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Abstract—Signals with sparse but otherwise unknown
frequency content are well-represented by multi-coset
samples, and efficient algorithms can be used to recover
the underlying sparsity structure. While such sampling is
usually analyzed over a sampling interval sufficiently large
that edge effects can be ignored, in this work we develop
how to take into account finite-window effects in system
design. Such considerations are particularly important in
the context of antenna arrays, and we analyze the asso-
ciated redundancy. Additionally, we describe an efficient
MIMO radar implementation of multi-coset arrays. As an
example application of our results, we develop a natural
two-stage architecture for direction-of-arrival estimation
in sparse environments using a multi-coset array over the
available aperture.

I. INTRODUCTION

The famous Nyquist-Shannon sampling theorem [13]
states that any signal of finite bandwidthB may be
reconstructed from samples at uniform interval1/2B.
However, this condition is by no means necessary. In [8],
Landau shows that an average interval of1/2B̃ is indeed
necessary for reconstruction from any sampling pattern
(uniform or not), whereB̃ is the Lebesgue measure
of the spectral support of the signal. In general,B̃
may be much smaller thanB; one may easily construct
examples in which the Landau bound is achievable, even
using uniform sampling. Over the years, various works
have considered sampling patterns and reconstruction
algorithms that approach the Landau bound. More re-
cently, the considerable attention devoted to problems of
compressive sensing of late has, in turn, has renewed
interest in such sampling problems.

Feng and Bresler [6] show that for a class of sources
(where the support is the union of frequency bands of
equal width) the Landau rate may be achieved bymulti-
coset sampling, i.e., the union of a finite number of low-
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rate uniform sampling patterns. Furthermore, it is shown
that there exist inter-coset spacings that allow reconstruc-
tion for any signal in the class; thus, sampling may be
blind, i.e., the locations of the support intervals need not
be known in advance. If they are known at the time
of reconstruction, then the Landau rate is achievable.
If the support is not known even at that time, it may
be recovered during a first stage of the reconstruction.
For “most” signals this can still be performed at the
Landau rate, and for the worst-case signal there is a
factor-of-two rate penalty. Mishali and Eldar [11] use
compressive sensing ideas [10] to suggest new spectral
support recovery algorithms, as well as to prove that
no sampling scheme can have worst-case performance
better than the multi-coset one. Beyond multi-cosets,
other techniques have been recently proposed for the
same problem; see e.g. [12], [16].

In the notion of sampling rate, it is implicit that
sampling takes place indefinitely, or at least over a
window that includes sufficiently many samples that
edge effects may be ignored. This is not a good as-
sumption in all applications. Most notably, sampling and
spectral estimation are integral to the array processing
problems of imaging and source localization. In fact, for
a fixed system operating wavelength and under a far-field
assumption, the array plane and measurement azimuth
are equivalent to the time and frequency domains, respec-
tively. Thus, a scene in which no signal is arriving from
most directions is equivalent to a spectrally-sparse signal,
and array element placement may be seen as sampling
(where the “Nyquist” spacing is half the wavelength).
When designing an array, one is restricted both by the
number of elements and by the aperture size.

The rest of the paper is organized as follows. In
Section II we present the signal model of interest in the
paper, along with some basic terminology we require.
Section III contains the main results for signal recon-
struction from sparse finite-window sampling. In Sec-



tion IV we connect these results with array processing
and especially MIMO radar. Finally, in Section V we
apply the results to the problem of direction-of-arrival
estimation.

II. SIGNAL MODEL AND TERMINOLOGY

Let x[n] be a complex-valued signal of interest with
discrete-time Fourier transformX(ej2πf ). For any in-
tegersK ≤ M . We say thatx[n] is (K,M)-sparse if
X(ej2πf ) = 0 for all f /∈ F , where

F =
{

K
⋂

k=1

(

fk −
1

2M
,fk +

1

2M

]}

mod (0, 1] (1)

for some band centers{fk}. For our developments in this
paper, we also need a slotted notion of sparsity. Define
Ms (overlapping) frequency windows:

Fm =
(m− 1

Ms
,
m+ 1

Ms

]

mod (0, 1],m = 0, . . . ,Ms−1.

Let q be theslotted support vector, i.e., it contains the
indices of windowsFm that intersect with the spectral
supportF of x[n]. If q has dimensionKs, we say that
x[n] has(Ks,Ms)-sparse slotted support.

Let
λ =

Ms

M
(2)

be the band expansion factor. It is straightforward to
show that any(K,M) sparse signal has(Ks,Ms)-sparse
slotted support with

Ks

Ms
≥

K

M

(

1 +
2

⌊λ⌋

)

. (3)

For instance, substitutingλ = 2, any (K,M)-sparse
signal has a(4K, 2M)-sparse slotted support.

We are interested in reconstructing the sparse signal
x[n] over some window|n| ≤ W/2 from a subset of its
samples.1 A reconstruction̂x[n] is ǫ-exact overW if

W/2
∑

−W/2

|x̂[n]− x[n]|2 ≤ ǫ ·

W/2
∑

−W/2

|x[n]|2. (4)

We use someS sampling instancesn1 ≤ n2 ≤ . . . ≤ nS

inside an interval|n| ≤ W̃/2. Let the sampling sparsity
be the ratio between the number of samples used, and
the number of samples in the sampling window:

ρ =
S

W̃
. (5)

1We note that the problem of reconstructing a bandlimited signal
from its Nyquist-spaced samples over a finite window is compara-
tively better understood. Indeed, this problem has a long history of
attention, largely in a continuous-time setting.

Any sampling scheme may thus be characterized by the
pair (W̃ , ρ). Our goal is to characterize the pairs needed
for given (W, ǫ).

We choose to employ multi-coset sampling. In partic-
ular, x[n] can be expressed in terms of its cosets

x(p)[n] = x[nMs + p], p = 0, . . . ,Ms − 1. (6)

Let the cosets pattern be theL integers0 ≤ p1 < . . . <
pL ≤ Ms − 1, such that the sparse sampling pattern
includes all of the cosets indexed by elements ofp. For
a windowW̃ , this is (W̃ , ρ) sampling with

ρ =
L

Ms
. (7)

For any slotted support vectorq and cosets pattern
p, the measurement matrix A = A(p,q), which will
be defined later, is anL × Ks sub-matrix of theMs-
dimensional discrete Fourier transform (DFT) matrix,
i.e., its elements are of the form

Al,k = ej2πplqk/Ms . (8)

III. F INITE-WINDOW MULTI -COSET SAMPLING

In the limit of an infinite window, a(K,M)-sparse
signal may be reconstructed from samples with sparsity
ρ = K/M , corresponding to the Landau rate, as long as
the spectral support is known at the time of recovery. If
it is not known then, there is a set of signals (of zero
probability under some mild randomness assumptions)
that require a redundency of factor2 with respect to the
Landau rate [6]. We show below that for a finite window
the same is achievable with some additive redundancy
W̃ −W which is fixed inW and finite for any accuracy
ǫ > 0. Reconstruction is performed using a variant of the
time-domain scheme of [6]. In this variant, the decom-
position of the signal into frequency bands is replaced
by the decomposition into (twice as many) overlapping
Nyquist bands, which form a complete orthormal set, and
are defined by prototype Nyquist filter responses. The
use of Nyquist filters is suggested in [3] in a different
context.

In Section III-A we describe the reconstruction
scheme for a known slotted support vectorq. In Sec-
tion III-B we analyze the tradeoff between accuracy and
redundancy. In Section III-C we address the recovery of
the support vector from the samples, and in Section III-D
we bring a design example with simulation results.

It should be noted that the signal model considered
does not include measurement noise. In the presence of
wide-band measurement noise, the signal cannot strictly
satisfy a sparsity assumption of the form (1). While noise
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Fig. 1: Reconstruction Scheme.

is not explicitly considered, it may limit the performance
of support recovery, as well as be folded into signal
bands; see Section III-B and Section III-C in the sequel.

A. Reconstruction for Known Spectral Support

The scheme is depicted in Fig. 1. Each of the sampled
cosets is interpolated by factorMs, using a filterh[n].
Further, each filter output is delayed by the coset offset
pl. At each time instant, we form from the outputsyl[n]
anL-dimensional vectory. To that vector, we apply the
Ks × L pseudo-inverse matrix

B = (A†A)−1A† (9)

whereA = A(p,q) is the measurement matrix (8). The
outputs of this matrix are used to form signals, which
are finally modulated and summed together.

We constrain the interpolation filterh[n] to be a
Nyquist filter of orderMs, i.e., h[n · Ms] = 0 for all
n 6= 0, which in the frequency domain is equivalent to
the constraint

Ms−1
∑

m=0

H
(

ej2π(f−m/Ms)
)

= 1. (10)

As a consequence, for anyx[n] we have

X(ej2πf ) =
M−1
∑

m=0

X(ej2πf )H
(

ej2π(f−m/Ms)
)

. (11)

Now suppose thath[n] is a low-pass filter with zero
response for any|f | > 1/Ms.2 For a signal with

2This assumption is in contradiction with the finite-window as-
sumption. We will later replace it with a less stringent requirement,
which leads to implementable filters at the cost of limitations to the
accuracyǫ.

(Ks,Ms)-sparse slotted support

X(ej2πf ) =
Ks
∑

k=1

X(ej2πf )H
(

ej2π(f−qk/Ms)
)

,

Ks
∑

k=1

Xk

(

ej2π(f−qk/Ms)
)

. (12)

Thus, the signal can be decomposed as the sum of filtered
versions of components corresponding to (overlapping)
bands. It is apparent from the scheme that ifx̂k[n]
equalxk[n] defined above, then indeed̂x[n] is a perfect
reconstruction ofx[n].

In order to see why this holds, we use the same
conditions onh[n] to decompose the delayed interpolated
cosets as

Yl(e
j2πf ) = e−j2πfpl/MsH(ej2πf )

Ms−1
∑

m=0

X
(

ej2π(f−m/Ms)
)

=

Ks
∑

k=1

Al,kXk

(

ej2π(f−qk/Ms)
)

. (13)

It follows that at each time instant,

y = Ax

where x is a Ks dimensional vector taken from the
processesxk[n]. For a full-rankA we thus have that
the matrix output at each time instant is:

x̂ = By = BAx = x.

The rank ofA depends upon the coset patternp and
the support vectorq. A patternp of length L, which
guarantees full rank for anyq of lengthKs, is called a



universal pattern. By [6], such pattern exists as long as
L ≥ Ks.

By taking L = Ks and choosing a large band ex-
pansion factorλ (2), the sparsityρ (7) may arbitrarily
approach the Landau rateK/M . The scheme as pre-
sented here is still not applicable when considering the
samples are only taken from a finite window, but as we
will see in the sequel, the replacement of sharp band
filters by more gracefully shaped Nyquist filters allows
us to approach the infinite-window scheme at the cost of
a small increase in the sampling window. However, the
sequel also shows that a largeλ is undesirable.

B. Redundancy Analysis

Using a finite filterh[n] over a finite data window
amounts to suffering from an aliasing effect. We choose
the observation window to be

W̃ = W + δ (14)

whereδ is the length of the filterh[n].3

The aliasing effect amounts to an interference term
that is added to each term in the summations (12) and
(13), with energy proportional to the side-lobe energy
of h[n]. This is equivalent to having a non-truncated
bandlimited filterh̄[n] operating on a signal that is not
perfectly bandlimited. The later situation is analyzed in
[18], where it is shown that the noise amplification due
to passing these interference terms through the pseudo-
inverseB can be uniformly bounded for a given pattern
p. It follows that the accuracyǫ (4) can be bounded by4

ǫ ≤ c(Ms,Ks,p)µ(δ) (15)

or some constantc, where

µ(δ) =

∫

1/2Ms<|f |<1/2 |H(ej2πf )|2df
∫

|f |<1/2 |H(ej2πf )|2df
(16)

is the out-of-band energy.
One of the ways to construct a “good” finite-duration

Nyquist filter is to use a window function

h[n] = sinc[nL]w[n], (17)

where w[n] is a window of lengthδ with good at-
tenuation for |f | > 1/2Ms. The Kaiser window is
known to be a good approximation to the optimal

3We assume a symmetric filter, thus it hasδ/2 taps at each side of
the main tap; this amounts to a total ofδ reconstructed samples for
which the filter output is not as it should be according to the scheme,
assuring that withinW the outputs are indeed valid.

4A similar bound also holds for out-of-band measurement noise,
which may be folded into the signal bands.

(in terms of out-of-band energy for a given main-lobe
width) prolate spheroidal wave function window. The
out-of-band energy decays exponentially with the filter
length. Specifically, substituting∆ω = 2π/Ms in [14,
eq. (7.93)], the out-of-band energy satisfies:

−10 log10 µ(δ) ≤ 14.3
δ

Ms
+ 8. (18)

Combining (14), (15), and (18), we obtain that for a
given accuracyǫ, an estimate of the window redundancy
r is

r ,
W̃ −W

Ms
= 0.7 log10

(

c(Ms,Ks,p)

ǫ

)

− 0.5. (19)

Since the excess window needed is “per-band,” choos-
ing a largeMs, while helping the slotted support ap-
proach the signal spectral support thus lowering the
multiplicative redundancy ofρ, results in higher additive
redundancy. Investigating the dependence of the constant
c upon the choice ofMs should shed more light on the
optimization of the number of bands.

C. Support Recovery

The task of support recovery for the vectorq corre-
sponding to the overlapping bandsFm (2) is in principle
no different than that of recovering the support of
non-overlapping bands for the original infinite-window
scheme. We therefore briefly summarize existing results.
In the reconstruction scheme of Fig. 1, we may obtain
the signals{yl[n]} without knowing the support. We
therefore look for aq which allows us to satisfy (13).
There is a unique solution if

L ≥ 2Ks + 1. (20)

If the Ks functions {Xk(ej2πf )} form a linearly-
independent set, then the condition for a unique solution
becomes the more favorable

L ≥ Ks + 1; (21)

see [6], [1]. The condition (21) allows us to approach
the Landau rate if a large band expansion factorλ (2) is
chosen. Recovery may be performed in the time-domain
using, e.g, MUSIC-like algorithms [6], [9], or in the
frequency-domain using, e.g., basis pursuit [11].

Restricting the sampling window to a finitẽW may
affect the recovery process in the following ways. The
out-of-band energy discussed above means that (13)
is only approximately satisfied. However, in practice,
even when using a long sampling window, wide-band
noise is present. The recovery algorithms above have
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Fig. 2: Simulation results: reconstruction SNR1/ǫ as a
function of the window redundancy. Upper solid curve:
average SNR; lower solid curve: worst-case SNR; dashed
curve: SNR predicted by (19) withc = 1.

good robustness properties, thus taking large enoughW̃
such that the out-of-band components are not stronger
than the noise suffices. Beyond this, the finite window
has another fundamental efect. Linear dependence in
the set{Xk(ej2πf ) involves dependence at each time
instance. When limiting the window, one has to con-
sider the probability that even statistically-independent
continuous-amplitude signals look “almost linearly de-
pendent,” limiting the performance of recovery using the
more favorable cobdition (21), in the presence of some
noise. This is an additional argument against using large
δ, beyond the window redundancy.

D. Simulation Results

We consider a(2, 7)-sparse signal. If one were to
useMs = 2, by (3) the Nyquist-bank scheme requires
Ks = 6, impeding any sparsity. We therefore takeδ = 3,
resulting inKs = 10 andMs = 21. According to (21),
we therefore takeL = 11. The cosets pattern chosen is

p = [1, 4, 6, 8, 9, 10, 11, 15, 17, 18, 20].

Fig. 2 shows the reconstruction SNR1/ǫ in dB as a
function of the window redundancy (19). For each of the
valuesr = (2, 4, 6), 1000 trials were run, with a random
stationary Gaussian signal bandlimited according to band
centersf̄1, f̄2 uniformly and independently drawn at each
trial. The average and worst-case SNR over these trials
were measured. It can be appreciated both SNRs follows
closely (19). The average performance is even better

than that of (19) withc = 1, which may be explained
by the bound on the Kaiser out-of-band energy being
rather loose (reflecting the attenuation of the highest
side-lobe). A realistic estimate of the coefficientc is the
gap between the average and worst-case performance,
thusc(10, 21,p) ∼= 5.

IV. A PPLICATION TO ARRAY PROCESSING AND

MIMO RADAR

As discussed in the Section I, one important applica-
tion of finite multi-coset sampling is array design. The
number of samples is translated to the number of array
elements that need to be placed, and the observation
window translates to the required aperture. To make this
concrete, assume some linear one-dimensional array with
elements placed at a subset of the locations

t = n ·
λ

2
, |n| ≤

W̃

2
, (22)

whereλ is the length of waves hitting the array (assumed
to be fixed, i.e., all radiation is monochromatic). Also
assume that targets are in the far field and the scene is
only described by a single angle (azimuth)θ; over these
angles are some targets that transmit (or reflect) a fixed
(over time) signal, which after the attenuation between
the target and the array has complex amplitudeX(θ).
Under these conditions, the following Fourier relation
holds:

X[n] ⇔ X
(

ejπ sin(θ)
)

, X(ej2πf ). (23)

A sparse scene would be one where all of the in-
coming waves arrive from clustered anglesθ such that
f = sin(θ)/2 satisfies the sparsity condition (1). If the
scene is known to be such, one may design a multi-
coset array of sparsityρ and apertureW̃ and use the
reconstruction scheme to reconstruct (to accuracyǫ) the
signal of all theλ/2-spaced elements on an array of
apertureW . To that data, any beamforming or other
processing may be applied.

The sparsity assumption is more easily justified in
the context ofradar: incoming signals may be first
distributed into range/doppler cells, and then only returns
within the same cell need to be processed together by
the sparse recovery algorithm. See, e.g., [15] for a recent
tutorial on the application of compressive sensing ideas
to radar.

The multi-coset structure is especially appealing in
the context of MIMO radar. One of the most important
features of a MIMO radar is the ability to create a
virtual array using different TX and RX arrays, one of



them short and dense and the other wide and sparse.
The total number of array elements is much smaller
(order of square root) of the number of elements in the
virtual array; see e.g. [7]. A multi-coset virtual array
may be expressed as the convolution of an array of coset
leaders (at locationsp) and a sparse uniform array with
element spacingMs. Thus, the multi-coset concept may
be integrated in MIMO radar in order to further reduce
the number of elements: one array will haveL ≥ Ks+1
elements over apertureMsλ/2, while the other will have
W̃/Ms elements over aperturẽWλ/2. The application of
compressive sensing to MIMO radar has been suggested
in some recent works (e.g., [2]), but to the best of our
knowledge, no specific architecture was suggested.

V. D IRECTION-OF-ARRIVAL ESTIMATION

We now replace the spectral support model (1) by the
assumption that the signal of interest is the sum ofK
complex exponentials and wideband noise:

x[n] =

K
∑

k=1

ake
j2πfkn + z[n], (24)

wherez[n] is additive white Gaussian noise. In the array
setting, this would correspond toK plane waves com-
ing from different angles (and may be generated from
far-field point sources), with independent sensor noise.
Many estimation strategies have been developed for this
important problem, each offering different accuracy and
resolution performance; see, e.g., [17]. In the context
of this work, we ask what are the required number of
samples and observation window in order to assure some
target performance level is met.

We suggest a two-stage strategy. In the first stage,
an ǫ-accurate reconstruction is obtained over a window
W , and in the second, any direction-of-arrival estimation
algorithm is applied to the signal over that window.
The resulting performance is set by the algorithm. Care
should be taken when evaluating it, since theǫ-“noise”
reflects aliasing, which is far from being white or addi-
tive.

For the first stage, note that without noise,x[n] has
(2K,Ms)-sparse slotted support for anyMs, thus one
may use multi-coset sampling with the reconstruction
scheme described in Section III-A. The largerMs is,
the sparser the array becomes, and in the limit of large
W the optimalMs is unbounded, which corresponds to
the fact that the point-source scene is “infinitely sparse”.
however for a finite observation window, largeMs causes
aliasing and limits the performance of support recovery,
see Section III.

When choosing the number of cosetsL, it may not
be safe to assume independent bands and use (21). The
reason is, that as for the model (24) two bands will seem
dependent if the exponents appear at the same frequency,
relative to the band, to the finite resolution offered by
the aperture. However, the effect of the same exponent
on two bands does yield independent functions, as the
spectral lines appear1/Ms apart. Consequently, at the
worst case there areK dependent functions, and the
condition is:

L ≥ 3K + 1 =
3Ks

2
+ 1. (25)

It is interesting to compare this approach with the
recent work by Duarte and Baraniuk [5], where it is
noted that straightforward application of compressive
sensing methods to the DFT matrix of the observations
yields poor results (see also [4] for a similar observation).
Such work assumes random Gaussian measurement ma-
trices, so that the number of measurements is not directly
related to the number of time samples. However, replac-
ing the measurements by samples taken fromx[n], the
algorithm of [5] takes the following form.5 The samples
of x[n] over the observation window are partitioned into
existing samples and missing samples.

1) Initialize the missing samples to zero.
2) Form the “measurements” vector from the existing

and missing samples.
3) Using this vector, estimate the signal frequencies.
4) Set the value of the missing samples according to

the estimated frequencies.
5) Repeat steps 2-4 until convergence.

For the estimation in Step 3, it is suggested to use either
traditional beam-forming, or the root-MUSIC algorithm.
The problem with this algorithm, is that at first it
attempts to reconstruct the missing samples using the
parametric (sum of exponentials) model. In cases where
the parameter estimation is hard (e.g. some exponentials
are at very close frequencies), this might fail. The ap-
proach presented above, on the other hand, reconstructs
the missing samples using a much milder model of
frequency bands, and only later, equipped with all the
samples, it uses the discrete-exponent assumption.

In order to demonstrate the advantage of the two-stage
approach over the iterative algorithm of [5], we consider
an example with two point sources, contaminated by
white measurement noise with SNR of 20 dB. We draw
the direction of one source at random, but set the angle

5Indeed, simulations show that replacing the random measurement
matrices by random sampling times improves the performance.
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Fig. 3: Simulation results: direction-of-arrival estimation
standard deviation as a function of angular difference.
Ssolid line: two-stage algorithm; dashed line: iterative
algorithm; dash-dotted and dotted lines: full-aperture and
short uniform arrays, respectively.

between sources to a deterministic value. We measure
the accuracy of angle estimation as a function of this
angular distance.

According to (25), we must haveKs = 7. We choose
Ms = 50, and an array of10 periods. Thus, the
array consists of70 elements spread over an aperture
W̃ = 500. We compare the performance of the two-
stage algorithm to the iterative algorithm [5] applied to
randomly-selected70 elements over the aperture. We
also present two reference schemes: one having a full
array of the apertureW̃ = 500, and the other with
aperture 70. In all cases, root-MUSIC estimation is
applied.

The results are depicted in Fig. 3. It can be appreciated
that the two-stage algorithm is fairly robust with respect
to the change of angular difference. In comparison,
placing the same number of elements close together
yields better results when the targets are far apart, but
poor resolution. The iterative algorithm does not perform
as well, especially when the angular difference is small.
While these results show the potential of our approach,
they also show that it should still be improved in order
to guarantee good performance for far-spread targets.
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