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Abstract—Upper bounds on the error probability in channel
coding are considered, improving the RCU bound by taking into
account events, where the likelihood of the correct codeword is
tied with that of some competitors. This bound is compared to
various previous results, both qualitatively and quantitatively;
it is shown to be the tightest bound with respect to previous
bounds with the same computational complexity. With respect
to maximal error probability of linear codes, it is observed that
when the channel is additive, the derivation of bounds, as well as
the assumptions on the admissible encoder and decoder, simplify
considerably.

I. INTRODUCTION

Consider maximum-likelihood decoding, known to be op-

timal in the sense of average error probability between equi-

probable messages. We address the case where a tie occurs,

i.e., when ℓ false codewords share the maximum likelihood

score with the transmitted one. Regardless of how such a tie

is broken, the average error probability given this event is

equal to 1− 1/(ℓ+1). Due to ties, the complexity of computing

the optimal error probability grows exponentially with the

blocklength (see e.g., [1, Theorem 15]), and is cumbersome

even for moderate blocklength. For this reason simpler bounds

were derived by neglecting ties (see e.g., [1]).

In this paper we study the effect of ignoring this event, i.e.,

assuming that in case of a tie, the decoder is always right or

always wrong. The effect depends upon both the channel and

the blocklength. When the likelihood score is a continuous

random variable, the probability of ties is zero. Also, for long

enough blocks, the distribution of the score of a codeword can

be closely approximated by a continuous score (e.g., using the

central-limit theorem).

Nonetheless, the effect of ties is important in two respects.

First, it may be non-negligible for small enough alphabet

size and moderate blocklength. More importantly, as we

show in this paper, the way ties are handled is responsible

for the counterintuitive phenomenon, that the threshold-based

decoding bound (DT) may in certain cases be tighter than the

RCU bound, which is based on maximum likelihood (ML)

decoding. Specifically, this phenomenon is shown to be an

artifact of the way ties are handled in the bounds. We show

this by revisiting the finite-blocklength achievability results of

Polyanskiy et al. [1]. By carefully considering tie events, we

derive a slightly refined RCU bound, that is always tighter

than bounds based upon threshold decoding.

In addition, when it comes to maximal error probability,

tie-breaking is no longer merely an analysis issue. Rather,

ties have to be broken in a balanced manner, such that the

error probability for different messages is equal. In [1], a

randomized decoder is employed to achieve such fairness.

We show that for additive channels (over a finite field), a

deterministic decoder suffices.

II. NOTATION AND BACKGROUND

We consider coding over a memoryless channel with some

finite blocklength n, i.e.:

V (y|x) =
n
∏

i=1

V (yi|xi). (1)

for x ∈ Xn, y ∈ Yn. The channel input and output alphabets

are arbitrary. For the sake of simplicity, we adopt a discrete

notation.1 The codebook is given by x1, . . . , xM , where M
is the number of codewords (that is, the code rate is R =
1/n logM ). The decoder produces an estimate m̂, where the

transmitted message index is denoted by m. The average error

probability, assuming equiprobable messages, is given by:

ǫ =
1

M

M
∑

m=1

P (m̂ 6= m|X = xm) . (2)

The maximum error probability is given by

ǫ = max
m=1...M

P (m̂ 6= m|X = xm) . (3)

For the sake of analyzing the error probability, it is con-

venient to consider code ensembles. All the ensembles we

consider in this paper fall in the following category.

Definition 1 (Random conditionally-symmetric ensemble):

An ensemble is called a random conditionally-symmetric

ensemble (RCSE) if its codewords are drawn such that for

every different m, j, k ∈ {1, . . . M} and for every x, x̄ ∈ Xn:

P (Xj = x̄|Xm = x) = P (Xk = x̄|Xm = x) . (4)

It is easy to verify, that for an RCSE, all codewords are identi-

cally distributed. Thus, X denotes a codeword drawn according

1The bounds do not depend on alphabet sizes, and the results can easily
be translated the results to the continuous case (which is of limited interest
in the context of tie-breaking).



to the (not necessarily memoryless) ensemble distribution P
over the set Xn. With this input distribution, the information

density of a pair (x, y) is given by:

i(x; y) = log
V (y|x)

PV (y)
, (5)

where PV (y) is the output distribution induced by P (x) and
V (y|x). Y denotes the output corresponding to the random

input X, and the random variable i(X;Y) is defined accord-

ingly. In addition, we define a codeword X̄ as a codeword

other2 than the one that generated Y.3 Therefore, i(X̄;Y) is

the information density of a pair (X̄,Y).

The importance of deriving bounds for an RCSE is due to

the fact that this class includes many interesting ensembles. An

important special case of RCSE is the pairwise-independent

ensemble:

Definition 2 (Pairwise-independent ensemble): A pairwise

independent ensemble (PIE) is an ensemble such that its code-

words are pairwise-independent and identically distributed.

That is, for any two indices i 6= j and an index m,

P (Xi = xi|Xj = xj) = P (Xi = xi) = P (xm). (6)

We note that the codewords of an RCSE are not necessarily

pairwise independent. One example is of linear random codes

with a cyclic generating matrix [2]. Generally, an RCSE

(which are not necessarily PIE) can be constructed by first

drawing a class of codewords, and then, randomly (uniformly

and independently) drawing the codewords from this class.

Finally, the following class of channels turns out to play a

special role.

Definition 3 (Additive channels): A channel is additive

over a finite group G with an operation, if X = Y = G,
and the transition distribution V (y|x) is compatible with

Y = X +N

where N is statistically independent of X , and “+” denotes

the operation over G.4

For example, for discrete modulo-additive channels over Zq ,

addition is performed modulo q. The importance of additive

channels stems from the following lemma.

Lemma 1: Consider an additive channel over G, and a

codebook drawn from a PIE with uniform input distribution

over Gn, i.e. P (x) = |G|−n ∀x ∈ Gn. Then, i(X̄;Y) is

statistically independent of (X,Y).

Proof: For this channel the information density (5) of

(x̄, y) is equal to

i(x̄; y) = log
PN(y− x̄)

PY(y)
, (7)

2In a random codebook it may happen that the codebook contains some
identical codewords. Thus it is possible that X̄ = X, as long as they represent
different messages.

3In [1], the notation i(X; Ȳ) is sometimes used; for RCSE, the two are
equivalent.

4The operation “−” over the group, which is uniquely defined by the
operation “+”, such that for any a, b, c ∈ G : a− b = c iff a = c+ b.

where PN(·) is the noise distribution, and PY(·) is the channel
output distribution. Since X̄ is uniformly distributed over

Gn and statistically independent of (X,N), then Y − X̄ is

statistically independent of (X,Y); moreover, any function of

Y− X̄ is also statistically independent of (X,Y). In particular

PN (Y− X̄) is independent of (X,Y).
Since X is uniformly distributed over Gn, the channel output

Y is also uniformly distributed over Gn. Hence, PY(Y) is

statistically independent of (X,Y). These two observations

conclude the proof.

III. I.I.D. CODEBOOKS

Before stating the main results that apply to any RCSE,

we begin with simple bounds that hold for the special case

of an i.i.d. ensemble. That is, all codewords are mutually

independent, and each is distributed according to P (X). In
this case, the average error probability is well known, although

hard to compute [1]. Denote:

W = P
(

i(X̄;Y) = i(X;Y)|X,Y
)

(8a)

Z = P
(

i(X̄;Y) < i(X;Y)|X,Y
)

. (8b)

Then, for an i.i.d. ensemble [1, Thm. 15]:

ǫ(iid) = 1−
M−1
∑

ℓ=0

1

ℓ+ 1
·

(

M − 1

ℓ

)

EX,Y

(

W ℓZM−1−ℓ
)

. (9)

This result follows since for equiprobable codewords, ML de-

coding amounts to maximum information density. We note that

ℓ represents the number of competing codewords that share the

maximal information density score with the correct one; given

ℓ, the correct codeword will be chosen with probability 1/(ℓ+1).

If W = 0 (as happens when V (Y |x) is a proper density for

every x ∈ X ), the calculation is straightforward. Otherwise,

it has exponential complexity. Thus, the main burden is with

dealing with ties. The following simple bounds can be used

to circumvent this burden.

Proposition 1 (Bounds for i.i.d. codebooks): For an i.i.d.

ensemble,

1− EX,Y

[

(W + Z)M−1
]

≤ ǫ(iid) ≤ 1− EX,Y

[

ZM−1
]

.
(10)

This result can be shown either from (9) or directly. For the

lower bound, in case multiple codewords (including the correct

one) attain the maximal information density, the correct one is

always chosen; for the upper bound, it is never chosen under

such circumstances. Of course, as the upper bound is just the

first term in (9), one may tighten it by taking more terms. The

difference between the lower and upper bounds may be quite

significant, as demonstrated in Figure 1.

IV. BOUNDS FOR RCSE

A. Maximum-Likelihood Union Bounds

When the codewords are not statistically independent, we

can no longer use products of probabilities as done in the

previous section. However, for providing an upper bound on

the error probability, we can use a union bound. We derive a
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Fig. 1. The effect of tie-breaking on the performance of i.i.d. codebooks.
We demonstrate the effect using a BSC with crossover probability 0.3, at
blocklength n = 100. The triangle- and square- marked solid curves give
the lower and upper bounds of Proposition 1, respectively. The ×-marked
solid curve is the exact error probability of the i.i.d. ensemble (9), evaluated
by taking enough terms in the sum, such that the effect of additional ones
is numerically insignificant. For reference, the circle-marked dashed curve
gives the tightest lower bound on the error probability, which holds for any
codebook [1, Theorem 16].

result that is close in spirit to the RCU bound [1, Theorem

16], which states that ǫ(iid) ≤ ǫRCU,
5 where

ǫRCU , EX,Y [min {1, (M − 1) · (1− Z)}] . (11)

We improve this bound in two ways: first, it is extended to any

RCSE, and second, the case of equal maximal information-

density scores (ties) is taken into account.

Theorem 1 (RCU∗ bound): The average error probability

of an RCSE satisfies ǫ(RCSE) ≤ ǫRCU∗ where

ǫRCU∗ , EX,Y

[

min

{

1, (M − 1) ·

(

1− Z −
W

2

)}]

, (12)

where the conditional probabilities W and Z are given by (8).

Proof: Without loss of generality, assume that the trans-

mitted codeword index is m = 1. The ML decoder will

choose the codeword with maximal information density; in

case of equality, it will uniformly draw a “winner” between

the maximal ones. Let Cj be the event that the codeword j
was chosen in such a drawing. Denote the following events:

Aj
△
= {i(Xj ;Y) > i(X;Y)} (13a)

Bj
△
= {i(Xj ;Y) = i(X;Y)} . (13b)

and A
△
=

⋃M

j=2 Aj , B
△
=

⋃M

j=2 Bj . Also denote

Ψ
△
= {m = 1 ∧X1 = x1 ∧Y = y} . (14)

5Indeed, it is noted in [1, Appendix A] that pairwise independence is
sufficient.

Then

S(x1, y)
△
= P (A ∪ [B ∩ cC1]|Ψ) (15a)

≤ P (A|Ψ) + P (B ∩ cC1|Ψ) (15b)

= P (A|Ψ) + P (B|Ψ) · P (cC1|Ψ, B) (15c)

≤ P (A|Ψ) +
1

2
P (B|Ψ) (15d)

≤ (M − 1)(1−W − Z) +
1

2
(M − 1)W (15e)

= (M − 1) (1− Z −W/2) , (15f)

where (15b) is due to the union bound; (15d) holds since given

that there is at least one competing codeword (any codeword

other than the transmitted one, having maximal score), then the

probability that the transmitted codeword will not be chosen in

the decoding is less than 1/2; (15e) is due to the union bound.

The error probability is given by:

ǫ(RCSE) = P (A ∪ [B ∩ cC1]|m = 1) (16a)

= EX1,YS(X1,Y) (16b)

= EX1,Y min {1, S(X1,Y)} . (16c)

Substituting (15f) in (16c) concludes the proof.

Remark 1: We can give the RCU∗ bound the following

interpretation. First, each potential input xj is given an

information-density score (equivalent to a likelihood score)

ij . Then, these scores are fed to a comparison process. The

process is biased against the correct codeword, in the sense

that it has to beat each and every competing codeword.

However, each pairwise comparison itself is optimal (the

correct codeword will beat a competing one with lower score),

and fair (in case of a tie, both codewords are equally likely

to win). This comparison mechanism is worse than the actual

decoder used in the proof, since in the case where the correct

codeword shares the maximal score with ℓ competitors, it has

probability 2−ℓ to be chosen, rather than 1/(ℓ+1); yet, the union

bound for both is equal.

B. Relation to Gallager’s Type-I bound

The following bound is due to Gallager.

Proposition 2 (Gallager type-I bound [3, Sec. 3.3]): For

any constant t

ǫ(RCSE) ≤ ǫG-I(t), (17)

where

ǫG-I(t)
△
= P (i(X;Y) < t) +

+ (M − 1)P
(

i(X;Y) ≥ t ∧ i(X̄;Y) ≥ i(X;Y)
)

.
(18)

Just like the RCU, this bound is obtained by applying a

union bound for the ML decoder. However, it is inferior to

the RCU bound, due to the following consideration. Taking

the minimum between the union and 1 in the RCU bound is

similar to the threshold t in (18), in the way that it avoids over-

estimating the error probability in cases where the channel

behavior was “bad”. However, whereas the RCU bound uses



the optimal threshold given X and Y, the Gallager bound uses

a global threshold, which reflects a tradeoff. Nevertheless, for

additive channels (recall Definition 3) the local and global

thresholds coincide.

Proposition 3: For any RCSE and for any t:

ǫG-I(t) ≥ ǫRCU, (19)

where ǫG-I(t) and ǫRCU are defined in (18) and in (11)

respectively. If the channel is additive and the code ensemble

is PIE with uniform distribution over X , then there exists a

value t such that equality holds.

Proof: For the first part, define the events A
△
=

{

i(X̄;Y) ≥ i(X;Y)
}

and T
△
= {i(X;Y) ≥ t} (cT denotes the

complementary event). Then:

ǫRCU = EX,Y [min {1, (M − 1) · (1 − Z)}] (20a)

≤ P (cT ) + P (T ) · EX,Y [(M − 1)P (A|X,Y)|T ] (20b)

= P (cT ) + (M − 1)P (T ) · P (A|T ) (20c)

= ǫG-I(t) (20d)

For the second part, recall that by Lemma 1, i(X̄;Y) is

statistically independent of (X,Y). Denote by t∗ the minimal

threshold t such that

(M − 1)P
(

i(X̄;Y) ≥ t
)

≤ 1.

Then (M − 1)P
(

i(X̄;Y) ≥ i(X;Y)
∣

∣i(X;Y) < t∗
)

≥ 1. We

have that: EX,Y [min {1, (M − 1)(1− Z)}|i(X;Y) < t∗] = 1,
i.e., the inequality in (20b) becomes an equality in this case.

Remark 2: It follows, that for the BSC, ǫG-I(t
∗) = ǫRCU.

Indeed, it is noted in [1] that for the BSC, the RCU bound

is equal to Poltyrev’s bound [4]; this is not surprising, since

the latter is derived from (18) (Poltyrev’s bound uses linear

codes, see Section V in the sequel).

Remark 3: Gallager’s type I bound can be improved by

breaking ties, similar to the improvement of RCU∗, leading

to G-I∗. An analogous result to Proposition 3 relates G-I∗

and RCU∗.

C. Threshold-Decoding Union Bounds

The average error probability of an RCSE can be further

upper-bounded using the sub-optimal threshold decoder [5].

This decoder looks for a codeword that has a likelihood score

above some predetermined threshold. In [1, Theorem 18] a

union bound is derived for such a decoder, where if multiple

codewords pass the threshold, the winner is chosen uniformly

from among them.6 The resulting “dependence testing” (DT)

bound is given by:

ǫDT(t) , P (i(X;Y) ≤ t) +
M − 1

2
P
(

i(X̄,Y) > t
)

, (21a)

6In fact, the proof states that the “first” codeword to pass the threshold is
selected. However, such ordering of the codewords is not required.

where the optimal threshold is given by7

t = log
M − 1

2
. (21b)

A troubling behavior, demonstrated in [1] using the binary

erasure channel (BEC), is that sometimes ǫRCU > ǫDT. This
is counterintuitive since the DT bound is derived by applying

a union bound to a sub-optimal decoder. We find that this

phenomenon stems from the fact that the RCU bound ignores

ties, and prove that the improved bound, denoted by RCU∗,

always satisfies ǫRCU∗ ≤ ǫDT. To that end, we also prove

a (very slightly) improved bound for the threshold decoder,

which will be referred as the TU bound, that is closer in form

to the ML bounds (11) and (18) and allows for a simpler

comparison. It uses the following definitions (cf. (8)).

Let

Wq = P
(

q(i(X̄;Y)) = q(i(X;Y))|X,Y
)

(22a)

Zq = P
(

q(i(X̄;Y)) < q(i(X;Y))|X,Y
)

, (22b)

where q(i) is the indicator function:

q(i)
△
= 1{i>t}. (22c)

Proposition 4: For an RCSE and for any t,

ǫ(RCSE) ≤ ǫTU(t), (23)

where

ǫTU(t) , EX,Y

[

min

{

1, (M − 1) ·

(

1− Zq −
Wq

2

)}]

.

(24)

Furthermore, ǫTU(t) ≤ ǫDT(t).

Proof: For proving achievability, consider a decoder

identical to the ML decoder, except that before comparing

the codewords, the information-density scores are quantized

according to (22c). For the comparison to the DT bound,

denote Q
△
= P

(

i(X̄,Y) > t
∣

∣X,Y
)

. Then:

ǫDT(t) = EX,Y

[

1{i(X;Y)≤t} +
M − 1

2
Q

]

≥ EX,Y

[

min

{

1, (M − 1) ·

[

1{i(X;Y)≤t} +
1

2
Q

]}]

≥ EX,Y

[

min

{

1,
M − 1

2
·
[

1{i(X;Y)≤t} +Q
]

}]

= ǫTU(t).

Remark 4: It is not obvious that the optimal threshold for

the TU bound is t of (21b). However, it is good enough for

our purposes.

Proposition 5: For any channel, ǫRCU∗ ≤ ǫTU(t) for any t.
Thus, the RCU∗ bound is tighter than the DT bound, i.e.:

ǫRCU∗ ≤ ǫDT(t).

7In [6], the threshold is further optimized, depending on the competing
codeword and on the received word
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Fig. 2. The effect of tie-breaking on the performance of PIE codebooks of the
different union bounds. We demonstrate the effect using a BSC with crossover
probability 0.3, at blocklength n = 100. The triangle-marked dashed curve is
the DT bound (21). The asterisk-marked dashed curve is the TU bound (24).
The dashed curve is the RCU bound (11). The diamond-marked solid curve is
the RCU∗ bound (12). For reference, we repeat two of the curves of Figure 1.
The ×-marked solid curve is the exact performance of the i.i.d. ensemble (9),
while the circle-marked dashed curve is the lower bound for any codebook [1,
Theorem 16]. The non-smoothness of some of the curves is not an artifact,
but comes from the fact that they involve integers.

Proof: Recalling Remark 1, the RCU∗ bound reflects

optimal (ML) pairwise decision. Thus, necessarily the pairwise

error probabilities satisfy Z +W/2 ≥ Zq +Wq/2.
Remark 5: The case of the BEC, where ǫRCU∗ = ǫTU =

min (1, ǫDT) is very special. In the BEC, a competing code-

word cannot have a higher score than the true codeword; if

the channel realization is such that the non-erased elements

of x and x̄ are equal, then i(x̄; y) = i(x; y), otherwise

i(x̄; y) = −∞. Thus, ǫRCU∗ = EX,Y [min {1, (M − 1)W/2}] .
Let k be the number of non-erased symbols out of the block

of n. Then W = 2−k. Consequently, (M − 1)W/2 > 1 if and

only if i(x; y) < t, where t is given by (21b) (with logarithms

to base 2).

D. Performance Comparison

Comparison of the different union bounds is given in

Figure 2. In particular, the effect of tie-breaking on the bounds

is shown by the comparison of the RCU bound (11) and the

RCU∗ bound (12). Notice that this bound depends on the

ensemble. Due to Lemma 1, the computation of the RCU and

RCU∗ bounds for PIE becomes simple. For this reason bounds

are shown for this ensemble. Since an i.i.d. ensemble is also

PIE, the exact error probability for i.i.d. ensemble (9) is given

as a reference.

V. LINEAR CODES

A. The Dithered Linear Codes Ensemble

For any finite field Fq of cardinality q, we define the dithered
linear codes ensemble by

C =
{

Xj = Gwj + D
∣

∣wj ∈ F
k
q

}

, (25)

where G is a n × k random generator matrix, D is an n-
dimensional random shift, and the elements of G and D are

drawn uniformly over Fq and are statistically independent. It

follows that the codebook size is M = qk.

B. Additive Channels

It is proven in [1, Appendix A] that for a class of channels,

which includes the BSC and the BEC, there exists a random-

ized ML decoder such that the maximal error probability ǫ (3)
coincides with the average one.

We now restrict our attention to channels that are additive,

in the sense of Definition 3. Further, assume that the channels

are additive over a finite field, which is the same field over

which the code is linear. Clearly, in this situation the dither

does not change the distance profile of the codebook. Thus, it

suffices to consider the linear codes ensemble

C =
{

Xj = Gwj

∣

∣wj ∈ F
k
q

}

, (26)

where again G is i.i.d. uniform over Fq. More importantly, we

show that in order to achieve good maximal error probability,

there is no need to use randomized decoders.

Theorem 2: For any channel that is additive over a finite

field, for an ensemble of linear codes over the field, there

exists a deterministic decoder satisfying:

ǫ ≤ ǫRCU∗ . (27)

Proof outline: Let Ω1, . . . ,ΩM be a partition of the

output space Yn into decision regions (for any 1 ≤ m ≤ M ,

Ωm is associated with codeword m). From (7), a partition is

optimal in the average error probability sense, if and only if

it satisfies:

Ωm ⊆
{

y ∈ F
n
q

∣

∣∀m′ 6= m : PN(y − xm) ≥ PN(y− xm′)
}

(28a)

Ωm ⊇
{

y ∈ F
n
q

∣

∣∀m′ 6= m : PN(y − xm) > PN(y− xm′)
}

,
(28b)

and for allm 6= m′: Ωm∩Ωm′ = ∅. Since for any such optimal

partition ǫ ≤ ǫRCU∗ , it is sufficient to show that there exists a

partition satisfying (28) for which ǭ = ǫ. By performing coset

decomposition Ω1, . . . ,ΩM of F
n
q such that (28) holds, the

decision regions are equal up to a translation. Thus, the ties

are broken in a balanced manner.
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