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ABSTRACT

An efficient sparse antenna array architecture is developed for coher-
ent imaging of sparse but otherwise unknown scenes. In this archi-
tecture, the array elements form a periodic nonuniform pattern. Us-
ing analysis that explicitly takes into account the presence of noise,
we develop an efficient pattern design procedure based on co-arrays,
describe an efficient scene support recovery algorithm as part of im-
age reconstruction in the form of a modification to the MUSIC al-
gorithm, and discuss a failure detection technique based on evaluat-
ing “back-projection” error. Since our development exploits a close
connection to multi-coset sampling of bandlimited waveforms, our
results may in turn may also be useful in the design of those systems.

Index Terms— antenna arrays, sparse sampling, compressed
sensing, MUSIC algorithm, millimeter-wave imaging

1. INTRODUCTION

CMOS circuits now operating at terahertz frequencies are enabling
host of low-cost millimeter wave imaging applications. This, in turn,
is creating important opportunities and new signal processing chal-
lenges in sensor and array processing.

One significant challenge is the number of array elements typi-
cally required. In a vehicle collision avoidance system, for example,
obtaining sufficient resolution might require an aperture of roughly
2m. But in this case a traditional phased array operating at 100 GHz
with half-wavelength element spacing would require roughly 1000
antennas, which is daunting to system designers.

In this work, we focus on significantly reducing the number of
antenna elements required for a given aperture. There is a long his-
tory of such development in both the antenna and array processing
communities. General-purpose approaches have tended to lead to
limited gains; see, e.g., [1] and references therein. However, in some
cases, large reductions are possible.

Consider, for example, the classical problem of direction-finding
with multiple sources, to which, e.g., the MUSIC algorithm [2] is
often applied. In this case, it is possible to achieve high-resolution
with relatively few antenna elements because of the simple structure
of scene. Indeed, the number of elements required is typically on the
order of the number of sources. Hence, the presence of structure in
the environment allows the number of elements to be reduced.

This general insight can be exploited in a variety of ways in
emerging systems. In particular, when the scene being imaged is
sparse in an appropriate sense—even without knowing where it is
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sparse—then it is possible to commensurately reduce the number of
elements in an imaging array. Moreover, such sparseness is quite
common in typical applications.1

For antennas of just a few elements, the array design and image
reconstruction can often be fairly straightward and exploit classical
techniques. However, for arrays of even a few dozen elements, such
direct approaches quickly become computationally infeasible to de-
sign, and impractical to implement. As a result, there is a need to
impose useful structure on the array, to enable efficient design and
processing; in particular, the class of structured nonuniform arrays
has received increased attention in recent work within the frame of
sparse sensing (see, e.g., [3]).

As is well known in the community, there is a close mathemati-
cal relationship between the problem of imaging from a discrete ar-
ray, and that of reconstructing a bandlimited time-domain waveform
from samples. We exploit this connection in our development. In
particular, there has been much work on the reconstruction of wave-
forms whose frequency content is limited to subbands of the full
bandwidth from samples taken at the Landau rate. The Landau rate
is proportional to the actual spectral support and thus often signifi-
cantly lower than the classical Shannon-Nyquist rate determined by
the full bandwidth. Moreover, in such work, the location of the fre-
quency bands often not be known a priori.

In our development, we focus on the antenna-array counterpart
of a particular structured approach based on multi-coset sampling
[4], which uses a quasi-periodic (recurrent nonuniform) sampling
pattern. In [5], we described the adaptation of multi-coset sam-
pling to imaging arrays, and emphasized the finite-window effects
that play a more prominent role in the latter. In this paper, we more
fully develop the system design, implementation, and signal process-
ing, explicitly taking noise into account in our analysis. Our analysis
yields: 1) a novel class of effective multi-coset patterns; 2) an effi-
cient support recovery method based on a simple modification to the
MUSIC algorithm; and 3) a methodology for detecting reconstruc-
tion failures when the scene density exceeds the level for which an
array is designed.

2. MULTI-COSET IMAGING

We begin by summarizing those aspects of multi-coset array im-
age reconstruction required for our development. We focus on the
regime where the number of array elements N is large, and defer
noise considerations. For further details, see [5].

1Note that in a typical scene while there are objects at some range in any
particular direction, when we use enough bandwidth to sufficiently resolve
range as well, we find significant sparseness in the range-azimuth plane.



2.1. Scene Model, Array Structure, and Notation

Let x[n] be the complex-valued response at array element n of a
half-wavelength spaced uniform array. Its Fourier transform X(ψ)
is the value of the corresponding far-field image in the direction θ,
where ψ = sin θ/2.

Of interest are far-field scenes that are sparse. For any pair of
integers Q ≤ L, we say that a scene is (Q,L)-sparse if X(ψ) = 0
for all ψ /∈ ΨQ, where

ΨQ =

Q−1⋃
k=0

[
qk
L
,
qk + 1

L

)
, (1)

where Q = {q0, q1, . . . , qQ−1} is referred to as the (block) support
of the scene, with qk ∈ Z, for all k, and 0 ≤ q0 < q1 < · · · <
qQ−1 ≤ L− 1.

For sparse scenes it is possible to reconstruct x[n] from a sub-
set of the array elements. One such class of subsets, is multi-coset
arrays. We view such array as being composed of L overlapping
uniformly spaced subarrays, termed cosets. The coset response is
then

x(p)[n] = x[n]
∑
m

δ[n− (mL+ p)], 0 ≤ p ≤ L− 1. (2)

For any pair of integers P ≤ L, a (P,L) multi-coset array is the
union of some choice of P of these cosets. The particular choice
of cosets P = {p0, p1, . . . , pP−1} with 0 ≤ p0 < p1 < · · · <
pP−1 ≤ L− 1 is referred to as the coset pattern of the array.

2.2. Image Reconstruction Given Known Support

The image formed from a single coset response X(p)(ψ) is the
Fourier transform of (2). Due to the excess spacing between the
coset elements, the coset image suffers from aliasing (grating lobes),
appearing as L identical sectors. As a result, we may ignore all but
one of the sectors. Following [4, 5], we define

Yp(ψ) , X(p)(ψ)H(ψ),

Xq(ψ) , X(ψ + q/L)H(ψ),
H(ψ) ,

{
1 ψ ∈ [0, 1/L)

0 otherwise,

whence

Yp(ψ) =

L−1∑
q=0

ApqXq(ψ) with Apq ,
1

L
ej2πpq/L. (3)

When the scene is (Q,L)-sparse as in (1), the summation need
only be taken over q ∈ Q. The system of equations relating the coset
images for P to the original image in the support Q may be written
in the form YP(ψ) = APQXQ(ψ). When APQ has full rank, we
can reconstruct XQ(ψ) via XQ(ψ) = A+

PQYP(ψ), where A+
PQ =

(A†PQAPQ)−1A†PQ is the pseudoinverse of the measurement matrix.
A pattern P which guarantees full rank for any support Q of size up
toQ is called a universal pattern. It is shown in [4] that such patterns
exist as long as P ≥ Q.

2.3. Blind Support Recovery

When the support Q is not known a priori, as is the case of interest
in this work, an estimate Q̂ is obtained from the available measure-
ments; this is referred to as blind support recovery. In this case, we
rewrite (3) as

YP(ψ) = APX(ψ), (4)

where the omission of the subscript Q implies the inclusion of all
sectors in the expression. Eq. (4) is an underdetermined system, but
since X(ψ) has at most Q nonzero entries, it can be solved as a
compressed sensing (CS) problem. Furthermore, since the location
of these nonzero entries is the same for all ψ ∈ [0, 1/L), this is an
instance of CS with so-called multiple measurement vectors (MMV).
In terms of the scene correlation matrix

SX =

∫ 1/L

0

X(ψ)X†(ψ) dψ, (5)

support recovery is guaranteed whenever [6, 7]

P ≥ 2Q− rank(SX) + 1. (6)

When, in addition, {Xq(ψ)} form a linearly independent set, (6)
becomes P ≥ Q+ 1, which is much more favorable than the worst-
case 2Q. While such linear independence holds for most scenes of
interest, this may not be the case for finite arrays (where the effective
number of measurements is reduced).

3. SUPPORT RECOVERY ALGORITHMS

One approach to support recovery is based on `1-minimization. With
this approach, the coset correlation matrix

SYP
=

∫ 1/L

0

YP(ψ)Y†P(ψ) dψ = APSXA†P (7)

is expressed as SYP
= VV†, where V = APW. Since AP is

P ×L with P ≤ L, the matrix W is not unique. While we seek the
solution W0 that minimizes the number of rows having nonzero en-
tries, CS replaces this `0-minimization with a computationally more
convenient `1-minimization. Specifically, defining the length-L vec-
tor w with entries equal to the `2-norm of the corresponding rows of
W, we solve

W1 , arg min
W

‖w‖1 s.t. V −APW = 0.

A computationally simpler alternative to the `1-minimization,
originally proposed in [4], is based on the MUSIC algorithm. Specif-
ically, in the absence of noise, the correlation matrix (7) has Q
nonzero eigenvalues, so we partition the eigenvector matrix as
U = [US UN], where the P × (P − Q) matrix UN containing
the eigenvectors corresponding to the zero-valued eigenvalues rep-
resents the noise subspace of U. Each of the L columns of AP is
projected onto the noise subspace. Since the columns corresponding
to the active sectors contained within the support Q lie in the sub-
space orthogonal to UN, their projections will be zero, and thus we
recover the support Q̂ as the indices of these columns.

3.1. Recovery in the Presence of Noise

Additional care is required when noise is present. In the `1 mini-
mization approach, the constraint must be relaxed in order to obtain
a sparse solution, while with the MUSIC-based approach, difficul-
ties arise due to the finite array lengths that must be employed in
practice—US and UN no longer accurately partition the signal and
noise subspaces, and the eigenvalues associated with UN take on
nonzero values.

The situation is complicated further when the support size Q is
unknown. In these cases, an intermediate step must be included to
estimate the signal subspace dimension Q̂. In the case of MUSIC,
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Fig. 1. Comparative performance of the support recovery algorithms
in noise for a scene with Q = 7 active sectors using an array with
coset period L = 19, and P = 9 active cosets. The coset pattern is
P = {0, 1, 2, 3, 5, 7, 12, 13, 16}.

this may be accomplished through direct thresholding of the eigen-
values; more sophisticated approaches are described in [8]. How-
ever, when Q̂ > Q, two issues arise: 1) the estimate of the dimen-
sionality of the noise subspace P − Q̂ is reduced making the recov-
ery estimate less accurate; and 2) the matrix APQ̂ used in the re-
construction is more poorly conditioned, resulting in increased noise
amplification.

A weighted version of the MUSIC algorithm based on the eigen-
value (EV) method [9] accounts for errors due to finite sample sets
by weighing the projections onto each subspace direction more heav-
ily for smaller eigenvalues via the null spectrum

DEV(q) =

(
P∑

m=Q+1

λ−1
m |a†qum|2

)−1

. (8)

However, this continues to require an estimate of Q. To obviate the
need such an estimate, we further modify the EV method, weighing
the entire column space of U via

D̃EV(q) =

(
P∑

m=1

(
λ−1/2
m − λ−1/2

1

)2
|a†qum|2

)−1

. (9)

Using numerical simulation, we obtain that the modified EV re-
tains the performance of the `1-minimization approach while pre-
serving the computational complexity of the MUSIC approach, as
depicted in the representative results of Fig. 1. In the simulations, the
recovery algorithms were applied randomly generated sparse scenes,
with white Gaussian noise added to the measurements.

4. ARRAY DESIGN

We now describe a design procedure for the multi-coset array.

4.1. Array Parameters

First, the choice of the coset period L involves a compromise. Large
values of L leads to a finer partitioning of scene support via (1),

allowing sparsity to be exploited more completely. However, small
values of L increase the number of periods in the array, which keeps
side lobes small [5], and improves the rank of (5), facilitating support
recovery.2 In practice, it is generally best to choose the smallest L
for which the block density has largely converged to the its value in
the L→∞ limit.

For the number of active cosets P , choosing P = Q+ 1 will be
sufficient for most scenes, though in low SNR settings, support re-
covery is generally much better with at least some additional margin;
e.g., at least P = Q+ 2.

4.2. Coset Pattern Selection

Although there are many universal coset patterns that guarantee
scene recovery in the absence of noise (such as the “bunched” pat-
tern PB = {0, 1, . . . , P−1}), universal patterns (like PB) for which
APQ is ill-conditioned will not be good when noise is present. And
while coset patterns with low condition numbers κ(APQ) for all Q
will ensure good reconstruction SNR (RSNR), a brute force search
for such patterns is impractical for all but the smallest values of L.

Instead, we develop a computationally much simpler approach
inspired by the “minimum redundancy linear array (MRLA)” de-
signs introduced in [10]. MRLAs minimize the number of sensor
pairs having identical spacings in an attempt to obtain the best repre-
sentation of the full correlation matrix with the fewest elements. Our
approach can be viewed as a key modification to this methodology in
which we take into account the periodic structure the multi-coset ar-
ray. For this purpose, we define a distance between two cosets as the
minimum distance between the corresponding coset elements within
either the same, or the neighboring, coset periods; specifically, this
distance is tlk = min{|l − k|, L− |l − k|}.

To develop the methodology, consider the correlation matrix as-
sociated with all L cosets, i.e., SY = ASXA†. Moreover, for the
moment, consider the model in which the Q functions {Xq(ψ)}
in (5) comprise a linearly independent set such that {SX}m,n =
σ2
mδmn, where σ2

m = {SX}m,m is the signal energy from block m.
In this case, SY will have Hermitian-circulant structure, i.e.,

{SY}lk =
1

L2

L−1∑
q=0

σ2
qe
j2π(l−k)q/L. (10)

In (10), the dependence of the matrix entries on the relative spacing
between elements indicates the importance of the pairwise spacings
as represented by the 2(L− 1) off-diagonals. Specifically, the infor-
mation contained in SY can be obtained by representing each of the
possible spacings a single time. The symmetries in the Hermitian-
circulant structure reduce the number of parameters by a further fac-
tor of four, suggesting the entire matrix could be represented by only
d(L− 1)/2e parameters. In reality, there will be measurement noise
and some correlation between the different sectors, and thus SY will
vary to some extent along each diagonal. As such, multiple occur-
rences of a particular pairwise spacing can be interpreted as multiple
samples of noisy data, suggesting that evenly distributed spacings
are desirable.

Such designs can be found quite efficiently. In particular, to
determine the number of occurrences of each pairwise spacing in a
given pattern P, we let sk = 1 if k ∈ P (and zero otherwise) and

2The number of periods plays a role similar to the number of “snapshots”
in traditional direction-finding problems.



L P P∗ c∗ γO γB

7 3 {0 1 3} 1 -2.0 4.0
7 4 {0 1 2 4} 2 0 4.4
11 5 {0 1 2 4 7} 2 0 12.3
11 6 {0 1 2 4 5 7} 3 0 11.8
13 4 {0 1 3 9} 1 -1.5 13.7
13 9 {0 1 2 3 4 5 7 9 10} 6 0 14.2
19 9 {0 1 2 3 5 7 12 13 16} 4 0 37.9
19 10 {0 1 2 3 5 7 12 13 15 16} 5 0 38.4

Table 1. Some modified co-array coset patterns P∗.

−10 −5 0 5 10

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

em
pi

ric
al

 r
ec

ov
er

y 
pr

ob
ab

ili
ty

 

 

condition number
bunched
co−array

Fig. 2. Support recovery performance for different coset patterns,
with L = 7, P = 3, and Q = 2.

compute

c(t) =
∑

{(l,k) : tlk=t}

sl sk, 1 ≤ t ≤ (L− 1)

2
, (11)

which is a modification of the co-array in MRLA design. Since the
total number of spacings is identical for all patterns of length P , we
select the pattern having the co-array with smallest `2-norm.

Examples of the modified co-array coset patterns P∗ are pro-
vided in Table 1 for several choices of (prime) L and P . Our choices
of L and P in this table have the special quality that the number of
unique element pairs P (P − 1)/2 is an integer multiple of the num-
ber of possible spacings (L−1)/2, so that for all spacings t we have
c(t) = c∗ for some c∗. For reference the loss γO in condition num-
ber (in dB) relative to the minimum possible is shown, along with
the gain γB (in dB) relative to the “bunched” coset pattern.

To evaluate their effectiveness in support recovery, the modified
co-array designs were evaluated using numerical simulation. Re-
markably, the modified co-array designs were consistently superior
to the minimum condition number designs (when they differed), as
well as to all other designs to which we compared them. Fig. 2 illus-
trates a representative scenario.

5. FAILURE DETECTION

In applications, it is often critical to be able to detect when the
scene density exceeds the level for which a given multi-coset ar-
ray is designed, to prevent false images from being produced. In

principle, this capability is straightforward to incorporate into the
multi-coset architecture based on evaluating what can be viewed as
a back-projection error (BPE).

Consider a (P,L) multi-coset array with coset pattern P and a
(Q,L)-sparse scene, whereQ is unknown. Using a support estimate
Q̂ obtained from the measurements YP(ψ), the image estimate is
X̂Q̂(ψ) = A+

PQ̂
YP(ψ). If Q̂ is correct,

ŶPQ̂(ψ) , APQ̂X̂Q̂(ψ) = APQ̂A
+

PQ̂
YP(ψ) ≈ YP(ψ) (12)

where the degree to which approximation holds depends on the SNR.
Since APQ̂A

+

PQ̂
is the projection matrix onto the range of APQ̂,

(12) projects the available data YP(ψ) back onto the subspace from
which it was estimated to have come. As such, the mean-square
back-projection error

σ2
BPE =

∫ 1

0

‖YP(ψ)− ŶPQ̂(ψ)‖22dψ (13)

is a measure of the integrity of the reconstruction.
As discussed in Section 2, at sufficiently high SNR, a multi-

coset array with a (P,L)-universal pattern is able to recover the sup-
port Q of a (Q,L)-sparse scene in most cases provided the scene
is sufficiently sparse, i.e., Q ≥ P − 1. In such cases, since the
support estimate is (or contains) the correct support (Q ⊆ Q̂), the
back-projection error is zero. However, when the scene is too dense,
the recovery stage will fail to fully determine the support (Q̂ ⊂ Q).
In this case, much of the energy contained in the unidentified support
blocks Q\Q̂ will vanish during back-projection, allowing the failure
to be detected via (13). In practice, the BPE threshold at which we
declare a failure depends on SNR; we omit the details due to space
constraints.

6. REFERENCES

[1] Y.T. Lo and S.W. Lee, Antenna Handbook: Antenna Theory,
Van Nostrand Reinhold, New York, NY, 1993.

[2] R. O. Schmidt, “Multipe emitter location and signal parameter
estimation,” IEEE Trans. Antennas Propag., vol. 34, no. 3, pp.
276–280, Mar. 1986.

[3] P.P. Vaidyanathan and P. Pal, “Sparse sensing with co-prime
samplers and arrays,” Signal Processing, IEEE Transactions
on, vol. 59, no. 2, pp. 573–586, Feb.

[4] P. Feng and Y. Bresler, “Spectrum-blind minimum-rate sam-
pling and reconstruction of multiband signals,” in Proc.
ICASSP, Atlanta, GA, 1996, vol. 3, pp. 1688–1691.

[5] Y. Kochman and G. W. Wornell, “Finite multi-coset sampling
and sparse arrays,” in Proc. ITA, La Jolla, CA, 2011, pp. 1–7.

[6] Y. M. Lu and M. N. Do, “A theory for sampling signals from a
union of subspaces,” IEEE Trans. Signal Process., vol. 56, no.
6, pp. 2334–2345, 2008.

[7] M. Mishali and Y. C. Eldar, “Blind multiband signal re-
construction: Compressed sensing for analog signals,” IEEE
Trans. Signal Process., vol. 57, no. 3, pp. 993–1009, 2009.

[8] H. L. Van Trees, Optimum Array Processing (Detection, Esti-
mation, and Modulation Theory, Part IV), Wiley-Interscience,
New York, NY, 2002.



[9] D. Johnson and S. DeGraaf, “Improving the resolution of
bearing in passive sonar arrays by eigenvalue analysis,” IEEE
Trans. Acoust., Speech, Signal Process., vol. 30, no. 4, pp. 638–
647, 1982.

[10] A. Moffet, “Minimum-redundancy linear arrays,” IEEE Trans.
Antennas Propag., vol. 16, no. 2, pp. 172–175, 1968.


