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Abstract—The Gaussian multiple-input multiple-output two-
way relay channel is considered. By applying linear pre- and post-
processing, the channel matrices are transformed into triangular
form having equal diagonals. Over the obtained triangular chan-
nels, dirty-paper coding is applied, yielding parallel symmetric
scalar two-way relay channels; thus, reducing the coding task to
that of coding over the scalar symmetric two-way relay channel.
Any existing coding technique can then be readily applied over
these resulting channels. This technique allows to obtain new
achievable rates in the symmetric case.

I. INTRODUCTION

The two-way relay channel (TWRC) [1] is composed of
two terminals exchanging information only via a third-party
relay. This simple scenario, which is composed of a multiple-
access (MAC) section from the two terminals to the relay, and
a broadcast (BC) section, from the relay to the two terminals,
manifests many basic principles encountered in more complex
networks, and therefore gained much attention lately.

A traditional communication approach over the TWRC is
decode-and-forward (DF). Here, the network is treated at
two different levels: a physical-layer local code translates the
wireless channels into “bit-pipes”, over which network coding
is applied. Namely, a MAC code is used over the first section,
allowing the relay to decode the messages of both terminals.
Then, the relay uses a BC code to convey to the terminals a
common message; assuming that this was decoded correctly,
each user obtains the desired message from the common
message and from their own message, as in network coding.
DF has the advantage that the noise of the MAC stage is
“cleaned” by the relay rather than being accumulated. Even
though DF proves optimal in the limit of low signal-to-noise
ratio (SNR), turning the MAC channel into bit-pipes incurs a
loss, which increases as the SNRs grow.

Other approaches do not turn all of the links to bit-pipes,
but rather leverage the physical properties of at least some
of the links. In compress-and-forward (CF), the relay merely
compresses its received signal. However, since each of the
terminals knows its transmitted signal, CF can utilize “remote
Wyner–Ziv coding” [2] for both messages simultaneously, i.e.,
each terminal tries to recover the message signal sent by the
other user with its own message signal serving as decoder side-
information [3]. CF, thus, defers decoding from the relay to the
terminals, that may have better conditions; this comes at the

price of noise accumulation. It turns out that CF outperforms
DF for a sufficiently high BC capacity.1 Performance can be
further improved by incorporating layers of CF and DF; see
[3].
Structured physical-layer network coding (sPNC) ap-

proaches [5]–[7] aim to avoid noise accumulation, without
turning the MAC channel into bit-pipes. This is accomplished
by using structured codes, where the sum of codewords is also
a codeword. Thus, the relay can decode a “sum-message” and
forward it. Though outperformed by DF and CF at low SNRs,
sPNC becomes optimal in the limit of high SNR.
We note that the CF approach over the TWRC has been

somewhat overshadowed by sPNC and DF. Nevertheless, as
stated above, it offers better performance for certain SNR
values. In Section II we revisit these known techniques for the
Gaussian single-input single-output (SISO) TWRC, providing
a detailed comparison. The symmetric setting, in which the
channel quality of the users is equal and the desired rates
are equal as well, is of special interest. In this setting, the best
known achievable rate region is given by time-sharing between
DF, CF and sPNC.2 We find that, in the symmetric setting, this
time-sharing strategy has a gap from the cut-set upper bound
on the capacity of at most 0.2625 bits (per complex stream).
In this work we consider the extension of these techniques to
the multiple-input-multiple-output (MIMO) case. We note that
the difficulty of the task greatly varies between the different
strategies.
DF generalizes to the MIMO case in a straightforward

manner, using any scheme for the MIMO MAC and (common-
message) BC channels. As for CF, even though an information-
theoretic expression for the achievable rates can be formulated,
its explicit evaluation in the MIMO case is hard in general, let
alone code construction. Thus, suboptimal scalar approaches
have been suggested [8], [9].
The generalization of sPNC to the MIMO case is a very

different issue, as this approach is specifically tailored to
scalar additive channels. Thus, some form of decomposition
of the channel into parallel subchannels is required. Two
techniques have been proposed. The first technique, by Yang et

1The CF approach always outperforms amplify-and-forward (AF) over the
TWRC, in contrast to other network topologies.

2Although in principle pDF could improve performance, evaluating the
expressions shows that in the symmetric setting it does not.



al. [10], relies on the generalized singular value decomposition
(GSVD) [11]. The GSVD results in triangular matrices with
proportional rows (though with different diagonal values); the
column proportionality allows to recover linear combinations
of the messages (similar to the non-symmetric sPNC technique
of [6]) using successive interference cancellation (SIC). The
second technique, proposed in [12], allows to triangularize
both channel matrices, such that the resulting diagonals are
equal, using the joint equi-diagonal triangularization (JET)
[13], and together with dirty-paper coding (DPC) employs the
symmetric scalar sPNC of [5] over the resulting parallel sub-
channels. When the target rates of the two terminals are close
(“symmetric case”), the JET-based scheme achieves better
performance, whereas when the two rates differ substantially,
the performance of the GSVD-based scheme is superior.

In this work, we concentrate on the symmetric case, where
the channels of the users have the same quality (yet, for
MIMO, the matrices can be very different from each other)
and the desired rates are equal. In Section III-B, we find that
having equal diagonals is advantageous not only for sPNC, but
also for CF. We further propose an improvement of the JET-
based scheme of [12], by allowing DF, CF or sPNC (or optimal
time-sharing between them) over each subchannel, according
to its parameters. Finally, we demonstrate the performance of
the proposed technique for a parallel channels example.

II. BACKGROUND: COMMUNICATION STRATEGIES FOR

THE SISO TWO-WAY RELAY CHANNEL

In this section we consider the Gaussian SISO TWRC
and describe the communication approaches mentioned in
Section I along with the cut-set outer bound, both for the
symmetric and the non-symmetric cases.

A. Channel Model

The TWRC consists of two terminals and a relay. We define
the channel model as follows. Transmission takes place in two
phases, each one, w.l.o.g., consisting of N channel uses. At
each time instance n in the first phase, terminal i (i = 1, 2)
transmits a signal xi,n and the relay receives yn according
to some memoryless MAC channel WMAC(y|x1, x2). At each
time instance n in the second phase, the relay transmits a
signal xn and terminal i (i = 1, 2) receives yi,n according to
some memoryless BC channel WBC(y1, y2|x). Before trans-
mission begins, terminal i possesses an independent message
of rate Ri, unknown to the other nodes; at the end of the two
transmission phases, each terminal should be able to decode,
with arbitrarily low error probability, the message of the other
terminal. The closure of all achievable pairs (R1, R2) is the
capacity region of the network.

In the Gaussian SISO setting, the MAC phase of this
channel is given by

y = h1x1 + h2x2 + z ,

where, w.l.o.g., x1 and x2 are subject to the same power
constraint P , and z is additive white Gaussian noise (AWGN)
of power 1.

The exact nature of the BC channel is not material in
the context of this work. We characterize it by its “side-
information rate region” CBC [1], which corresponds to the
private-message capacity rate-region over the BC channel
where each decoder knows the message intended for the other
decoder. This rate region is equal to the closure of the convex
hull of all rate-pairs (R1, R2) satisfying:

R1 ≤ I(X ;Y2|X2) ,

R2 ≤ I(X ;Y1|X1) ,

for some product distributions p(x)p(y1|x)p(y2|x).
Note that in the symmetric setting, R ! R1 = R2, the

optimum achievable rate is equal to the common-message
capacity Ccommon of the BC channel with no side-information

at the decoders.

B. Communication Schemes in the Symmetric-Rate Setting

Here we specialize to the symmetric case:

R ! R1 = R2 (2a)

h ! h1 = h2 ,

and, without loss of generality, take h = 1.
By the min-cut max-flow theorem, one cannot achieve a rate

greater than the point-to-point capacities of the MAC links or
the common-message capacity of the BC channel [1]:

RCS = min {log (1 + P ) , Ccommon} . (3)

In the DF approach, the relay decodes both messages with
sum-rate 2R. Instead of forwarding both messages, it can use a
network-coding approach and XOR them. Then, each terminal
can XOR out its own message to obtain the desired one. The
resulting rate is given by:

RDF = min

{

1

2
log (1 + 2P ) , Ccommon

}

. (4)

In the CF approach, the noisy sum of the messages, trans-
mitted by the sources, is quantized at the relay, using remote
Wyner–Ziv coding [2], with each terminal using its transmitted
message as decoder side-information. The achievable rate
using this scheme is [3]

RCF = log (1 + P "#Pcommon) , (5)

where Pcommon is the effective SNR of the BC phase that
satisfies Ccommon = log(1 + Pcommon), and

A"#B !
AB

1 +A+B
.

In the sPNC approach [5], both terminals transmit code-
words generated from the same lattice code. Due to the
linearity property of the lattice code, the sum of the two
codewords is a valid lattice codeword. This sum is decoded
at the relay and sent to the terminals. Each terminal, then,
recovers the sum codeword and subtracts from it its own lattice



P[dB]

P
co

m
m

o
n
[d

B
]

 

 

PNC

CF

DF

−10 −5 0 5 10 15 20
−10

−5

0

5

10

15

20

25

30

0.05

0.1

0.15

0.2

Fig. 1: Performance of different schemes in the symmetric SISO
setting. The P vs. Pcommon plain is partitioned into areas where
the individual schemes (DF, CF and sPNC) are superior. Then,
the performance of optimal time-sharing is compared with the cut-
set upper bound. The rounded contour lines show the difference,
increasing inwardly until the point marked by an asterisk, where the
maximal difference of 0.2625 bits is reached.

codeword, to obtain the codeword transmitted by the other
terminal. The rate achievable using this scheme is given by:

RPNC = min

{

[

log

(

1

2
+ P

)]+

, Ccommon

}

, (6)

where [x]+ ! max{0, x}.
Both the CF rate (5) and the sPNC rate (6) are within

one bit from the cut-set bound (3), as shown in [3] and [6],
respectively. Fortunately, the worst-case parameters for the
different schemes are different, and time-sharing can further
improve performance; we find numerically, that time-sharing
between the rates (4), (5) and (6) is within 0.2625 bits from
optimality (and the guaranteed fraction of capacity is at least
78.77%), see Figure 1 (and [14, Figure 2b]).

Remark 1: We note that sPNC is very sensitive to syn-
chronization, which may be an obstacle in practice: as sPNC
relies on the linearity of the codebook by decoding the sum
codewords transmitted by the two terminals, perfect symbol-
synchronization is required. Using a cyclic codebook allows to
support small synchronization skews, at the price of a loss in
performance which grows with the skew size. The performance
of the DF and CF strategies, on the other hand, is invariant to
synchronization and hence may be a better candidate in certain
real-world communication scenarios.

C. Communication Schemes in the Asymmetric Setting

We briefly recall generalizations beyond the symmetric
setting. The cut-set outer-region is given by all rate-pairs
(R1, R2) ∈ CBC, satisfying:

Ri ≤ log
(

1 + |hi|
2 P
)

, i = 1, 2 .

The extension of DF is straightforward. As for CF, there
may be an advantage in using another layer, which is to
be decoded by only one of the users. Such a layer can be
combined with DF and/or a CF layer intended for both users,
in which case it will compress a refinement of the signal
received at the relay. See [3], [14] for details and for rate
expressions.
The sPNC approach in the non-symmetric case achieves

rate-pairs (R1, R2) ∈ CBC, satisfying [6]

Ri ≤

[

log

(

|hi|
2

|h1|
2 + |h2|

2
+ |hi|

2 P

)]+

. (7)

III. COMMUNICATION STRATEGIES FOR THE

MIMO TWO-WAY RELAY CHANNEL

In this section we consider the symmetric-rate setting (2a),
and extend the cut-set outer bound and the different schemes
of Section II to the MIMO case.

A. Channel Model

We consider a Gaussian MIMO setting, where terminal i
(i = 1, 2) has Nt;i transmit antennas and the relay has Mr

receive antennas, during the MAC phase. Denoting vectors by
boldface, the MAC channel is given by:

y = H1x1 +H2x2 + z ,

where Hi are Mr × Nt;i matrices, z is circularly-symmetric
white Gaussian noise with unit variance, and the inputs are
subject to some input covariance matrix constraints, the most
common being an individual-power constraint (constraint on
the diagonal elements of the covariance matrices) and total
power constraint (constraint on the trace of the covariance
matrices). We denote by Ki (i = 1, 2) the input covariance
matrix used by terminal i during transmission.
We assume that the number of transmit antennas at each

node Nt;i is at least as large as the number of receive antennas
Mr, and that the matrices H1 and H2 are full-rank, i.e., have
rank Mr.

3 We further assume, w.l.o.g., that the products of
the singular values, of each of the channel matrices, are equal
to 1, or equivalently that:

∣

∣

∣
HiH

†
i

∣

∣

∣
= 1 , i = 1, 2 ,

where | · | denotes the determinant.
As in the SISO case, the exact nature of the BC channel is

not material and we characterize it using its common-message
capacity Ccommon.

B. Communication Schemes in the Symmetric-Rate Setting

The cut-set bound, in this case, is given by

RCS = min {C1, C2, Ccommon} ,

where

Ci ! max
Ki

log
∣

∣

∣
I +HiKiH

†
i

∣

∣

∣
, i = 1, 2 ,

3For the cases in which the matrices are not full-rank or have more receive
antennas, see the treatment in [15].



are the individual capacities of the MIMO links, and the
maximization is carried over all Ki subject to the covariance-
matrix constraints.
The achievable rate using the DF approach is equal to

CDF = min {CMAC, Ccommon} ,

where

CMAC = max
K1,K2

min
{

log
∣

∣

∣
I +H1K1H

†
1

∣

∣

∣
,

log
∣

∣

∣
I +H2K2H

†
2

∣

∣

∣
,

1

2
log
∣

∣

∣
I +H1K1H

†
1 +H2K2H

†
2

∣

∣

∣

}

,

and the maximization is carried over all admissible input co-
variance matrices K1 and K2 satisfying the power constraints.
Two independent works extended sPNC to the MIMO case,

relying on two different joint unitary matrix triangularizations.
The first, proposed by Yang et al. [10], relies on the GSVD
[11]. Applying this decomposition to the effective channel

matrices HiK
1/2
i , we have:4

H1K
1/2
1 = ULD1V

†
1

H2K
1/2
2 = ULD2V

†
2 ,

where U , V1 and V2 are unitary matrices, L is a lower-
triangular matrix, and D1 and D2 are diagonal matrices with
positive values satisfying D2

1+D2
2 = I . Define L1 ! LD1 and

L2 ! LD2 and denote their diagonals by dGSVD
1 ! diag{L1}

and dGSVD
2 ! diag{L1}. In terms of these values, we have

the following achievable rates, which are an improved variant
of Theorem 1 in [10].
Theorem 1: For any admissible input covariance matrices,

the following symmetric rate is achievable:

RGSVD
PNC = min

{

RGSVD
PNC,1 , R

GSVD
PNC,2 , Ccommon

}

RGSVD
PNC,i =

Mr
∑

j=1

[

log

(
∣

∣dGSVD
i,j

∣

∣

2

∣

∣dGSVD
1,j

∣

∣

2
+
∣

∣dGSVD
2,j

∣

∣

2
+
∣

∣dGSVD
i,j

∣

∣

2

)]+

.

where {dGSVD
i,j } are given by the GSVD defined above.

Proof sketch: By applying V1 and V2 at encoders 1 and

2 (in addition to K1/2
1 and K1/2

2 ), respectively, and U † at the
decoder, we attain the effective channel matrices L1 and L2.
L1 and L2 are equal to products of the same lower-triangular
matrix and different diagonal matrices, and thus are lower-
triangular with proportional rows. This proportionality, in turn,
allows to utilize SIC. Using asymmetric sPNC (7) over the
resulting channels with gains

{

dGSVD
1,j , dGSVD

2,j

}

, achieves (9).
After the decoding of each scalar stream, the coarse (shaping)
lattice is decoded over the reals, to facilitate SIC from not-yet
decoded subchannels. This is possible with arbitrarily small
error [16], allowing to recover the sum over the reals of the
two lattice codewords.

4K1/2 is any matrix B satisfying BB†
= Ki, and can be found, e.g., via

the Cholesky decomposition.

The second extension of sPNC, proposed in [12], relies on
applying the JET [13] to the effective channel matrices. The

JET of the effective channel matrices HiK
1/2
i is given by:

H1K
1/2
1 = UL1V

†
1

H2K
1/2
1 = UL2V

†
2 ,

where U , V1 and V2 are unitary matrices, and L1 and L2 are
lower-triangular with equal diagonals dJET:

d
JET ! diag(L1) = diag(L2) . (11)

While [12] applies symmetric sPNC (6) to the resulting
scalar channels, in this work we generalize the result to any
symmetric scalar strategy, as follows.
Theorem 2: Let R(d, C) be an achievable symmetric rate

for the SISO TWRC (2), with MAC gains h1 = h2 = d
and common-message BC capacity C. Then, the following
symmetric rate is achievable:

RJET =
Mr
∑

j=1

R(d JET
j , Rj)

for any non-negative rates Rj satisfying
∑Mr

j=1 Rj ≤ Ccommon.
Proof sketch: By applying V1 and V2 at encoders 1 and

2 (in addition to K1/2
1 and K1/2

2 ), respectively, and U † at the
decoder, we attain the effective channel matrices L1 and L2.
The equal diagonals of L1 and L2 allow to cancel out their
off-diagonal elements via DPC, resulting in symmetric scalar
subchannels with gains (11). Over the resulting symmetric
scalar subchannels, a SISO TWRC strategy is used.
Substituting the symmetric scalar sPNC rates (6) we get

[12, Thm. 1] as a special case. Alternatively, DF, CF or any
time-sharing of schemes can be used.

Remark 2: While the transformation to scalar channels is
necessary for sPNC, DF and CF can also work over a vector
channel. Although the analysis and implementation may be
very complicated, it may yield some performance improve-
ment. To that end, one may apply sPNC to some of the
subchannels, and another scheme jointly over the others. In
that case, balancing diagonal values in the non-sPNC block is
not imperative; see [13] for a block version of the JET.

C. Comparison of Decompositions

The GSVD- and JET-based approaches both translate the
MIMO problem into parallel SISO ones, and both become
optimal in the limit of high SNR (assuming full-rank channel
matrices). The GSVD-based scheme also carries over to the
asymmetric case. However, we note that the JET-based scheme
has the following advantages:

1) Use of any strategy. Since the JET approach uses
DPC, any strategy can be used over the subchannels;
the decoder for each subchannel will receive an input
signal as if this were the only channel. In contrast, the
GSVD approach uses SIC, where the task of canceling
inter-channel interference is left to the relay. In order to
cancel out interference, the relay thus needs to decode.
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Fig. 2: Performance of the proposed strategies for Ccommon = 20 bits.

This is the case for DF and, as Theorem 1 shows, for
sPNC as well; however, CF cannot be used.

2) Symmetric subchannels. The JET approach gives rise
to symmetric scalar channels, while GSVD gives asym-
metric ones.5 Symmetry allows for simpler schemes. Fur-
thermore, asymmetric techniques seem to have inherent
losses, since they require a trade-off between “strong”
and “weak” signals. While we do not prove that balanced
channels are always better, this seems to be the case, as
illustrated in the example below.

The different techniques are illustrated in the following
simple example.

Example 1: Consider a Gaussian MIMO TWRC with a
MAC phase comprising two parallel asymmetric channels

H1 =

(

1/4 0
0 4

)

, H2 =

(

4 0
0 1/4

)

,

and a common-message BC capacity of Ccommon = 20 bits,
where the terminals are subject to a per-antenna individual
power constraint P .

Figure 2 depicts the different achievable rates of Section III
as a function of P .

In contrast to the case of general channel matrices, in the
case of parallel channels (corresponding to diagonal channel
matrices), all the scalar asymmetric techniques of Section II-C
can be used. Nonetheless, one observes that these techniques
are inferior to their symmetric counterparts (resulting after
applying the JET). This gap is especially pronounced, if we
compare the optimum asymmetric strategy with the optimal
JET-based hybrid strategy.

5In fact, the GSVD provides the “most spread diagonal ratios” out of all
possible joint unitary matrix triangularizations of given two matrices; see [13].

IV. DISCUSSION

The decomposition used in Theorem 2 is of a zero-forcing
flavor. Namely, we do not allow residual interference below
the diagonal. Nevertheless, it is well known that zero-forcing
techniques suffer from noise enhancement and can therefore
be improved by balancing between residual interference and
the physical (Gaussian) noise. Indeed, at low SNR the MMSE
variant of DF, achieved using MMSE V-BLAST outperforms
the JET-based scheme of Theorem 2. Constructing an MMSE
variant for the proposed JET-based scheme is more challenging
and is left as future research.
In the case where there are additive interferences known at

the terminals (but not to the relay), the result of Theorem 2
still holds, as it combines naturally with dirty-paper coding.
The performance of the GSVD-based scheme of Theorem 1,
on the other hand, deteriorates (the rate goes to zero in the
extreme case of very strong interferences) as it is based on
successive cancellation of the decoded messages.
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