identity selects the keys ef under which the message is encrypted, for some i the
attacker will have in a only e?(m) (and he will not have e} ~°(m)), but he will need to create
e}*b(Zm), so there will be no way to exploit the malleability of the encryption schemes e?
and e}. To summarize, non-malleability comes from the fact that the choice of the subsets
and the signature each authenticate the other.

As in [61], anyone can decide whether a ciphertext is legitimate, i.e., decrypts to some
meaningful message, by verifying the NIZK proof of consistency and checking, using the
signature verification key that comprises its identity, that the message is correctly signed.
Thus, no information is ever gained during an attack when the decrypting mechanism rejects
an invalid ciphertext.

Intuitively, given E(«), an attacker with access to a decryption mechanism can gen-
erate a legal ciphertext E(f3) and learn (3, but non-malleability implies that an adversary
simulator can generate F/(vy) without access to E(«), where v is distributed essentially as
B is distributed. Thus f is unrelated to a (non-malleability), and learning /3 yields no
information about « (semantic security).

3.1 The Tools

We require a probabilistic public key cryptosystem that is semantically secure (see Sec-
tion 2.1). Recall that GP denotes the key generator, e and d denote the public and private
keys, respectively, and E and D denote, respectively, the encryption and decryption algo-
rithms.

For public keys e, eq, ... e, a consistent encryption is a string w that is equal to

Eel (ba Tl)a Ee2 (ba 7’2), s 7Een (ba Tn)
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for some b € {0,1} and ry,79,...,r, € {0,1}?(™ for some polynomial p. The language
of consistent encryptions L = {ey, e, ... ey, w|w is a consistent encryption} is in NP. For a
given word w = Ee, (b,71), Fe,(b,72), ..., Ee, (b,y,), the sequence r1, ro,...,7, is a witness
for its membership in L. In order to prove consistency we need a non-interactive zero-
knowledge proof system for L, as defined in Section 2.1. Recall that the system consists
of a prover, a verifier, and a common random string U known to both the prover and the
verifier and that such a scheme can be based on any trapdoor permutation. Note that the
length of U depends only on the security parameter and not on the number of messages to
be encrypted over the lifetime of this public key.

The cryptosystem uses a universal family of one-way hash functions as defined in [60].
This is a family of functions H such that for any z and a randomly chosen h € H the
problem of finding y # z such that h(y) = h(z) is intractable. The family we need should
compress from any polynomial in n bits to n bits. In [65] such families are constructed from
any one-way function.

Finally we need a one-time signature scheme, which consists of G.S, the scheme generator
that outputs F', the public-key of the signature scheme, and P the private key. Using the
private key P any message can be signed in such a way that anyone knowing F' can verify the
signature and no one who does not know the private key P can generate a valid signature
on any message except the one signed. For exact definition and history see [5, 45, 60].

3.2 The Non-Malleable Public-Key Encryption Scheme

We are now ready to present the scheme S.

Key generation.

1. Run GP(1™), the probabilistic encryption key generator, 2n times. Denote the output
by
(e, d1), (e1,d), (€3, d3), (€3, d3), .. (e, dp), (e, dy)-
2. Generate random reference string U.
3. Generate h € H.

The public encryption key is

0o 1 0 1 0o 1
(h,ei,er,e5,€5,...,e,,€.,U)

and the corresponding private decryption key is (d9,d},dS,d}, ... d°, dl).

2'ny 'n

Encryption. To encrypt a message m = by, b, ... bg:

1. Run GS(1™), the signature key generator. Let F' be the public signature key and P
be the private signature key.

2. Compute A(F'). Denote the output by the n-bit string vivsy ... v,.

3. Foreach 1 <<k
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(a) For1<j<n
i. generate random ry; €p {0, 1}P()
ii. generate ¢jj = E v; (bi, i), an encryption of b; using egj .
i

(b) Run P on ¢; = e{',ex?,..., e ci1, Cia, . . . Cin, With witness 71,742,...,7, and
string U to get a proof p; that ¢; € L.

4. Create a signature s of the sequence (c1,p1), (c2,p2), --.,(Ck, k) using the private
signature key P.

The encrypted message is
<F7 8, (Clapl)v (02,]72) s (ckapk)»

Decryption. To decrypt a ciphertext (F,s, (c1,p1), (¢2,02),-- -, (Ck,Pk)):
1. Verify that s is a signature of (c¢q,p1),(c2, p2),. .., (ck, px) With public signature key F'.
2. For all 1 <1 < k verify that ¢; is consistent by running the verifier V on ¢;, p;, U.
3. Compute h(F). Denote the output by vivy...vy,.

4. If V accepts in all k£ cases, then for all 1 < i < k retrieve b; by decrypting using any
one of (di*,dy?,...,d"). Otherwise the output is null.

Note that, by the proof of consistency, the decryptions according to the different keys in
Step 4 are identical with overwhelming probability.

From this description it is clear that the generator and the encryption and decryption
mechanisms can be operated in polynomial time. Also if the decryption mechanism is given
a legitimate ciphertext and the right key it produces the message encrypted.

3.3 Non-Malleable Security Under CCA-Post Attack

We now prove the non-malleability of the public key encryption scheme & under a chosen
ciphertext post-processing attack. We define a related scheme S’ whose (malleable) semantic
security with respect to relations under chosen plaintext attack is straightforward. We
then argue that the semantic security of &’ under chosen plaintext attack implies the non-
malleability of S under chosen ciphertext post-processing attack.

The Cryptosystem S':

1. Run GP(1"), the probabilistic encryption key generator, n times. Denote the output
by
(61, dl)a (623 d2)a s (enadn)'

The public key is the n-tuple (eq,...,e,); the private key is the n-tuple (dy,...,d,).
2. To encrypt a message m = by, ba, ... by

3. For1<j<n
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e For1 <:i<k

(a) generate random r;; €g {0,1}P(")
(b) generate c;; = Ee,(b;,7j), an encryption of b; under public key e; using
random string r;;.

o Let ¢j = cij,¢2j,-..,ckj (cj is the jth encryption of m).
4. The encryption is the n-tuple (c1,co,...,¢p).

5. To decrypt an encryption (@i, ...,an), compute m; = Dy, () for 1 < j < n. If
mi = meo = ... = my then output m;; otherwise output “invalid encryption.”

Lemma 3.1 The public key encryption scheme S’ is semantically secure with respect to
relations under chosen plaintext attack. O

We will prove non-malleability of S by reduction to the semantic security of S’. To
this end, we define an adversary B that, on being given an encryption under §’, generates
an encryption under S. As above, we abuse notation slightly: given a public key F in &
(respectively, E' in S'), we let E(m) (respectively, E'(m)) denote the set of encryptions of
m obtained using the encryption algorithm for S (respectively, for ') with public key E
(respectively, E').

Notation. In the sequel, adversaries A and A’ are adversaries against the scheme S.

Adversaries B and B’ are adversaries against the system S'.
Procedure for B: Given a public key E' = (e1,...,e,) in S":
Preprocessing Phase:

1. Generate n new (e, d) pairs.

2. Run the simulator for the non-interactive zero-knowledge proof of consistency to gen-
erate a random string U (the simulator should be able to produce a proof of consistency
of n encryptions that will be given to it later on).

3. Choose a random hash function h € H.

4. Run GS(1") to obtain a signature scheme (F, P), where F is the public verification
key.

5. Compute h(F). Arrange the original n keys and the n new keys so that the keys
“chosen” by h(F) are the original n. Let E denote the resulting public key (instance
of S).

Simulation Phase:

1. Run A on input E. A adaptively produces a polynomial length sequence of encryptions
Z1,T9,.... For each z; produced by A, B verifies the signatures and the proofs of
consistency. If these verifications succeed, B decrypts x; by using one of the new
decryption keys generated in Preprocessing Step 1, and returns the plaintext to A.
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2. A produces a description of M, the distribution of messages it would like to attack.
B outputs M. We will show that the semantic security of S’ with respect to rela-
tions under chosen plaintext attack implies the non-malleability of & under chosen
ciphertext post-processing attack.

3. Bis given ¢ €g E'(m) and hist(m) for m € M. It produces a ciphertext ¢ € E(m)
using the simulator of Preprocessing Step 2 to obtain a (simulated) proof of consistency
and the private key P generated at Preprocessing Step 5 to obtain the signature.

4. Give A the ciphertext ¢ and hist(m). As in Simulation Step 1, A adaptively produces
a sequence of encryptions z, x5, ... and B verifies their validity, decrypts and returns
the plaintexts to A.

Extraction Phase:

A produces the vector of encryptions (E(81), E(B2),...) and a string o. B produces § =
(B1, P2, - ..) by decrypting each E(/3;) as in the simulation phase and outputs 8 and o. This
concludes the description of B.

Lemma 3.2 Let A be an adversary attacking the original scheme S. On input E' and
c €r E'(m), let E be generated by B as above, and let ¢ be the encryption of m under E
created by B in Simulation Step 3. Let ( # ¢ be any ciphertext under E, generated by A.
If the signatures in ¢ are valid (can be verified with the public signature verification key in
¢), then B can decrypt C.

Proof. Let F' be the public signature verification key in (. If F' # F, then by the
security of the universal one-way hash functions, h(F’) # h(F) (otherwise using A one
could break H). Thus, at least one of the encryption keys generated in Preprocessing
Step 1 of the procedure for B will be used in (. Since B generated this encryption key and
its corresponding decryption key, B can decrypt.

We now argue that F' # F (that is, that we must be in the previous case). Since A
has not seen F' or anything depending on F' during its chosen ciphertext attack in Step 1 of
the Simulation Phase, the probability that A uses F/ = F in a ciphertext during this step
is negligible. Suppose for the sake of contradiction that after it has seen F' in the target
ciphertext ¢, A uses F' = F in (. Then by the security of the signature scheme, only the
original ciphertexts and proofs of consistency (¢1,p1) ... (¢n,pn) from Preprocessing Step 2
and Simulation Step 3 can be signed; otherwise A could be used to break the signature
scheme. This forces { = ¢, contradicting the fact that { #¢. O

Note that in Step 3 of the Simulation Phase the vector ¢’ is a legitimate encryption under
E' and therefore is a vector of consistent encryptions, so the simulated non-interactive proof
of consistency is a proof of a true theorem. Note also that this is the only place in which a
proof is simulated by B. Thus, even though the shared random string is used to generate
many proofs of consistency during the lifetime of the public key, the zero-knowledge property
we will need for the proof is only for a single theorem, since the only simulated proof will
be on the target ciphertext.
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The next lemma says that, as in the Naor-Yung scheme, A cannot distinguish the
“instance” of S concocted by B from a real instance of S, so A is just as likely to break the
concocted instance.

For any probabilistic polynomial time relation R, let 7(B, R) denote the probability
that B, using A as described in the Simulation Phase, generates a vector of plaintexts
(B1, P2, ..) and a string o such that R(m, 3,0) holds, where 8 = (1, 52, ...). By choice of
B, m(B, R) is exactly the probability that 4 breaks S with respect to R in the Simulation
phase: A (interacting with B), generates o and a vector of encryptions (FE(f51), E(B2), - ..);
by Lemma 3.2, B can decrypt these values, and so outputs 3;, ¢ = 1,2, ..., together with o.

Lemma 3.3 For any probabilistic polynomial time relation R, let (B, R) denote the prob-
ability that B, using A as described in the Simulation Phase, generates a vector of plaintexts
(B1,P2,-..) and a string o such that R(m, 3,0) holds, where 8 = (p1,B2,...). Let (A, R)
denote the probability that A breaks a random instance of S with respect to R. Then (B, R)
and (A, R) are subpolynomially close.

Proof. As noted above, 7(B, R) is exactly the probability that A breaks S with respect
to R in the Simulation phase. The only difference between the instance of S generated by
B and an instance of S generated at random is in the reference string U and the proof of
consistency for the target ciphertext: in the former case these are produced by the simulator
(Steps 2 and 3 of the Simulation Phase) and in the latter case they are authentic. The
lemma therefore follows immediately from the definition of non-interactive zero knowledge
(Definition 2.5): any difference between the two probabilities can be translated into an
ability to distinguish a simulated proof from a true proof. O

Theorem 3.4 The public-key encryption scheme S is non-malleable against chosen cipher-
texts attacks in the post-processing mode.

Proof. Let A be any polynomially bounded adversary and assume for the sake of con-
tradiction that A and the probabilistic polynomial time computable relation R witness the
malleability of S under a chosen ciphertext post-processing attack. We will use the semantic
security of &’ with respect to relations to derive a contradiction by exhibiting an adversary
simulator A’ that, without access to the target ciphertext and without mounting any kind
of chosen ciphertext attack against S, does (negligibly close to) as well as A at breaking S
(in the malleability sense).

Let E' be an encryption key in 8’. Let B be as described above. B generates an
encryption key F in S, invokes A on F to obtain a message distribution M, and outputs
M. B is then given a ciphertext ¢ = E'(m), for m €r M, generates a ciphertext ¢ = E(m),
and presents F and ¢ to A. If A produces valid encryptions F(f;) such that E(3;) # E(m),
then by Lemma 3.2, B can extract the ;. Let 8 = (1, 2,...). Let R be any probabilistic
polynomial time computable relation. By Lemma 3.3, the probability that R(m, 3, ) holds
is subpolynomially close to (A, R).

Recall the definition of semantically secure with respect to relations: There exists a
procedure B’ that “does as well” as B at producing messages related to m, in the following
sense. On input (E',1™), B’ outputs a message distribution M'; m’ €p M' is selected, but
B’ is not given access to the a ciphertext for m/, just the hint hist(m’). B’ generates ', o’
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The definition of semantic security with respect to relations guarantees that for every B
there exists B’ such that |Pr[R(m, 3,0)] — Pr[R(m/, 5’,0")]| < v(n), where the probabilities
are over the choice of public key, the coin flips of B and B’ respectively, the choices of m
and m/, and the coin flips in creating the encryption of m. Note that we are re-randomizing
the public key: it is chosen afresh for each probability.

We use B’ to define the adversary simulator A’ whose existence is mandated by the
definition of non-malleability under chosen ciphertext post-processing. On input (£, 1"),
A’ ignores E and selects a public key for an instance E' of &’ (with security parameter
n). It then runs B’ on (E’,1") to select a message space M’. A’ outputs M’. A message
m’ €gr M’ is chosen, and A’ is given hist(m/'), which it forwards to B’. B’ outputs (8, 0’),
where 8 = (81,05,...) is a vector of plaintexts. A’ outputs the vector of encryptions
E(B) = (E(B)),E(B),...), together with o'.

Clearly 7'(A’', R) = «'(B', R), where the first term is the probability that A’ succeeds
at producing E(f',0') such that R(m/,',0') and the second term is the probability that
B’ succeeds at the same task.

By choice of B' |7'(B', R) — w(B, R)| is negligible. This, together with Lemma 3.3 and
the fact that «'(A’, R) = 7'(B’, R), implies that |7(A, R) — 7'(A’, R)| < v(n). Therefore
(A, R) cannot witness the malleability of S. O

Corollary 3.5 If there exists a public-key cryptosystem semantically secure against cho-
sen plaintext attack and if non-interactive zero-knowledge satisfying the requirements of
Definition 2.5 is possible, then there exists a non-malleable public-key cryptosystem secure
against chosen ciphertexts attacks in the post-processing mode. In particular, if trapdoor
permutations exist, then such cryptosystems exist.

An interesting open problem is whether one can rely on the existence of a public-key
cryptosystem semantically secure against chosen plaintext attacks alone to argue that non-
malleable public-key cryptosystems secure against chosen ciphertexts attacks in the postpro-
cessing mode exist. Two assumptions that are known to be sufficient for semantically secure
public-key cryptosystems secure against plaintext attacks, but where the existence of the
stronger kind of cryptosystems is not clear are the hardness of the Diffie-Hellman (search)
problem and the unique shortest vector problem (used in the Ajtai-Dwork cryptosystem

[1])-

3.4 Remarks
3.4.1 On Vectors of Encryptions

1. We have defined non-malleable public key encryptions to cover the case in which A
produces a vector of encryptions (F(f1),...,E(B,)), having been given access to only a
single E(«). It is natural to ask, what happens if A is given access to to encryptions of
multiple «’s, (FE(ay),...,FE(ay)). Security under this type of composition is, intuitively,
a sine qua non of encryption. A simple “hybrid” argument shows that any non-malleable
public key cryptosystem is secure in this sense: seeing the encryptions of multiple o’s does
not help the adversary to generate an encryption of even one related 5.

2) The computational difficulty of generating a single E(f) for a related g does not
imply the computational difficulty of generating a vector (F(f51),...,E(B,)) such that
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R(a, p1,...,0,) holds. We next describe a counter-example in the case of a chosen ci-
phertext pre-processing attack. Let E’ be a non-malleable cryptosystem under chosen
ciphertext pre-processing attack. Let E(m) be constructed as (Ef(mg), E](m1)), where
m = mgo @ mi. Given a ciphertext of this form, the adversary can construct two cipher-
texts: (Ey(mo), E1(0)) and (E((0), E1(m1)). The parity of the two decrypted values is:
(mo ®0) ® (0B m1) =mo®my =m. On the other hand, it can be shown from the non-
malleability of the E! that seeing F(m) is of no assistance in generating a single encryption
E(m') such that R(m,m’) .

3.4.2 Security Taxonomy and Comparisons

We have discussed two notions of breaking a cryptosystem, semantic security and non-
malleability, and three types of attacks:

e Chosen plaintext.
e Chosen ciphertext attack in the pre-processing mode (CCA-pre).
e Chosen ciphertext attack in the post-processing mode (CCA-post).

This yields six types of security and the question is whether they are all distinct and which
implications exist. Two immediate implications are (i) non-malleable security implies se-
mantic security under the same type of attack and (ii) security against chosen ciphertext
post-processing attacks implies security against chosen ciphertext attacks in the preprocess-
ing mode which in turn implies security against chosen plaintext attacks, using the same
notion of breaking the cryptosystem. We now explore other possibilities - the discussion is
summarized in summarized in Figure 1.

The first observation is that if a cryptosystem is semantically secure against chosen
ciphertext post-processing attacks, then it is also non-malleable against chosen ciphertext
post-processing attacks, since the power of the adversary allows it to decrypt whatever
ciphertext it generated. On the other hand, it is not difficult to start with a cryptosystem
that is secure against chosen ciphertext attack in the preprocessing mode and make it
only secure against a chosen plaintext attack (under any notion of breaking), as we now
explain. For the case of semantic security, simply add to the decryption mechanism the
instruction that on input all 0’s outputs the private-key. The case of non-malleable security
is more subtle. Choose a fixed random ciphertext ¢y, and instruct the decryption mechanism
to output the decryption key when presented with input c¢y. In addition, instruct the
decryption mechanism to output ¢y on input all 0’s.

There is a simple method for “removing” non-malleability without hurting semantic
security: starting with a cryptosystem that is non-malleable against chosen ciphertext pre-
processing attacks, one can construct a cryptosystem that is only semantically secure against
chosen ciphertext pre-processing attacks - add to each ciphertext a cleartext bit whose value
is Xor-ed with the first bit of the plaintext. Thus, given a ciphertext of a message m it
is easy to create a ciphertext of a message where the last bit is flipped, so the scheme is
malleable. However, the semantic security remains, as long as the adversary does not have
access to the challenge ciphertext while it can access the decryption box.
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Figure 1: Relationship between security notions.
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We do not know whether a scheme that is non-malleable against chosen ciphertext
pre-processingis also non-malleable against chosen ciphertext post-processing attack. We
conjecture that whenever deciding whether or not a string represents a legitimate ciphertext
(that could have been generated by any user) is easy (to someone not holding the private
key), non-malleability implies semantic security against a chosen ciphertext post-processing
attack. From the above discussion (summarized in Figure 1), we conclude that of the six
possibilities for security of a cryptosystem (combinations of the type of attack and notion
of breaking) we have that either four or five are distinct®.

Note that the type of combination to be used depends on the application. For instance,
for the bidding example given in the introduction, if the public-key is not going to be used
for bidding on more than a single contract, and assuming the bids are not secret after the
bids are opened, then the type of security needed is non-malleability against chosen plaintext
attacks. If the same public key is to be used for bidding on several contracts successively,
but the secrecy of non-winning bids need not be preserved, then non-malleability under
chosen ciphertext in the pre-processing mode is required. On the other hand, if the same
public key is to be used for bidding on several contracts, and the secrecy of non-winning
bids must be preserved, one should use a non-malleable cryptosystem secure against chosen
ciphertext attacks in the post-processing mode.

Finally one may wonder what is the “correct” description of the notion of breaking a
cryptosystem secure against chosen ciphertext post-processing attacks: semantic security
or non-malleable security, given their equivalence under this attack. We think it is more
helpful to think in terms of non-malleability, since the way to think about trying to break
a candidate system is to think of trying to maul the target ciphertext(s). This was done
(without the vocabulary of non-malleability) in the recent work Bleichenbacher [11] (see
Section 6).

3.4.3 On Allowing A’ to Choose M’

Having A’ choose M, rather than inheriting M’ = M from A, makes the adversary
simulator weaker: the real adversary A is allowed to mount a chosen-ciphertext attack
before choosing its target distribution M, while the adversary simulator A’ must choose
M’ without the benefit of such an attack. Since the adversary simulator is weaker, VAJA' ...
becomes a stronger requirement on the cryptosystem. Our cryptosystem satisfies this strong
requirement.

3.5 Public Key Authentication

In this section we informally describe a method for obtaining a public key authentication
scheme based on any non-malleable public key cryptosystem. Our goal is to demonstrate a
“real” protocol that allows cheating in case the public-key cryptosystem used is malleable.

In a public key authentication scheme, an authenticator A chooses a public key E. The
scheme permits A to authenticate a message m of her choice to a second party B. Similar
to a digital signature scheme, an authentication scheme can convince B that A is willing to

8For a very recent discussion of the relationship between these notions see Bellare et al. [3], where they
show that there are indeed five distinct possibilities.
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authenticate m. However, unlike the case with digital signatures, an authentication scheme
need not permit B to convince a third party that A has authenticated m.

Our notion of security is analogous to that of existential unforgeability under an adaptive
chosen plaintezt attack for signature schemes [45], where we must make sure to take care of
“man-in-the-middle” attacks. Let ((4, B),(C, D), A: ¢(B) < ¢(C)) be an adversarially
coordinated system in which (A, B) = (C, D) is a public key authentication protocol. We
assume that A is willing to authenticate any number of messages my,mo, ..., which may
be chosen adaptively by A. We say that A successfully attacks the scheme if 4)(C) (under
control of A and pretending to have A’s identity) succeeds in authenticating to D a message
m#Emg, t=1,2,....

Protocol P = (A, B) for A to Authenticate Message m to B:

A’s public key is E, chosen according to S, a non-malleable public key cryptosystem
secure against chosen ciphertext attacks in the postprocessing mode (e.g., the one from
Section 3.2).

1. A sends to B: “A wishes to authenticate m.” (This step is unnecessary if m has
previously been determined.)

2. B chooses r € {0,1}"™ and computes and sends the "query” v €r E(m or) to A.

3. A decrypts v and retrieves r and m. If the decryption is of the right format (i.e.,
the first component of the decrypted pair corresponds to the message that is to be
authenticated), then A sends r to B.

Lemma 3.6 Given an adversary B that can break the authentication protocol P with prob-
ability p, one can construct an adversary A for breaking the (presumed non-malleable)
encryption scheme E with probability at least p/p(n) —2~™ for some polynomial p.

Proof. The procedure for A to attack the cryptosystem is as follows. Assume A’s public
key is E and that the adversary 4 has access to a decryption box for E. Therefore A can
simulate the system ((A, B), (C, D), B:(B) + 9%(C)), where (A, B) = (C, D) = P. Note
that since this is a simulation, A can control the messages sent by (D) in the simulation.
Run the system ((A, B), (C, D), B:4(B) < 1(C)) until /(C), under control of B, is about
to authenticate to D a message m # m;, i = 1,2... not authenticated by A. (In case it
is not clear whether D accepts or not, then we just guess when this occurs; whence the
polynomial degradation of p.) The distribution M on messages that A will attempt to
maul is M, = {(m,r)|r €r {0,1}"}. Given ~y as the challenge ciphertext, A lets (D)
send the query <y in the simulation. Let 7’ be 1(C)’s reply. A outputs 6 €g E(mor’).

The distribution that B sees in the simulation of the adversarially coordinated system
((A,B),(C,D), B : ¢%(B) + (C)) is exactly as usual. Therefore by assumption the
probability of success in authenticating m is p, and with probability p the value 7’ is the
correct one. The relation that is violated is equality: 6 and  encrypt the same string,
whereas given the distribution M,, the probability of producing the correct r without
access to E(mor)is2™". O

This solution will be of practical use as soon as the current constructions of non-malleable
cryptosystems are improved to be more practical. The very recent construction of Cramer
and Shoup (see Section 6) makes this scheme very attractive.
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Remark 3.7 If the cryptosystem S is malleable, and in particular if given an encryption
of a message X or it is easy (possibly after mounting a CCA-post or other type of attack)
to generate an encryption of a message X or, where X' # X\ (many cryptosystems have
this property), then there is a simple attack on the protocol proposed: as before p(C) is
pretending to be (A). To forge an authentication of a message m, when D sends challenge
vy=mor, p(B) asks A to authenticate a message m' by sending the challenge v' = m' o r.
When A replies with r, 1¥(C') sends r to D, who will accept.

Remark 3.8 As mentioned above, this protocol provides a weaker form of authentication
than digital signatures (no third party verification). However, this can be viewed as a feature:
there may be situations in which a user does not wish to leave a trace of the messages the
user authenticated (“plausible deniability”). We do not know whether the protocol presented
is indeed zero-knowledge in this sense, i.e., that the receiver could have simulated the con-
versation alone (although it is almost surely not black-box zero knowledge [38]). By adding a
(malleable) proof of knowledge to the string r this can be ensured in the sequential case. We
do not know if the resulting zero-knowledge authentication protocol remains zero-knowledge
if many executions, with the same authenticator, execute concurrently. The straightforward
simulation fails. (See [51] for impossibility results for 4-round black-box concurrent zero-
knowledge protocols.) Very recently, an approach for achieving deniable authentication in
the concurrent setting based on timing constraints was suggested by Dwork, Naor and Sa-
hai, who also present several efficient protocols in the standard model (no timing) for the
sequential case.

3.6 Non-Malleable Encryption in Other Settings

In this section we briefly mention non-malleable encryption in two additional settings: pri-
vate key cryptography and interactive public key cryptography. In both cases we begin with
a known semantically secure system and add authentication to achieve non-malleability.
Private-key Encryption

As mentioned in the beginning of Section 3, the definition of non-malleable security is
applicable for private (or shared) key cryptography as well. For example, in their celebrated
paper on a logic of authentication [16], Burrows, Abadi, and Needham give the following
analysis of a scenario (the Needham-Schroeder authentication protocol) in which A and B
share a key K 2p. Party B chooses a nonce Ny, and sends an encryption of N, under K sp
to A. A then responds with an encryption of N — 1 under K4p in order for B

“... to be assured that A is present currently ... Almost any function of Ny
would do as long as B can distinguish his message from A’s — thus, subtraction
is used to indicate that the message is from A, rather than from B.”

The unproved and unstated assumption here is that K 4p provides non-malleable encryption;
malleability completely destroys their reasoning and their proof of security, even if there
adversary’s access to the system is very limited (i.e. an attack weaker than chosen ciphertext
in the pre-processing mode).

Achieving non-malleability in the private-key setting is much simpler and more efficient
than in the public-key setting. Let Kap be a private key shared by A and B. We first
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describe a system that is semantically secure against a chosen ciphertext attack in the pre-
processing mode: Treat K,p as (K1, K2) which will be used as seeds to a pseudo-random
function f (see [37] for definition of pseudo-random functions, [56, 57] for recent construc-
tions and [58] for a recent discussion on using pseudo-random functions for encryption and
authentication). In order to encrypt messages which are n bits long we need a pseudo-
random function fx : {0,1}* +— {0,1}", i.e. it maps inputs of length £ to outputs of length
n where ¢ should be large enough so as to prevent ”birthdays”, i.e. collision of randomly
chosen elements. For A to send B a message m, A chooses a random string r € {0,1}* and
sends the pair (r,m @ fx,(r)). Semantic security of the system against chosen ciphertext
attack in the pre-processing mode follows from the fact that the pseudo-random function is
secure against adaptive attacks. However, this scheme is malleable and not secure against
a chosen ciphertext attack in the post-processing mode: given a ciphertext (r,¢) one can
create a ciphertext (r,c¢’) where ¢’ is obtained from ¢ by flipping the last bit. This implies
that the corresponding plaintext also has its last bit flipped. In order to thwart such an
attack we employ another pseudo-random function g : {0,1}"+¢ — {0,1}¢ and add a third
component to the message:

9K, (ro (m @ [k, (r)))-

When decrypting a message (r,c¢,a) one should first verify that the third component, a,
is indeed proper, i.e. a = ggk,(r o c). This acts as an authentication tag for the original
encryption and prevents an adversary from creating any other legitimate ciphertext, except
the ones he was given explicitly. (Recall that by definition of pseudo-random function,
seeing any number of pairs (r, fx,(r)) does not yield any information about (', fx (7))
for any new ' and in particular they are unpredictable.)

Since it is known that the existence of one-way functions implies the existence of pseudo-
random functions [37, 48] we have

Theorem 3.9 If one-way functions exist, then there are non-malleable private-key encryp-
tion schemes secure against chosen ciphertext attacks in the post-processing mode.

Since it is known that in order to have private key cryptography we must have one-way
functions [47] we conclude:

Corollary 3.10 If any kind of private-key encryption is possible, then non-malleable private-
key encryption secure against chosen ciphertext attacks in the post-processing mode is pos-
sible.

Note that the property of “self-validation” enjoyed by the above construction is stronger
than needed for non-malleability, ¢.e. there are non-malleable cryptosystems that do not
have this property: one can start with a non-malleable private-key cryptosystem and add
to it the possibility of encryption using a pseudo-random permutation; this possibility is
never (or rarely) used by the legitimate encrypter, but may be used by the adversary. The
resulting cryptosystem is still non-malleable but not self-validating, since the adversary can
create ciphertexts of random messages.

For a recent application of the above construction to the security of remotely-keyed
encryption see Blaze et al [10].

Interactive Encryption
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The second setting resembles the one studied by Goldwasser, Micali, and Tong [46],
in which they constructed an interactive public key cryptosystem secure against chosen
ciphertext attack (see also [34, 67]). An “interactive public key cryptosystem” requires a
public file storing information for each message recipient, but this information alone is not
sufficient for encrypting messages. The additional information needed is chosen interactively
by the sender and receiver. To the best of our knowledge, their paper was the first to
try to cope with an oracle for distinguishing valid from invalid ciphertexts in any setting
(interactive or not). An interactive system is clearly less desirable than what has now come
to be called “public key cryptography,” in which the public key is sufficient for sending an
encrypted message, without other rounds of interaction.

The definitions of non-malleable security can be easily adapted to this case, but when
discussing the attack there is more freedom for the adversary, due to the interactive nature
of the communication. In general, we assume that the adversary has complete control over
the communication lines and can intercept and insert any message it wishes. A precise
definition is outside the scope of this paper.

Our non-malleable interactive public key cryptosystem requires a digital signature scheme
that is existentially unforgeable against a chosen message attack (see the Introduction for
an informal definition of existential unforgeability). Let (S;, P;) denote the private/public
signature keys of player 7 (the model assumes that there is a public directory containing P;
for each player i that is to receive messages, but the sender is not required to have a key
in the public directory). The system will also use a public-key cryptosystem semantically
secure against chosen plaintext attacks.

The idea for the system is straightforward: for each interaction the receiver chooses a
fresh public-key private-key pair that is used only for one message. However, this is not
sufficient, since an active adversary may intercept the keys and substitute its own keys.
We prevent this behavior by using signatures. A sender j wishing to send a message m to
receiver ¢ performs the following:

1. Sender j chooses a fresh private/public pair of signature keys (s;,p;) and sends the
public part, p;, to 7 (lower case is used to distinguish p; from what is in the directory);

2. Receiver i chooses a fresh private/public pair of encryption and decryption keys
(Eij, Dij), where E;; is semantically secure against chosen plaintext attack, and sends
E;j together with S;(E;; o p;) (i.e. a signature on the fresh public-key Ej; concate-
nated with the public signature key j chose) to j; j verifies the signature and that p;
is indeed the public key it sent in Step 1.

3. Sender j encrypts m using E;; and sends F;;(m) together with s;(F;;(m)) to i. Re-
ceiver 4 verifies that the message encrypted with E;; is indeed signed with the corre-
sponding p;.

Note that the sender may use a one-time signature scheme for (s;,p;) and if the receiver
uses a signature scheme such as in [27, 22], then the approach is relatively efficient.
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4 A Non-Malleable Scheme for String Commitment

We present below a scheme S for string commitment that is non-malleable with respect
to itself (Definition 2.6). We first present S and show some properties of S important in
proving its security. We then describe a knowledge extractor algorithm that works not on
S but on &’ which is a (malleable) string commitment protocol with a very special relation
to S: knowledge extraction for &’ implies non-malleability of S. Thus, in this section, the
new S’ plays a role analogous to the role of 8’ in Section 3.

Our non-malleable scheme for string commitment requires as a building block a (possibly
malleable) string commitment scheme. Such a scheme, based on pseudo-random generators,
is presented in [55] (although any computational scheme will do). The protocol described
there is interactive and requires two phases: first the receiver sends a string and then
the sender actually commits. However, the first step of the protocol can be shared by
all subsequent commitments. Thus, following the first commitment, we consider string
commitment to be a one-phase procedure. In the sequel, when we refer to the string
commitment in [55], we consider only the second stage of that protocol.

We also require zero-knowledge proofs satisfying the security requirements in [35]. These
can be constructed from any bit commitment protocol [40].

Before we continue it would be instructive to consider the protocol of Chor and Rabin
[21]. They considered the “usual” scenario, where all n parties know of one another and
the communication is synchronous and proceeds in rounds. Their goal was for each party
to prove to all other parties possession of knowledge of a decryption key. Every participant
engages in a sequence of proofs of possession of knowledge. In some rounds the participant
acts as a prover, proving the possession of knowledge of the decryption key, and in others
it acts as a verifier. The sequence is arranged so that every pair of participants A,C' is
separated at least once, in the sense that there exists a round in which C is proving while
A is not. This ensures that C’s proof is independent of A’s proof.

Running this protocol in our scenario is impossible; for example, (1) we make no as-
sumptions about synchrony of the different parties, and (2) in our scenario the parties
involved do not know of one another. However, we achieve a similar effect to the technique
of Chor and Rabin by designing a carefully ordered sequence of actions a player must make,
as a function of an identifier composed of its external identity, if one exists, and some other
information described below.

4.1 The Non-Malleable String Commitment Scheme &

Protocol S consists of two general stages. The first is a string commitment as in [55]. The
second stage, Basic Commit with Knowledge, consists of the application of many instances
of a new protocol, called BCK, to the string committed to in the first stage.

Following the commit stage of two string commitment protocols, deciding whether they
encode the same string is in NP. Therefore there exists a zero-knowledge proof for equality
of two committed values. This will be used repeatedly during each execution of BCK,
which we now describe. In the following, n is a security parameter.

Protocol BCK(«) (assumes the committer has already committed to «):
Concurrently run n instances of the following three steps. All instances of each step are
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(A, B) interaction (C, D) interaction

BCKI(a)
BCKI1(p)
BCK2(p)
BCK2()
BCK3(a)
BCK3(f)

Figure 2: BCK(«) is useful to BCK(f)

performed at once.

¢ BCK1 (Commit): Committer selects random zg,z; € {0,1}*, where k = |a|, and
commits to both of them using the protocol in [55].

e BCK2 (Challenge): Receiver sends Committer a random bit r € {0, 1}.

e BCK3 (Response): Committer reveals z, and 21—, ® «, and engages in a proof of
consistency of z1_, ® a with the initial commitment to o and the commitment to
xz1—r in BCK1. The proof of consistency with the initial commitment is done for all
n instances together as a single statement.

The interactive proof in BCK3 is a proof of consistency; it need not be proof of knowledge
in the sense of [31].

Remark 4.1 From a @ x1—,, T1—r, and the proof of consistency, one can obtain «. This
is why we call the protocol Basic Commit with Knowledge (of «).

Note also that the interactive proof is of consistency; it is not a proof of knowledge in the
sense of [31].

In the rest of the section we consider each BCKz4 as single operation, thus it can be
viewed as an operation on an n-dimensional vector or array. Note that BCK1 and BCK?2
are indeed “instantaneous,” in that each requires a single send, while BCK3, due to its
interactive nature, requires more time to carry out. We frequently refer to an instance of
BCK as a triple.

In the Basic Commit with Knowledge stage of S we apply BCK repeatedly for the
same string, a. However, BCK may itself be malleable. To see this, conceptually label
the three steps of BCK as commitment, challenge, and response, respectively. Consider
an ((A4,B),(C,D), A:¢(B) + ¢(C)) in which (A, B) = (C,D) = BCK. Then ¢(C) can
make its commitment depend on the commitment of 1(A); (B) can make its challenge
to 9(A) depend on the challenge that (D) poses to ¢(C), and 1(C) can respond to the
challenge with the “help” of 1)(A)’s response to 1(B) (see Figure 2 for the timing of events).
In this case the triple between 1(A) and v(B) is, intuitively, useful to 9(C). The Basic
Commit with Knowledge stage of S interleaves executions of BCK so as to ensure that in

34



every execution there is some triple for which no other triple is useful. This is analogous
to Chor and Rabin ensuring that for every pair of participants A, C' there exists a round
in which C is proving knowledge while A is not. We say such a triple is ezposed (defined
precisely below). This is the key idea in the construction.

The next two sizplet protocols perform a pair of distinct instances of BCK(«) in two
different interleaved orders. To distinguish between the two instances of BCK we will refer
to the operation taking place at each stage and the associated variables. Thus «; and a1
are two distinct applications of BCK. These Sixplet protocols will be used to ensure the
existence of an exposed triple in the Basic Commit with Knowledge. The intention of the
spacing of the presentation is to clarify the difference between the protocols. It has no
meaning with respect to the execution of the protocols.

0-sixplet 1-sixplet

BCKI1(q;) BCK1(q;)

BCK2(q;)

BCK3(«;) BCK1(aj1)
BCK?2 (ai-i-l )

BCK1(aj1) BCK3(aj1)

BCK?2 (ai+1 )

BCK3(a; 1) BCK2(«;)
BCK3(«;)

The difference between the two protocols is the order in which we interleave the stages
of the two distinct instances of the BCK protocol.

Using these sixplets we can present the scheme &. The identifier I used in the scheme
is the concatenation of the original identity with the commitment for « at stage 1 (by the
“commitment” we mean a transcript of the conversation). I; denotes the jth bit of I. To
force an exposed triple we will use the fact that every two identifiers differ in at least one
bit. This is exactly the same fact that was exploited by Chor and Rabin in the synchronous
“everyone-knows-everyone” model to enforce the condition that for every pair of provers
A # O, there is a round in which C is proving but A is not [21]. The same fact is used in
both cases for the same purpose, but we do it without any assumption of synchrony and
without any assumption that each processor knows of all other processors in the system.
S: Non-Malleable Commitment to String «:

e Commit to « (e.g., using the protocol in [55]).

e For j=1to ||
Execute an I;-sixplet
Execute a (1 — I;)-sixplet
End

For simplicity we will assume that all identifiers I are n bits long. Each I;—sixplet and
each (1 — Ij)—sixplet involves two executions of BCK, and each of these in turn requires n
concurrent executions of BCK1, followed by n concurrent executions of BCK2 and then
of BCK3. Thus, a non-malleable string commitment requires invoking each BCKz a total
of 4n? times.
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4.2 Properties of S

We now show some properties of S that allow us to prove its non-malleability. Suppose that
(A,B) = (C,D) = S, and suppose further that adversary A controls 1(B) and 1(C). Let
x be the identifier used by ¢(A) and y that used by ¢(C). If the original identities of 1(A)
and 1(C) are different or if the strings to which they commit are different, then z # y.
(Thus the only case not covered is copying.) Note also that, given the proofs of consistency,
both sender and receiver know at the end of the commitment protocol whether or not the
sender has succeeded in committing to a well-defined value. Thus, the event of successful
commitment to some value by 1(C) is independent of the value committed to by ¥(A).

Each run of the two interactions determines specific times at which the two pairs of
machines exchange messages. The adversary can influence these times, but the time at
which an interaction takes place is well defined. Let o, and oy be the respective schedules.
For 1 <1 < 2n, let

e 7! be the time at which BCK1 begins in the ith instance of BCK in o,;

e 74 be the time at which BCK2 ends in the ith instance of BCK in .
In contradistinction, let

e §! be the time at which BCKI1 ends in the ith instance of BCK in oy;

e &% be the time at which BCK2 begins in the ith instance of BCK2 in o,,.
Finally, let

e 74 and 0} denote the times at which BCK3 ends in the ith instances of BCK in o
and oy, respectively.

These values are well defined because each BCK: involves sequential operations of a single
processor. We do not assume that these values are known to the parties involved — there is
no “common clock.”

We can now formalize the intuition, described above, of what it means for a triple in o,
to be useful to a triple in o,,. Formally, the ith triple in o, is useful to the jth triple in o,
if three conditions hold: (1) 7§ < &5 (2) 62 < 74; and (3) 6} > 74 (see Figure 2).

Let T4 = {j|6] > 71 A &) <715 A 04 > 7i}. T is the set of indices of triples between
(C) and (D) for which the ith triple between (A) and 1(B) can be useful. We say that
a triple j is exposed if j ¢ T'® for all 7. Our goal is to show that there is at least one exposed
triple in any schedule. Intuitively, exposed triples are important because the committer is
forced to act on its own, without help from any other concurrent interaction. Technically,
exposed triples are important because they allow the knowledge extractor to explore the
adversary’s response to two different queries, without the cooperation of 1(A).

Claim 4.1 Vi |T®)| <1.
Proof. By inspection of the possible interleavings, there exists at most one j for which

8 <7iand &) > 7. O
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Claim 4.2 If j; € I and j, € T02) and j; < jo, then sizplet(iy) < sizplet(iy), where
sizplet(i) denotes the index of the sizplet containing the ith triple.

Proof. Assume to the contrary that sizplet(iz) < sizplet(i). This implies that 752 < T,
By definition, j; € T(1) implies 7' < §{'. Similarly, j» € T'2) implies §]*> < 7J°. Thus,
§? < ¢1'. This contradicts the assumption that j; < jo. O

Claim 4.3 Let triples 2k — 1,2k form a 0-sizplet in oy, and let triples 20 — 1,24 form a
1-sizplet in o,. Then there exists a j € {20 —1,20} such that neither 2k —1 nor 2k is useful
to triple j in oy.

Proof. Assume to the contrary that the claim does not hold. Thus, both triples have a

useful triple in {2k —1,2k}. By Claim 4.1 |[T®¥~D| <1, and |T%)| < 1. Therefore, each

of the two triples should be useful. A simple look at the time scale implies that for either

matching between the pairs, it should be the case that 7% < §?¢. Thus, 722'“71 < 03¢ and

722]“_1 < 5§€_1. This implies that 2k — 1 is not useful to either of the triples, a contradiction.
O

Notice that the reverse claim does not hold.

Lemma 4.2 For any x # y and for any two sequences o, and oy, there exists an exposed
triple in oy.

Proof. From Claims 4.1 and 4.2, if none of triples 1 through j are exposed and j € @,
then sizplet(i) > sizplet(j). Since z # y, there exists a bit, say the jth one, at which their
ID’s differ. Since the scheme uses both an I;-sixplet and 1 — I-sixplet, there exists some &
such that the kth sixplet in o, is a 0-sixplet while the kth sixplet in o, is a 1-sixplet. The
Lemma now follows from Claim 4.3. O

4.3 The Knowledge Extractor

Consider an adversarially coordinated system ((A, B),(C,D), A : ¢¥(B) < 9(C)) where
(A, B) and (C, D) are both instances of S. Intuitively, if 1/(C) succeeds in committing to
a string 8, then our goal is to extract 8. To achieve this we devise a somewhat different
protocol, called S’, on which the extractor operates, and from which it extracts 5. This
new protocol is a string commitment protocol that is not necessarily non-malleable. In
the next section we prove that extraction of 8 from the S’-adaptor-S system implies the
non-malleability of S.

The string commitment scheme S’ consists of a Committer P and a Receiver ) and
takes a parameter m. (As we will see, m = |I|5=2—1, where € is how close we would like

e2loge— 1
the extraction probability to be to the probability of successful completion of the protocol

by A.)

Protocol §': P Commits to a string o:
e Commit to « (e.g., using the protocol in [55]).

e Repeat m times:
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1. @ chooses a bit b and requests a b-sixplet; according to additional inputs, @)
requests that the b-sixplet be augmented by an additional proof of consistency
in step BCK3 of either triple in the b-sixplet;

2. P and @ run a (possibly augmented) b-sixplet;

From the semantic security of the regular string commitment protocol and from the
zero-knowledge properties, a simulation argument yields the following lemma:

Lemma 4.3 For any strateqy of choosing the sizplets and for any receiver @', the string
commitment protocol S’ is semantically secure. O

We provide an adaptor that allows us to emulate to A (and its controlled machines) a
player A that executes S, whereas in reality ¢(B) (under control of A) communicates with
the sender P of &’. S’ has been designed so that it can actually tolerate communicating
with many copies of A, with messages from the different copies being “multiplexed” by the
adaptor.

In more detail, suppose that player 1)(P) is running the sender part of S" and that player
1(B) is supposed to run the receiver part of S. (¢(B) might deviate from the protocol as
written, but the communication steps are as in S.) It is not hard to construct an adaptor
that operates between P and B: whenever (A, B) calls for a b-sixplet the adaptor “pretends
it is @7 and asks for a b-sixplet; then (B) and v (P) run the b-sixplet. It should be
clear that the distribution of conversations that 1(B) sees when it participates in & and
the distribution of conversations it sees when it participates through the adaptor in S’ are
identical.

We are now ready to present the extractor. Suppose that in the adversarially coordinated
system the probability that ¢(C') completes its part successfully is p. Following the commit
stage (during which C' may or may not have committed in any meaningful way), we cannot
in general hope to extract 8 with probability greater than p. However we can get arbitrarily

close: we will show that for any ¢ we can successfully extract S with probability at least
9

p—€.

Fix € > 0. The knowledge extractor begins to run &' = (P, Q) and S = (C, D) with the
adaptor arranging that A cannot distinguish this from the adversarially coordinated system
((A,B),(C,D), A:9(B) <> (C)) (see Figure 3) in which (4,B) = (C,D) = S.

Once 9 (C) completes the first (commitment) stage of S, the extractor freezes the random
tape of A.

A now defines a tree according to all possible messages sent by A and D. The tree
contains A-nodes and D-nodes, according to which of the two is the next one to send a
message. The root of the tree corresponds to the point at which the tape was frozen. Thus,
the branching at each node is all possible messages that either A or D can send at that
point. In order to exploit Remark 4.1 we will be interested in D-nodes corresponding to a
BCK2 step. The branches correspond to the different possible challenge vectors that D can
send in this step. In the sequel, these are the only types of D-node that we will consider.

9The extraction procedure runs in a fixed polynomial time (in 7 and e~') and succeeds only with probabil-
ity p. This leads to an e-malleable, which we suspect is sufficient “for all practical purposes.” A modification
of the procedure runs in ezpected polynomial time, and succeeds with probability p (the best possible),
yielding liberal non-malleability. See Remark 4.4.
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adversary controlled

Pé adaptor <%: B C : - D

—_ e e — — — — — ——

running S’ running S running S running S

Figure 3: The S’-adaptor-S system used in constructing the Extractor

To enable us to follow more than a single path (that is, to fork) in the tree, we keep at each
such D-node a snapshot of the current state, i.e., a copy of A’s tapes and the states of A
and D.

A node v is good if all the communication between C' and D up to v is legal (according
to the non-malleable protocol §) and C successfully opened and proved whenever it was
asked to do so. Our goal is to identify two nodes having the following properties: (1) at
each of the two, C has just completed a BCK3 step; (2) the paths to the two nodes depart
in a branching at a D-node. As noted in Remark 4.1, given two such nodes we can extract
5.

To identify such a pair of nodes, choose ¢ = and run the following extraction

16
e2loge— 1>
procedure ¢ times, each time starting again at the rogé)t of tree. (Recall that the root of the
tree corresponds to the point at which the tape was frozen; we do not re-start (C, D) each
time the extraction procedure is repeated.)

By Lemma 4.2 every path to a good leaf contains an exposed triple. Run the §’-adaptor-
S system until an exposed triple j in o, is reached (or we reach a bad node). We partition
the exposed triples into two types according to the interleavings (the interleavings are shown

pictorially after the types are formally defined):

e j is of the first type if Vi 7§ > (5{ (nothing happened yet in o, between 9(A) and
; i J i J ;
. .
$(B)) or Vi s.t. 77 < 0] we have 75 < §3 (the challenge in o, ends before the challenge
in 0, begins).

e j is of the second type if it is not of the first type and Vi s.t. < 6{ and 74 > (5% we
have 75 > 6} (the challenge in o, ends after the reply in o, ends, so 9(C) can’t use
the answers from (A, B) to help it answer challenges from 1 (D)).

In the first type of exposure, for each ¢ there are two possible interleavings:
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Thus in the first type of exposure, there exists a time ¢, 5 <t< 5J such that for all i,
1<t= 74 < t. The time ¢ is the maximum of 57 and the maximum over all ¢ such that

1 < &1, of 7i. In this case, intuitively, for every i such that the values committed to by
¢(C) in BCK(j) may depend on the values committed to by ¢ (P) in BCK(7), the queries
made by ¥(Q) to ¥(P) about these values are independent of the queries made by (D)
to (C). It follows that (C) can’t get any help from 1 (P) in answering 1(D)’s queries in
BCK(j).

At the point ¢ defined above, P has no triples of which step BCK1 has completed but
BCK2 has not yet ended, thus A doesn’t play a part in S right now. At this point we fork:
the extractor creates a new copy of A and D, and runs both this copy and the original,
with each copy of D making independent random challenges in BCK2 of triple j. Note
that with overwhelming probability any two such challenge vectors differ in some position.
Since at the point ¢ defined above the challenges sent to A in BCK2 of triple 4 are already
fixed, the two copies of BCK3 of triple 7 will differ only in the proofs of consistency. The
adaptor multiplexes to P the two proofs of consistency. This completes the treatment of
the first type of exposed triple. '

In the second type of exposed triple, the exposure does not become evident until 6. At
any point in time there are at most two triples between A and B that are open, in that
step BCK1 has been executed but BCK2 has not. Say that at & the open triple is the
ith triple; if there are two open triples then they are the ith and (i + 1)st ones. We know
that 7§ < 7971 < 6] and 7§ > 757 > 67 and 7} > §}. We distinguish between two cases: (a)

72+ < 8 and (b) 74t > 6 (since j is exposed it cannot be the case that 65 < rit! < 67).
We show the mterleavmgs and mark the forking points with asterisks:

Case (a) Case (b)
G i
7_erl 7_{Jrl

J J
- o 1
T§+ %
* or &
z+1 i
73 , - o3

J v+

62 Ty X

J i+
. 02 73
TS TS

i+1

In Case (a) we fork right after 757", running a copy of A until the conclusion of triple
J in the copy. Although this means there will be two copies of BCK3(: + 1), they will
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differ only in their interactive proofs of consistency: the challenges are fixed by time Té+1.
(Note that we can assume that T§+1 < & because the replies to the challenges and the
statements to be proved by P in BCK3(: + 1) are completely determined by BCK1 and
BCK2, and are therefore are completely determined by time T2i+1. Moreover, the challenges
sent in BCK2(j) by D are independent of BCK2(i 4+ 1) because BCK2(i + 1) ends before
BCK2(j) starts and D is non-faulty.) D makes independent challenges in the two runs. We
will not run the original beyond 4. The communication with A is limited in the original
execution to the replies to the challenges sent in BCK2(i + 1) and the zero knowledge proof
of consistency in BCK3(i + 1). However, since the challenges in the two copies are the
same, and since in 8’ the committer P is willing to repeat this proof, when running the
copy we simply ask for a repeated proof of consistency and continue as before. We stop
when the copy finishes BCK3 of the jth triple. Note that in the copy the jth triple need
not be exposed (this depends on 73). ‘

Case (b) is simpler: we fork right after 6{. In the original )(B) does not communicate
with P until &, so we simply continue with the copy until it finishes BCK3 of the jth
triple. Here again we have that j need not be exposed in the copy.

In exploiting either type of exposure, if in both branches (the original and the copy) the
proof of consistency in BCK3(j) succeeds, then in triple j the extractor obtains the answers
to two different and independent queries, hence 3 can be extracted. The significance of the
zero-knowledge proof of consistency is that it allows the extractor to know whether any
trial is successful. Therefore if any trial is successful the extractor succeeds. This completes

the description of the extractor.

Remark 4.4 To remove the dependency on €, at the expense of running in expected poly-
nomial time, i.e., to obtain liberal non-malleability (see Remark 2.3, pursue the following
strategy. Choose a random path to a leaf in the tree defined above. If the leaf is not good,
then abort. Otherwise “extract at all costs.” That is, repeat until done:

1. Choose a random path to a leaf. If this leaf is good, then add to the set of previously
chosen paths.

2. For all previously chosen paths (necessarily ending with a good leaf), attempt once
(again) to extract as described above.

We now show that the extractor succeeds with high probability. At each node v of the
tree we can define the probability of success, p(v), i.e., the probability that the communi-
cation between A and D leads to a good leaf. Let py be the probability of success at the
root. Notice that by definition, the expected value of pg is p.

Lemma 4.5 In each run of the above experiment the value of B is successfully extracted
with probability p3/4 — 1/2%".

Proof. Consider a random root-leaf path w in the tree (the randomness is over the coin flips
of A and D). At each node v let p(v) denote the probability, taken over choices of A and
of D, of successfully completing the execution from v. Let p(w) be the minimum along the
execution path w. Note that p(w) is a random variable.
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Claim 4.4 With probability at least po/2 we have p(w) > po/2.

Proof. The probability of failure is 1 — py. Let V be the set of nodes v such that p(v) <
po/2 and for no parent u of v is p(u) < po/2 (i.e. V consists of the “first” nodes such
that p(v) < po/2 and hence no member of V is an ancestor of another). We know that
Prip(w) < po/2] < Y ,cp Prlv is reached]. On the other hand, the probability of failure,

1 — Po, is

Z Prlv is reached](1 — p(v)) > (1 — po/2) Z Prlv is reached].
veY v s.t. p(v)<po/2

Therefore Prip(w) < pp/2] < 11—77?/)2 =1- 15‘;{)2/2 <1l—-pp/2. O

Thus, with probability py/2 the main path we take succeeds. The experiment branches at
a point with probability of success at least pg/2. The probability of success of each branch is
independent. Therefore, the new branch succeeds with probability py/2. Excluding a small
probability 1/22" that both branches choose identical strings, the experiment succeeds with
probability p3/4 — 1/2?". O

To obtain an analogous result for the liberal non-malleability extraction procedure outlined
in Remark 4.4, consider a random path that yields a good leaf. By Claim 4.4, Pr[p(w) >
p/2] > 1/2, that is, with probability at least 1/2 a good leaf is also a good investment for
extraction. Thus the “extract at all costs” procedure runs in expected time O(1/pg) and
the probability this extraction is invoked is py, yielding expected polynomial time (taking
the usual precautions against running forever).

Continuing with the proof of e-malleability, with probability p — /2 the probability of
success at the root, pg, is at least €/2. The extractor makes ¢ independent experiments.
Because of the proof of consistency, extraction fails only if all experiments fail. This occurs

2
with probability at most (1 — %‘))e. The choice of ¢ implies that the probability that the
extractor succeeds, given that py > €/2, is at least

2 €2
1—( —Zo)f21—(1—z)521—e/2.

Therefore, with probability at least p — € the string  is extracted in at least one of the
¢ experiments.
Thus we can conclude that,

Lemma 4.6 For any adversarially coordinated system ((A, B),(C,D), A:¢(B) <> %(C))
in which (A,B) = (C,D) = S, there is a knowledge extraction procedure that succeeds in
extracting from the S'-adaptor-S system the value committed to by 1 (C) with probability
arbitrarily close to p. O

We can therefore conclude that, in essence, the values § obtained by the extractor are
“correctly” distributed. We would like to say that when [ is obtained by the extractor,then
for every relation approximator R, the probability that R(«a, 3) outputs 1, is subpolynomi-
ally close to m(.A, R) (the probability that it holds under a “normal” execution). However,
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in the true execution 1(C) might make moves that force R to reject (for instance when the
real player makes an illegal move or refuses to open with certain probability). This doesn’t
necessarily imply that the extraction would fail. However, such cases only help us and we
can conclude:

Corollary 4.7 Let a €r D and let B be obtained by the extractor. Then for every relation
approzimator R, either (1) the probability that R(«, 8) outputs 1, where the probability space
is over the choice of a and the internal coin flips of the machines involved, is larger than
(A, R) or (2) these two probabilities can be made arbitrarily close.

4.4 Extraction Implies Non-Malleability

In this section we reduce the non-malleability of S to the semantic security of S’. Let R
be a relation approximator and let ((A, B), (C,D), A:¢(B) + ¢(C)) be an adversarially
controlled system, where (A, B) and (C, D) are both instances of S.

Recall that R(z,z) = 0 for all relation approximators. We view the goal of A (respec-
tively, A') as trying to maximize 7(A, R) (respectively, ©'(A’, R)). Consider the following
procedure for an adversary simulator A" with access to the probability distribution D chosen
by A, on inputs to 1(A).

Procedure for A’ on input hist(«a):

1. Set D' = D.
2. Generate 6 €g D' = D.

3. Emulate the system ((A, B),(C,D), A : ¢(B) <> ¢(C)) where 1(A) is running S’
with private input ¢ and A has access to hist(«), and if (C) succeeds in committing
to a value v, extract .

4. Output vy (that is, give v as input to (C)).
The structure of the proof is as follows. Let & € D. We define three random variables:

1. Let 8 be the value, if any, committed to by C' in an execution of ((A, B), (C, D), A:
P(B) <> (C)) in which A has input « and A has input hist(«). By definition, for
any probabilistic polynomial time relation approximator R, Pr[R(«,3)] = n(A, R).

2. Let ' be obtained by extraction from A’ in a run of the §’-adaptor-S system in which
P has input « and A’ has input hist(«). Let 7(A, R) = Pr[R(«, 8')] Intuitively, this
is the probability that 1(C) commits to something related to « in an S’-adaptor-
S system in which all parties have the “right” inputs, and this value is successfully
extracted.

3. Let 8" be obtained by extraction from A’ in a run of the §’-adaptor-S system in which
1 (P) has input § €z D but A’ has input hist(«). Then 7'( A", R) = Pr[R(«a, 8")] since
this is exactly the setting of the variables when A’ receives as input hist(a) (see the
definition of A" above).
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We will first show that if |Pr[R(«, )] — Pr[R(«,8")]] is polynomial, then there is a
distinguisher for §’. By the semantic security of &', this means that 7'(A’, R) = Pr[R(«, 8")]
is very close to (A, R) = Pr[R(«,8")]. In other words, on seeing the history hist(«), A',
interacting with P having input «, is essentially no more successful at committing to a
value related by R to « than A’ can be when it again has history hist(a) but is actually
interacting with P having input ¢ (unrelated to «). This means that, for A’, having the
interaction with P doesn’t help in committing to a value related to P’s input.

Let us say that A" succeeds in an execution of the S’-adaptor-S system, if 4/(C) commits
to a value related by R to P’s input (the value to which P commits). Similarly, we say that
A succeeds in an execution of ((A, B),(C,D), A: (B) + (C)) if 4(C) it commits to a
value related by R to A’s input. Recall that, by Corollary 4.7, either A is essentially equally
likely to succeed as A’, or A is less likely to succeed than A’ is. So (A, R), the probability
that A succeeds, is essentially less than or equal to 7(A, R), which we show in the first step
of the proof to be close to n'(A’, R). From this we conclude the non-malleability of S.

Lemma 4.8 If |7(A, R) — '(A, R)| is polynomial, then there is a distinguisher for S' that
violates the indistinguishability of committed values.

Proof. Assume |7(A, R) — 7' (A’, R)| is polynomial. The distinguisher is as follows.
Distinguisher for S':

1. Create a random challenge (a; €r D, ap € D);

2. Choose i €r {1,2}. Emulate the system ((A4,B), (C,D), A : ¢(B) < 9(C)), where
1(A) is running S’ with private input a; and A has access to hist(ay), and extract ¢,
the value committed to by ¢(C) in the emulation.

3. Output R(a1,().

If, in the emulation, 7 = 1, then the input to ¢(P) is a1 and so the distinguisher outputs
1 with probability 7(.A, R). Similarly, if in the emulation 7 = 2, then the input to ¢ (P) is
a, and so the distinguisher outputs 1 with probability 7' (A’, R). Since by assumption these
two quantities differ polynomially, we have a polynomial distinguisher for commitments in
S'. O

Corollary 4.9 |7(A, R) — ©'(A', R)| is subpolynomial. 0

Theorem 4.10 The string commitment scheme S is: (1) e-malleable and (2) liberal non-
malleable.

Proof. (1) By Corollary 4.7, 7(A, R) < 7(A, R) or the two can be made arbitrarily close.
Thus A is at most ¢ more likely to successfully commit to a value related by R to the
value committed to by 1(A) than A’ is able to commit to a value related by R to the
value committed to by 1(P). However, by Lemma 4.8, 7’'(A’, R) is subpolynomially close
to (A, R); that is, interacting with P does not help A’ to commit to a value related to the
value committed to by ¢(P).

For (2), note that the expected polynomial time extraction procedure described in Re-
mark 4.4 succeeds with probability p, so the e difference disappears. O
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Remark 4.11 The number of rounds in the above protocol is proportional to the length of
I. However, the number of rounds may be reduced to log|I| using the following: Let n = |I|.
To commit to string «, choose random ay, s, ... oy satisfying @j—, a1 = a. For each «;
(in parallel) commit to «; with identity (i, I;) (i concatenated with the ith bit of the original
identity). Let F (for fewer) denote this string commitment protocol.

To see why F is secure, consider an adversary with identity I' # I who commits to
o. For I' # I there must be at least one i such that I} # I; (we assume some prefiz free
encoding). This i implies the non-malleability of the resulting scheme: Make o for j # i
public. Since all the identities of the form (7, I]') are different than (i,I;) we can extract all
the o’;’s and hence o'

Using this approach, the result of Chor and Rabin [21] can be improved to require loglogn
rounds of communication, (down from logn rounds). Recall that their model differs from
ours in that they assume all n parties are aware of each other and that the system is
completely synchronous.

Remark 4.12 1) As we have seen, the proofs of consistency aid in the extraction procedure.
Interestingly, they also ensure that if there are many concurrent invocations of (A, B), call
them (A1, B1),...,(Ak, B), such that the adversary controls all the 1(B;) and (C), then
if C' commits to a value B to D then [ is essentially unrelated to all the a; committed to
by the A; in their interactions with the B;. As in Section 3.4.1, this is shown by a hybrid
argument.

2) There is a lack of symmetry between our definitions of non-malleable encryption
and non-malleable string commitment: the first requires that it should be computation-
ally difficult, given E(«), to generate a vector of encryptions (E(B1),...E(B,)) such that
R(a, B1,- .., Bn) holds, while the second requires only that access to a commitment to a string
«a should not help in committing to a single related string 8. It is possible to modify the
definition to yield this stronger property. Roughly speaking, we add a fictitious step after
the adversary attempts to commit to its values, in which the adversary specifies which suc-
cessfully committed values will be the inputs to the relation approximator R. The extraction
procedure is then modified by first running S' with a simulation of A to see which commit-
ments succeed. Then we argue that with high probability the extraction procedure succeeds
on all of these. This follows from the high probability of success during any single extraction
(Lemma 4.6). We chose not to use the extended definition because it would complicate the
proofs even beyond their current high level of complexity.

3) The weaker definition does not imply the stronger one: the protocol F of Remark 4.11
is a counterexample. Let (A, B) = F and let 1(A), running F, commit to o by splitting it
into aq,...,an. Let (C1,Dq) = ... = (Cy,Dy) =F. If the n + 1 parties (C1),...9(Cy)
have identities such that for each i the ith bit of the identity of ¥(C;) equals the ith bit of
the identity of (A), then the parties (B),¥(C1),...9(Cy) can collude as follows. Each
P(C;) commits to the string B; = oy by splitting it into B; = Bi1 @ ... ® Bin, where Bi; = oy
and Bi; = 0lil . In this way the colluding parties can arrange to commit to Bi, ..., Bn such
that the exclusive-or of the B’s equals a.

This counterezample also illustrates why the technique for reducing rounds described in
Remark 4.11 cannot be iterated to obtain a constant round protocol.
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5 Zero-Knowledge Proofs and General Non-Malleable Zero-
Knowledge Interactions

For the results in this section we assume the players have unique identities. Let (A, B)[a, ]
be a zero-knowledge interactive protocol with valid set II of input pairs. Recall from Section
2.1 that (A, B) is zero-knowledge with respect to B if for every ¢(B) under control of a
polynomial-time bounded adversary A, there exists a simulator Sim such that the following
two ensembles of conversations are indistinguishable. In the first ensemble, A chooses a
distribution D consistent with II, a pair (¢, §) is drawn according to D, 9(A) gets «, ¢ (B)
gets 3, and the interaction proceeds and produces a conversation. In the second ensemble,
and adversary simulator A’ with the same computational power as A chooses a distribution
D' consistent with II, (a,8) €r D' is selected, A’ is given 3, and produces a simulated
conversation.

We construct a compiler C, which, given any zero-knowledge interaction (A, B) produces
a zero-knowledge protocol which is non-malleable in the sense described next.

Let (A’, B') be any zero-knowledge protocol and let (4,B) = C(A',B'). Let (C',D’)
be any (not necessarily zero knowledge) protocol, and let (C,D) = C(C’',D"). Consider
the adversarially coordinated system ((A, B),(C,D), A : ¢(B) < %(C)). Note that, if
(A, B) were to be run in isolation, then given the inputs («,3) and the random tapes of
1(A) and 9(B), the conversation between these agents is completely determined. A similar
statement applies to (C, D). For every polynomial time relation approximator R and for
every adversarially coordinated system of the compiled versions with adversary A there
exists an adversary simulator A’ satisfying the following requirement.

Let D now denote a distribution for inputs to all four players chosen by A consistent
with the valid inputs for (A, B). Let («,f3,7,d) €r D, and run the compiled versions of
the two protocols. Let 7(A, R) denote the probability that R(«,,v,d,D,K(C,D)) = 1,
where IC(C, D) denotes the conversation between 1 (C) and (D). The probability is over
the coin-flips of A, 1(A) and (D) and the choice of («,,7,0) in D. As above, R rejects
if a conversation is syntactically incorrect.

Let D' (consistent with the legal input pairs for (A, B)) be chosen by A’, and let
(a, B,7,0) €g D'. A’ gets inputs 8,y. Run an execution of (C,D) in which A’ con-
trols ¢(C) and let K'(C, D) denote the resulting conversation. Let m(.A’, R) denote the
probability that R(a,8,v,d,D',K'(C,D)) = 1. The probability is over the coin-flips of A
and (D) and the choice of (a, 8,7, ) in D'.

The non-malleable zero-knowledge security requirement is that for every polynomial
time-bounded A, there exists a polynomial-time bounded A’ such that for every polynomial-
time computable relation approximator R |r(A, R) — 7'(A’, R)| is subpolynomial.

Theorem 5.1 There exists a compiler C that takes as inputs a 2-party protocol and outputs
a compiled protocol. Let (A', B") be any zero-knowledge protocol and let (A,B) = C(A', B').
Let (C', D") be any (not necessarily zero knowledge) protocol, and let (C,D) = C(C", D).
Then the adversarially coordinated system ((A,B),(C,D), A : ¢(B) < %(C)) is non-
malleable zero-knowledge secure.

Proof. Our compiler is conceptually extremely simple: A and B commit to their inputs
and random tapes and then execute the protocol (A’, B'), at each step proving that the
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messages sent are consistent with the committed values. We have to make sure that these
zero-knowledge proofs of consistency do not interfere with the original protocol. The goal
of the preprocessing phases is to make all the players’ actions in the rest of the protocol
predetermined. We now describe the action of the compiler on (A’, B’) in more detail.
Preprocessing Phase I: Initially A and B choose a random string R4 as follows. A
non-malleably commits to a string o4 using a sequence of non-malleable bit commitments.
B then sends a random string op. The string R4, not yet known to B, is the bitwise
exclusive-or of 04 and og. A and B then choose a random string Rp in the same manner,
but with the roles reversed, so that B knows Rp while A does not yet know it.
Preprocessing Phase II: Each player performs a sequence of pairs of non-malleable bit
commitments. Each pair contains a commitment to zero and a commitment to one, in
random order.

Preprocessing Phase III: Each player commits to its input and to the seed of a crypto-
graphically strong pseudo-random bit generator, using the non-malleable scheme for string
commitment described in Section 4. The pseudo-random sequence is used instead of a truly
random sequence whenever the original protocol calls for a random bit. Note in particular
that A and B both begin with a non-malleable commitment to their inputs and random
tapes — this is critical.

Executing the Original Protocol The parties execute the original protocol (with the
pseudo-random bits), with each player proving at each step that the message it sends at that
step is the one it should have sent in the unique conversation determined by its committed
input and random tape, and the messages of the original protocol received so far. The
commitments performed as part of the proofs of consistency are selected from the list of
pairs of commitments generated in Preprocessing Step II. Since proving the consistency of
the new message with the conversation so far can be done effectively (given the random
tape and the input), this has a (malleable) zero-knowledge proof [40] in which the verifier
only sends random bits. These random bits are taken from R4 and Rp. In particular, R4 is
used as the random bits when B proves something to A: A, acting as verifier and knowing
R 4, reveals the bits of R4 to B as they are needed by opening the necessary commitments
from Preprocessing Phase I. The analogous steps are made when A proves consistency to B.

Before sketching the proof, we give some intuition for why we included Preprocessing
Phases I and II. (While it is possible that these extra preprocessing steps are not needed,
we do not see a complete proof without them.) First, note that the compiler uses a specific
non-malleable string commitment scheme (the one from Section 4), rather than any such
protocol. We used this protocol because of its extraction properties (which we use for
proving non-malleability). However, as we saw in Section 4 in order to do the extraction in
an adversarially coordinated system ((A, B), (C,D), A :(B) <> ¢(C)) in which (A, B) =
(C,D) = S, we needed to define S’ a relaxed version of S, and construct an S’-adaptor-S
system. We do not know how to construct “relaxed versions” of arbitrary protocols (A’, B).
Since the compiled protocol (A, B) has a very special form, the construction of its relaxation
is straightforward.

We now sketch the proof that the compiled protocol satisfies the requirements of the
Theorem. A’s proofs of consistency are zero-knowledge since they use the random bits in
Rp and in the simulation of this part of the interaction Rp can be extracted. A’s proofs
are sound since its bit commitments performed in Preprocessing Phase II are independent
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of Rp (since all the commitments are non-malleable, and in particular, involve proofs of
knowledge).

Since A and B commit in Preprocessing Phase III to their random tapes and values, the
parts of the compiled communication that correspond to messages in (A’, B') are completely
determined before the execution corresponding to the (A’, B') interaction is carried out.

Note that the three stage protocol described above remains zero-knowledge. This is true,
since under the appropriate definition [41], the sequential composition of zero-knowledge
protocols is itself zero-knowledge. So in particular, the (A, B) interaction is zero-knowledge.

Non-malleable zero-knowledge security is proved as follows. We first note that the
commitment of its input and random tape that A makes to B in Preprocessing Phase T11
remains non-malleable despite the proofs of consistency during the execution of the original
protocol. We then construct an extractor for the committed value in (C, D) in a fashion
similar to the one constructed in Section 4. To do this, we construct a “relaxed” zero-
knowledge protocol analogous to S’, based on (A, B). We apply Lemma 4.6 to show that
the probability of extraction is similar to the probability that A succeeds (in the compiled
(C,D) protocol). The key point is that an exposed triple remains exposed despite the
presence of the proofs of consistency because the queries in the proofs of consistency have
been predetermined in Preprocessing Phase I.

As in Lemma 4.8, extraction violates the zero-knowledge nature of (the relaxed) (A4, B).

O

6 Concluding Remarks and Future Work

There are several interesting problems that remain to be addressed:

1. The issue of preserving the non-malleability of compiled programs (as in Section 5)
under concurrent composition is challenging, as, unlike the cases of encryption and
string commitment, in general zero-knowledge proofs are not known to remain zero-
knowledge under concurrent composition (see, e.g., [35, 38]). On the other hand, there
are various techniques for changing zero-knowledge protocols so that they become
parallelizable, such as witness indistinguishability [30] and perfect commitments (See
Chapter 6.9 in [35]). These techniques do not necessarily yield protocols that can be
executed concurrently while preserving zero-knowledge.

2. All our non-malleability results are for protocols that are in some sense zero-knowledge.
Extend the definition of non-malleability to interactions that are not necessarily zero-
knowledge, such as general multi-party computation, and construct non-malleable
protocols for these problems.

3. Simplify the constructions in this paper. Bellare and Rogaway present simplified
constructions using a random oracle [6, 7]. A challenging open problem is to (define
and) construct a publicly computable pseudo-random function. Such a construction
is essential if [6, 7] are to be made complexity-based. For a recent discussion on
constructing such functions see [17, 18, 19]; note that none of the proposals there is
sufficient to yield non-malleability.
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Very recently Cramer and Shoup [23] suggested an efficient construction of a non-
malleable cryptosystem secure against chosen ciphertext attacks in the postprocessing
mode. The scheme is based on the Decisional Diffie-Hellman assumption (see [57] for
a discussion of the assumption) and requires only a few modular exponentiations for
encryption and decryption.

Recently, Di Crecsenzo et al. [26] showed that in a model in which there is a common
random string shared by all parties, it it possible to obtain a non-interactive weaker
variant of non-malleable commitments. Recall that, informally, in our definition of
non-malleable commitment, the adversary succeeds if it commits to a “related” value.
Our definition therefore does not require the adversary to actually open its commit-
ment in order to succeed. In the [26] scheme, an adversary that commits to a related
value, but never opens the commitment, is not to considered to have succeeded.

. Another recent development related to malleability in encryption is the work of Ble-
ichenbacher [11] who showed how the ability to mall ciphertexts in the PKCS # 1
standard allows for a chosen ciphertext post-processingattack. The interesting fact
about this attack is that the only type of feedback the attacker requires is whether a
given string represents a valid ciphertext. This demonstrates yet again the significance
of using a provable non-malleable cryptosystem.

. A recent result that utilizes non-malleability in an interesting way is [4] who explores
the issue of reducing an adversary’s success probability via parallel repetition. They
give an example of a protocol where the fact that the upper bound on the adversary’s
probability of success is 1/2 is due to the non-malleability of a cryptosystem used,
while the repeated protocol fails to reduce the error due to the malleability of the
protocol itself.

. The selective decryption problem: a type of chosen ciphertext attack not addressed in
this paper is when the adversary is given the random bits used to generate the cipher-
text (in addition to the plaintext). The following problem, phrased here in terms of a
CD-ROM, is a concrete instance in which this kind of attack is relevant (the version
presented here is due to [59], and is a variant of a problem posed by O. Goldreich): A
CD-ROM is generated containing the encryptions of 100 images (generally, n images).
A user, having a copy of the CD-ROM, chooses any subset, say of size 50, of the im-
ages, and purchases the decryption information for the selected images. Suggest an
encryption scheme for this problem such that, assuming the decryption information
1s significantly shorter than the combined plaintexts of the purchased images, the re-
maining encryptions remain secure once the decryption information for the purchased
images is known. Suppose we start with a semantically secure cryptosystem, and
encrypt each image with its own key. Then, if the decryption information is the col-
lection of keys for the selected images, it is easy to show that an adversary can’t, for
any given undecrypted image P; produce an [ related to P;. The challenge is to show
that no adversary can find an I related to, say, all the remaining P;’s. For example,
show that the adversary can’t find the bitwise logical-OR of the remaining pictures.

This type of problem is simply ignored in papers on generating session keys (see, e.g.,
[8, 9]). If session keys are to be used for encryption, then the selective decryption
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problem must be addressed.

. Design a completely malleable cryptosystem in which, given FE(x) and E(y) it is possi-

ble to compute E(z+y), F(zy), and E(Z), where Z denotes the bitwise complement of
z. Such a cryptosystem has application to secure 2-party computation. For example,
to compute f(z,y) player A generates a completely malleable E/D pair and sends
(E(z), E) to player B. Player B, knowing y and a circuit for f, can return E(f(z,v)).

Alternatively, prove the non-malleability conjecture: if a cryptosystem is completely
malleable then it is insecure. A related statement holds for discrete logarithms mod-
ulo p, and in general for the black box field problem. See the elegant papers of Mau-
rer [53] and Boneh and Lipton [15].
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