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Abstract

A central theme of computational vision research has been the re-
alization that reliable estimation of local scene properties requires
propagating measurements across the image. Many authors have
therefore suggested solving vision problems using architectures of
locally connected units updating their activity in parallel. Unfor-
tunately, the convergence of traditional relaxation methods on such
architectures has proven to be excruciatingly slow and in general
they do not guarantee that the stable point will be a global mini-
mum.

In this paper we show that an architecture in which Bayesian Be-

liefs about image properties are propagated between neighboring
units yields convergence times which are several orders of magni-
tude faster than traditional methods and avoids local minima. In
particular our architecture is non-iterative in the sense of Marr [5]:
at every time step, the local estimates at a given location are op-
timal given the information which has already been propagated to
that location. We illustrate the algorithm's performance on real
images and compare it to several existing methods.

in: M.C. Mozer, M.I. Jordan and T. Petsche, editors, Advances in Neural Information Processing Systems 9 908-915 (1997).

1 Theory

The essence of our approach is shown in �gure 1. Figure 1a shows the prototypical
ill-posed problem: interpolation of a function from sparse data. Figure 1b shows a
traditional relaxation approach to the problem: a dense array of units represents
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Figure 1: a. a prototypical ill-posed problem b. Traditional relaxation approach: dense
array of units represent the value of the interpolated function. Units update their activity
based on local information and the activity of neighboring units. c. The Bayesian Belief
Propagation (BBP) approach. Units transmit probabilities and combine them according
to probability calculus in two non-interacting streams.

the value of the interpolated function at discretely sampled points. The activity of a
unit is updated based on the local data (in those points where data is available) and
the activity of the neighboring points. As discussed below, the local update rule can
be de�ned such that the network converges to a state in which the activity of each
unit corresponds to the value of the globally optimal interpolating function. Figure
1c shows the Bayesian Belief Propagation (BBP) approach to the problem. As in
the traditional approach the function is represented by the activity of a dense array
of units. However the units transmit probabilities rather than single estimates to
their neighbors and combine the probabilities according to the probability calculus.

To formalize the above discussion, let yk represent the activity of a unit at location
k, and let y�

k
be noisy samples from the true function. A typical interpolation

problem would be to minimize:

J(Y ) =
X
k

wk(yk � y�
k
)2 + �

X
i

(yi � yi+1)
2 (1)

Where we have de�ned wk = 0 for grid points with no data, and wk = 1 for points
with data. Since J is quadratic, any local update in the direction of the gradient
will converge to the optimal estimate. This yields updates of the sort:

yk  yk + �k(�(
yk�1 + yk+1

2
� yk) +wk(y

�

k
� yk)) (2)

Relaxation algorithms di�er in their choice of �: � = 1=(� + wk) corresponds to

Gauss-Seidel relaxation and � = 1:9=(�+wk) corresponds to successive over relax-
ation (SOR) which is the method of choice for such problems [10].

To derive a BBP update rule for this problem, note that that minimizing J(Y )
is equivalent to maximizing the posterior probability of Y given Y � assuming the
following generative model:

yi+1 = yi + � (3)

y�
i

= wiyi + � (4)

Where � � N (0; �R), � � N (0; �D). The ratio of �D to �R plays a role similar to
that of � in the original cost functional.

The advantage of considering the cost functional as a posterior is that it enables us
to use the methods of Hidden Markov Models, Bayesian Belief Nets and Optimal



Estimation to derive local update rules (cf. [6, 7, 1]). Denote the posterior by
Pi(u) = P (Yi = ujY �), the Markovian property allows us to factor Pi(u) into three
terms: one depending on the local data, another depending on data to the left of i
and a third depending on data to the right of i. Thus:

Pi(u) = c�i(u)Li(u)�i(u) (5)

where �i(u) = P (Yi = ujY �

1;i�1
); �i(u) = P (Yi = ujY �

i+1;N
); Li(u) = P (Y �

i
jYi = u)

and c denotes a normalizing constant. Now, denoting the conditional Ci(u; v) =
P (Yi = ujYi�1 = v), �i(u) can be written in terms of �i�1(v):

�i(u) = c

Z
v

�i�1(v)Ci(u; v)Li�1(v) (6)

where c denotes another normalizing constant. A symmetric equation can be written
for �i(u).

This suggests a propagation scheme where units represent the probabilities given in
the left hand side of equations 5{6 and updates are based on the right hand side, i.e.
on the activities of neighboring units. Speci�cally, for a Gaussian generating process
the probabilities can be represented by their mean and variance. Thus denote
Pi � N (�i; �i), and similarly �i � N (��

i
; ��

i
) and �i � N (��

i
; �

�

i
). Performing the

integration in 6 gives a Kalman-Filter like update for the parameters:
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(the update rules for the parameters of � are analogous)

So far we have considered continuous estimation problems but identical issues arise
in labeling problems, where the task is to estimate a label Lk which can take on M

discrete values. We will denote Lk(m) = 1 if the label takes on value m and zero
otherwise. Typically one minimizes functionals of the form:

J(L) =
X
m

X
k

Vk(m)Lk(m) � �
X
m

X
k

Lk(m)Lk+1(m) (10)

Traditional relaxation labeling algorithms minimize this cost functional with up-
dates of the form:

Lk  f(Vk; Lk�1; Lk; Lk+1) (11)

Again di�erent relaxation labeling algorithms di�er in their choice of f . A linear
sum followed by a threshold gives the discrete Hop�eld network updates, a linear
sum followed by a \soft" threshold gives the continuous or mean-�eld Hop�eld
updates and yet another form gives the relaxation labeling algorithm of Rosenfeld
et al. (see [3] for a review of relaxation labeling methods ).



To derive a BBP algorithm for this case one can again rewrite J as the posterior
of a Markov generating process, and calculate P (Lk(m) = 1) for this process.1.
This gives the same expressions as in equations 5{6 with the integral replaced by a
linear sum. Since the probabilities here are not Gaussian, the �i; �i; Pi will not be
represented by their mean and variances, but rather by a vector of length M . Thus
the update rule for �i will be:

�i(k) c
X
l

�i�1(l)Ci(k; l)Li�1(l) (12)

(and similarly for �.)

1.1 Convergence

Equations 5{6 are mathematical identities. Hence, it is possible to show [6] that
after N iterations the activity of units Pi will converge to the correct posteriors,
where N is the maximal distance between any two units in the architecture, and an
iteration refers to one update of all units. Furthermore, we have been able to show
that after n < N iterations, the activity of unit Pi is guaranteed to represent the
probability of the hidden state at location i given all data within distance n.

This guarantee is signi�cant in the light of a distinction made by Marr (1982)
regarding local propagation rules. In a scheme where units only communicate with
their neighbors, there is an obvious limit on how fast the information can reach a
given unit: i.e. after n iterations the unit can only know about information within
distance n. Thus there is a minimal number of iterations required for all data to
reach all units. Marr distinguished between two types of iterations { those that are
needed to allow the information to reach the units, versus those that are used to
re�ne an estimate based on information that has already arrived. The signi�cance
of the guarantee on Pi is that it shows that BBP only uses the �rst type of iteration
{ iterations are used only to allow more information to reach the units. Once the
information has arrived, Pi represents the correct posterior given that information
and no further iterations are needed to re�ne the estimate. Moreover, we have been
able to show that propagations schemes that do not propagate probabilities (such
as those in equations 2) will in general not represent the optimal estimate given
information that has already arrived.

To summarize, both traditional relaxation updates as in equation 2 and BBP up-
dates as in equations 7{9 give simple rules for updating a unit's activity based on
local data and activities of neighboring units. However, the fact that BBP updates
are based on the probability calculus guarantees that a unit's activity will be optimal
given information that has already arrived and gives rise to a qualitative di�erence
between the convergence of these two types of schemes. In the next section, we will
demonstrate this di�erence in image interpretation problems.



a. b.

Figure 2: a. the �rst frame of a sequence. The hand is translated to the left. b. contour
extracted using standard methods

2 Results

Figure 2a shows the �rst frame of a sequence in which the hand is translated to the
left. Figure 2b shows the bounding contour of the hand extracted using standard
techniques.

2.1 Motion propagation along contours

Local measurements along the contour are insu�cient to determine the motion.
Hildreth [2] suggested to overcome the local ambiguity by minimizing the following
cost functional:

J(V ) =
X
k

(dxt
k
vk + dtk)

2 + �
X
k

kvk+1 � vkk
2 (13)

where dx; dt denote the spatial and temporal image derivatives and vk denotes the
velocity at point k along the contour. This functional is analogous to the interpo-
lation functional (eq. 1) and the derivation of the relaxation and BBP updates are
also analogous.

Figure 3a shows the estimate of motion based solely on local information. The
estimates are wrong due to the aperture problem. Figure 3b shows the performance
of three propagation schemes: gradient descent, SOR and BBP. Gradient descent
converges so slowly that the improvement in its estimate can not be discerned in the
plot. SOR converges much faster than gradient descent but still has signi�cant error
after 500 iterations. BBP gets the correct estimate after 3 iterations ! (Here and in
all subsequent plots an iteration refers to one update of all units in the network).
This is due to the fact that after 3 iterations, the estimate at location k is the

optimal one given data in the interval [k � 3; k + 3]. In this case, there is enough
data in every such interval along the contour to correctly estimate the motion.
Figure 3c shows the estimate produced by SOR after 500 iterations. Even with
simple visual inspection it is evident that the estimate is quite wrong. Figure 3d
shows the (correct) estimate produced by BBP after 3 iterations.

2.2 Direction of �gure propagation

The extracted contour in �gure 2 bounds a dark and a light region. Direction of

�gure (DOF) (e.g. [9]) refers to which of these two regions is �gure and which is

1For certain special cases, knowing P (Lk(m) = 1) is not su�cient for choosing the
sequence of labels that minimizes J . In those cases one should do belief revision rather
than propagation [6]
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Figure 3: a. Local estimate of velocity along the contour. b. Performance of SOR,
gradient descent and BBP as a function of time. BBP converges orders of magnitude
faster than SOR. c. Motion estimate of SOR after 500 iterations. d. Motion estimate of
BBP after 3 iterations.

ground. A local cue for DOF is convexity - given three neighboring points along
the contour we prefer the DOF that makes the angle de�ned by those points acute
rather than obtuse. Figure 4a shows the results of using this local cue on the hand
contour. The local cue is not su�cient.

We can overcome the local ambiguity by minimizing a cost functional that takes into
account the DOF at neighboring points in addition to the local convexity. Denote
by Lk(m) the DOF at point k along the contour and de�ne

J(L) =
X
m

X
k

Vk(m)Lk(m) � �
X
m

X
k

Lk(m)Lk+1(m) (14)

with Vk(m) determined by the acuteness of the angle at location k.

Figure 4b shows the performance of four propagation algorithms on this task: three
traditional relaxation labeling algorithms (MF Hop�eld, Rosenfeld et al, constrained
gradient descent) and BBP. All three traditional algorithms converge to a local
minimum, while the BBP converges to the global minimum. Figure 4c shows the
local minimum reached by the Hop�eld network and �gure 4d shows the correct
solution reached by the BBP algorithm. Recall (section 1.1) that BBP is guaranteed
to converge to the correct posterior given all the data.

2.3 Extensions to 2D

In the previous two examples ambiguitywas reduced by combining information from
other points on the same contour. There exist, however, cases when information
should be propagated to all points in the image. Unfortunately, such propagation
problems correspond to Markov Random Field (MRF) generative models, for which
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Figure 4: a. Local estimate of DOF along the contour. b. Performance of Hop-
�eld,gradient descent, relaxation labeling and BBP as a function of time. BBP is the
only method that converges to the global minimum. c. DOF estimate of Hop�eld net
after convergence. d. DOF estimate of BBP after convergence.

calculation of the posterior cannot be done e�ciently. However, Willsky and his
colleagues [4] have recently shown that MRFs can be approximated with hierarchical
or multi-resolutionmodels. In current work, we have been using the multi-resolution
generative model to derive local BBP rules. In this case, the Bayesian beliefs are
propagated between neighboring units in a pyramidal representation of the image.
Although this work is still in preliminary stages, we �nd encouraging results in
comparison with traditional 2D relaxation schemes.

3 Discussion

The update rules in equations 5{6 di�er slightly from those derived by Pearl [6]
in that the quantities �; � are conditional probabilities and hence are constantly
normalized to sum to unity. Using Pearl's original algorithm for sequences as long
as the ones we are considering will lead to messages that become vanishingly small.
Likewise our update rules di�er slightly from the forward-backward algorithm for
HMMs [7] in that ours are based on the assumption that all states are equally likely
apriore and hence the updates are symmetric in � and �. Finally, equation 9 can
be seen as a variant of a Riccati equation [1].

In addition to these minor notational di�erences, the context in which we use the
update rules is di�erent. While in HMMs and Kalman Filters, the updates are seen
as interim calculations toward calculating the posterior, we use these updates in a
parallel network of local units and are interested in how the estimates of units in



this network improve as a function of iteration. We have shown that an architecture
that propagates Bayesian beliefs according to the probability calculus yields orders
of magnitude improvements in convergence over traditional schemes that do not
propagate probabilities. Thus image interpretation provides an important example
of a task where it pays to be a Bayesian.
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