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Figure1: Givena grayscaleimagemarkedwith somecolor scribblesby theuser(left), our algorithmproducesa colorizedimage(middle).
For reference,theoriginal color imageis shown on theright.

Abstract

Colorization is a computer-assistedprocessof addingcolor to a
monochromeimageor movie. Theprocesstypically involvesseg-
mentingimagesinto regionsandtrackingtheseregionsacrossim-
agesequences.Neitherof thesetaskscanbeperformedreliably in
practice;consequently, colorizationrequiresconsiderableuserin-
terventionandremainsa tedious,time-consuming,andexpensive
task.

In this paperwe presenta simplecolorizationmethodthat re-
quires neither preciseimage segmentation,nor accurateregion
tracking. Our methodis basedon a simplepremise:neighboring
pixelsin space-timethathavesimilarintensitiesshouldhavesimilar
colors. We formalizethis premiseusinga quadraticcostfunction
andobtainan optimizationproblemthat canbe solved ef�ciently
usingstandardtechniques.In our approachanartistonly needsto
annotatethe imagewith a few color scribbles,and the indicated
colorsareautomaticallypropagatedin bothspaceandtime to pro-
duceafully colorizedimageor sequence.Wedemonstratethathigh
qualitycolorizationsof stills andmovie clipsmaybeobtainedfrom
arelatively modestamountof userinput.
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1 Intro duction

Colorizationis a termintroducedby Wilson Markle in 1970to de-
scribethe computer-assistedprocesshe inventedfor addingcolor
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to black andwhite movies or TV programs[Burns]. The term is
now usedgenericallyto describeany techniquefor addingcolor to
monochromestills andfootage.

Colorizationof classicmotionpictureshasgeneratedmuchcon-
troversy[Cooper1991], which partially accountsfor the fact that
not many of thesemovies have beencolorizedto date. However,
therearestill massiveamountsof blackandwhite televisionshows
that could be colorized: the artistic controversyis often irrelevant
here, while the �nancial incentives are substantial,as was suc-
cinctly pointedout by Earl Glick1 in 1984: “You couldn't make
WyattEarptodayfor $1million anepisode.But for $50,000aseg-
ment,you canturn it into color andhave a brandnew serieswith
no residualsto pay” [Burns]. Colorizationof still imagesalsoap-
pearsto be a topic of considerableinterestamongusersof image
editingsoftware,asevidencedby multiple colorizationtutorialson
theWorld WideWeb.

A majordif�culty with colorization,however, lies in thefactthat
it is anexpensiveandtime-consumingprocess.For example,in or-
der to colorizea still imagean artist typically begins by segment-
ing the imageinto regions,andthenproceedsto assigna color to
eachregion. Unfortunately, automaticsegmentationalgorithmsof-
ten fail to correctly identify fuzzy or complex region boundaries,
suchastheboundarybetweena subject's hair andher face.Thus,
theartist is oftenleft with thetaskof manuallydelineatingcompli-
catedboundariesbetweenregions.Colorizationof moviesrequires,
in addition, tracking regions acrossthe framesof a shot. Exist-
ing trackingalgorithmstypically fail to robustly tracknon-rigidre-
gions,again requiringmassiveuserinterventionin theprocess.

In this paperwe describea new interactive colorization tech-
niquethatrequiresneitherprecisemanualsegmentation,nor accu-
ratetracking.Thetechniqueis basedonauni�ed framework appli-
cableto bothstill imagesandimagesequences.Theuserindicates
how eachregionshouldbecoloredbyscribblingthedesiredcolorin
theinteriorof theregion,insteadof tracingoutits preciseboundary.
Using theseusersuppliedconstraintsour techniqueautomatically
propagatescolors to the remainingpixels in the imagesequence.
This colorizationprocessis demonstratedin Figure1. Theunder-
lying algorithmis basedon the simplepremisethat nearbypixels
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in space-timethathave similar graylevelsshouldalsohave similar
colors. This assumptionleadsto anoptimizationproblemthatcan
besolvedef�ciently usingstandardtechniques.

Our contribution, thus, is a new simple yet surprisinglyeffec-
tive interactive colorizationtechniquethat drasticallyreducesthe
amountof input requiredfrom the user. In addition to coloriza-
tion of black andwhite imagesandmovies, our techniqueis also
applicableto selective recoloring,anextremelyusefuloperationin
digital photography andin specialeffects.

1.1 Previous work

In Markle'soriginalcolorizationprocess[Markle andHunt1987]a
color maskis manuallypaintedfor at leastonereferenceframein
ashot.Motion detectionandtrackingis thenapplied,allowing col-
ors to be automaticallyassignedto otherframesin regionswhere
no motion occurs. Colors in the vicinity of moving edgesareas-
signedusing optical �o w, which often requiresmanual�xing by
theoperator.

Althoughnotmuchis publicly known aboutthetechniquesused
in more contemporarycolorizationsystemsusedin the industry,
there are indications[Silberg 1998] that thesesystemsstill rely
on de�ning regions and tracking them betweenthe framesof a
shot. BlackMagic,a commercialsoftware for colorizing still im-
ages[NeuralTek 2003],providesthe userwith usefulbrushesand
colorpalettes,but thesegmentationtaskis left entirelyto theuser.

Welshetal. [2002]describeasemi-automatictechniquefor col-
orizing a grayscaleimageby transferringcolor from a reference
color image.They examinethe luminancevaluesin theneighbor-
hoodof eachpixel in the target imageandtransferthecolor from
pixels with matchingneighborhoodsin the referenceimage. This
techniqueworkswell on imageswheredifferentlycoloredregions
give riseto distinctluminanceclusters,or possessdistincttextures.
In other cases,the usermust direct the searchfor matchingpix-
elsby specifyingswatchesindicatingcorrespondingregionsin the
two images. While this techniquehasproducedsomeimpressive
results,notethat the artistic control over the outcomeis quite in-
direct: theartistmust�nd referenceimagescontainingthedesired
colorsover regionswith similar texturesto thosethatshewishesto
colorize. It is alsodif�cult to �ne-tune the outcomeselectively in
problematicareas.In contrast,in our techniquethe artist chooses
the colors directly, and is able to re�ne the resultsby scribbling
morecolor wherenecessary. Also, the techniqueof Welshet al.
doesnot explicitly enforcespatialcontinuity of the colors,andin
someimagesit may assignvastly differentcolors to neighboring
pixelsthathavesimilar intensities.

2 Algorithm

We work in YUV color space,commonlyusedin video, whereY
is the monochromaticluminancechannel,which we will refer to
simply asintensity, while U andV arethe chrominancechannels,
encodingthecolor [Jack2001].

Thealgorithmis givenasinputanintensityvolumeY(x;y;t) and
outputstwo colorvolumesU(x;y;t) andV(x;y;t). To simplify nota-
tion wewill useboldfaceletters(e.g.r ;s) to denote(x;y;t) triplets.
Thus,Y(r ) is theintensityof aparticularpixel.

As mentionedin the introduction,we wish to imposethe con-
straintthattwo neighboringpixelsr ;s shouldhavesimilar colorsif
their intensitiesaresimilar. Thus,we wish to minimize thediffer-
encebetweenthecolorU(r ) atpixel r andtheweightedaverageof
thecolorsatneighboringpixels:

J(U) = å
r

 

U(r ) � å
s2N(r)

wrsU(s)
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(1)

wherewrs is aweightingfunctionthatsumsto one,largewhenY(r)
is similar to Y(s), andsmallwhenthetwo intensitiesaredifferent.
Similarweightingfunctionsareusedextensively in imagesegmen-
tation algorithms(e.g.[Shi andMalik 1997;Weiss1999]),where
they areusuallyreferredto asaf�nity functions.

We have experimentedwith two weightingfunctions.Thesim-
plestoneis commonlyusedby imagesegmentationalgorithmsand
is basedon thesquareddifferencebetweenthetwo intensities:

wrs µ e� (Y(r )� Y(s))2=2s 2
r (2)

A secondweightingfunctionis basedonthenormalizedcorrelation
betweenthetwo intensities:

wrs µ 1+
1

s 2
r

(Y(r ) � mr )(Y(s) � mr ) (3)

wheremr ands r arethe meanandvarianceof the intensitiesin a
window aroundr .

The correlationaf�nity can also be derived from assuminga
local linear relation betweencolor and intensity [Zomet and Pe-
leg 2002;TorralbaandFreeman2003]. Formally, it assumesthat
the color at a pixel U(r ) is a linear functionof the intensityY(r ):
U(r ) = aiY(r) + bi andthelinearcoef�cients ai ;bi arethesamefor
all pixels in a small neighborhoodaroundr . This assumptioncan
be justi�ed empirically [Zomet andPeleg 2002] andintuitively it
meansthatwhenthe intensityis constantthecolor shouldbecon-
stant,andwhen the intensity is an edgethe color shouldalsobe
an edge(althoughthe valueson the two sidesof the edgecanbe
any two numbers).While this modeladdsto the systema pair of
variablespereachimagewindow, a simpleeliminationof theai ;bi
variablesyieldsanequationequivalentto equation1 with a corre-
lationbasedaf�nity function.

Thenotationr 2 N(s) denotesthefactthatr andsareneighbor-
ing pixels. In a singleframe,we de�ne two pixelsasneighborsif
their imagelocationsarenearby. Betweentwo successive frames,
wede�ne two pixelsasneighborsif their imagelocations,afterac-
countingfor motion, arenearby. More formally, let vx(x;y);vy(x;y)
denotetheoptical�o w calculatedattimet. Thenthepixel (x0;y0; t)
is aneighborof pixel (x1;y1; t + 1) if:


 (x0 + vx(x0);y0 + vy(y0)) � (x1;y1)


 < T (4)

The �o w �eld vx(x0);vy(y0) is calculatedusinga standardmotion
estimationalgorithm[LucasandKanade1981].Notethattheopti-
cal �o w is only usedto de�ne theneighborhoodof eachpixel, not
to propagatecolorsthroughtime.

Now given a setof locationsr i wherethe colorsarespeci�ed
by the useru(r i) = ui ;v(r i) = vi we minimize J(U);J(V) subject
to theseconstraints. Since the cost functionsare quadraticand
theconstraintsarelinear, this optimizationproblemyieldsa large,
sparsesystemof linear equations,which may be solved using a
numberof standardmethods.

Ouralgorithmis closelyrelatedto algorithmsproposedfor other
tasksin imageprocessing.In imagesegmentationalgorithmsbased
on normalizedcuts[Shi andMalik 1997],oneattemptsto �nd the
secondsmallesteigenvector of the matrix D � W whereW is a
npixels� npixels matrixwhoseelementsarethepairwiseaf�nities
betweenpixels (i.e., the r ;s entry of the matrix is wrs) andD is a
diagonalmatrix whosediagonalelementsarethesumof theaf�ni-
ties(in our casethis is always1). Thesecondsmallesteigenvector
of any symmetricmatrix A is a unit normvectorx thatminimizes
xTAx and is orthogonalto the �rst eigenvector. By direct inspec-
tion, the quadraticform minimizedby normalizedcuts is exactly
ourcostfunctionJ, thatis xT(D � W)x = J(x). Thus,ouralgorithm
minimizesthesamecostfunctionbut underdifferentconstraints.In
imagedenoisingalgorithmsbasedonanisotropicdiffusion[Perona



andMalik 1989;Tanget al. 2001]oneoftenminimizesa function
similar to equation1, but thefunctionis appliedto theimageinten-
sity aswell.

3 Results

Theresultsshownherewereall obtainedusingthecorrelationbased
window (equation3, or equivalently using the local linearity as-
sumption).Themeanandvariancem;s for eachpixel werecalcu-
latedby giving moreweight to pixelswith similar intensities.Vi-
suallysimilar resultswerealsoobtainedwith theGaussianwindow
(equation2). For still imagesweusedMatlab'sbuilt in leastsquares
solver for sparselinear systems,andfor the movie sequenceswe
useda multigrid solver [Presset al. 1992]. Using the multigrid
solver, therun time wasapproximately15 secondsper frame.The
thresholdT in equation4 wassetto 1 sothatthewindow usedwas
3� 3� 3.

Figure2 showssomestill grayscaleimagesmarkedby theuser's
colorscribblesnext to thecorrespondingcolorizationresults.Since
automatingthechoiceof colorswasnot our goal in this work, we
usedthe original color channelsof eachimagewhenpicking the
colors.As canbeseen,veryconvincingresultsaregeneratedby our
algorithmevenfrom arelatively smallnumberof color scribbles.

Typically, the artist may want to start with a small numberof
colorscribbles,andthen�ne-tunethecolorizationresultsby adding
morescribbles.Figure3 demonstratessucha progressionon a still
image.

Figure4 shows how our techniquecanbeappliedto recoloring.
To changethe color of an orangein the top left imageto green,
theartist �rst de�nesa roughmaskaroundit andthenscribblesin-
sidetheorangeusingthedesiredcolor. Our techniqueis thenused
to propagatethe greencolor until an intensityboundaryis found.
Speci�cally, we minimize the cost(equation1) undertwo groups
of constraints.First, for pixelscoveredby theuser's scribbles,the
�nal color shouldbe the color of the scribble. Second,for pixels
outsidethemask,thecolorshouldbethesameastheoriginalcolor.
All othercolorsareautomaticallydeterminedby the optimization
process.In this applicationtheaf�nity betweenpixels is basednot
only on similarity of their intensities,but alsoon the similarity of
their colorsin theoriginal image.Notethatunlikeglobalcolormap
manipulations,our algorithmdoesnot recolorthe otherorangein
the image,sincecolorsarenot propagatedacrossintensitybound-
aries.Thebottomrow of the�gure showsanotherexample.

Figures5 and 6 show selectedframesfrom colorized movie
clips. Even though the total numberof color scribblesis quite
modest,the resultingcolorizationis surprisinglyconvincing. We
have alsosuccessfullycolorizedseveralshortclips from thetelevi-
sionshow “I LoveLucy” andfrom Chaplin'sclassicmovie Modern
Times. Theoriginal clips wereobviously in blackandwhite, so in
theseexampleswedid nothaveacolor referenceto pick thecolors
from.

Figures7 and 8 compareour methodto two alternative meth-
ods. In �gure 7 the alternative methodis one where the image
is �rst segmentedautomaticallyandthenthe scribbledcolorsare
usedto “�ood �ll” eachsegment. Figure 7a shows the result of
automaticsegmentationcomputedusinga versionof the normal-
izedcutsalgorithm[Shi andMalik 1997]. Segmentationis a very
dif�cult problemandevenstate-of-the-artmethodsmayfail to auto-
maticallydelineateall thecorrectboundaries,suchasthe intricate
boundarybetweenthe hair and the forehead,or the low contrast
boundarybetweenthelips andtheface.Consequently, thecoloriza-
tion achievedwith this alternative method(�gure 7b) is noticeably
worsethanthe onecomputedby our method(�gure 7c). In both
cases,thesamecolor scribbleswereused.Distinctive colorswere
deliberatelychosensothat�a ws in thecolorizationwouldbemore
apparent.

Figure8 comparesour methodfor colorizing imagesequences
to analternativemethodwhereasingleframeis colorizedandthen
optical �o w tracking is usedto propagate the colorsacrosstime.
Sinceour methodusesoptical �o w only to de�ne the local neigh-
borhood,it is muchmorerobustto trackingfailures.

In both cases,either using automaticsegmentationor using
trackingto propagatecolorsacrosstime, the resultscould be im-
provedusingmoresophisticatedalgorithms.In otherwords,if the
automaticsegmentationhadbeenperfectthen�ood �lling segments
wouldhaveproducedperfectresults.Likewise,if denseoptical�o w
hadbeenperfectthenpropagatingcolorsfrom asingleframewould
have alsoworkedperfectly. Yet despitemany yearsof researchin
computervision, state-of-the-artalgorithmsstill do not work per-
fectly in an automaticfashion. An advantageof our optimization
framework is that we usesegmentationcuesand optical �o w as
“hints” for thecorrectcolorizationbut thecolorizationcanbequite
goodevenwhenthesehintsarewrong.

4 Summary

Despiteconsiderableprogressin imageprocessingsince1970,col-
orization remainsa manually intensive and time consumingpro-
cess.In this paper, we have suggesteda methodthathelpsgraphic
artistscolorize �lms with lessmanualeffort. In our framework,
theartistdoesnot needto explicitly delineatetheexactboundaries
of objects.Instead,theartistcolorsa smallnumberof pixelsin se-
lectedframesandthealgorithmpropagatesthesecolorsin amanner
that respectsintensityboundaries.We have shown that excellent
colorizationscanbe obtainedwith a surprisinglysmall amountof
usereffort.

An attractive featureof phrasingcolorizationasanoptimization
problemis thatit clari�es therelationshipbetweenthisproblemand
otherproblemsin imageprocessing.Speci�cally, we have shown
that our algorithmminimizesthe samecost function that is mini-
mizedin stateof theartsegmentationalgorithmsbut underdifferent
constraints.In futurework, we will build on this equivalenceand
import advancesin imagesegmentation(e.g. more sophisticated
af�nity functions,fasteroptimizationtechniques)into theproblem
of colorization. Additionally, we plan to explore alternative color
spacesandpropagation schemesthat treathueandsaturationdif-
ferently. We areoptimisticthattheseadditionalimprovementswill
enableusto performconvincingcolorizationswith anevensmaller
numberof markedpixels.
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