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Abstract—In this work we show how an improved lower bound
to the error exponent of the memoryless multiple-access (MAC)
channel is attained via the use of linear codes, thus demonstrating
that structure can be beneficial even in cases where there is no
capacity gain. We show that if the MAC channel is modulo-
additive, then any error probability, and hence any error expo-
nent, achievable by a linear code for the corresponding single-
user channel, is also achievable for the MAC channel. Specifically,
for an alphabet of prime cardinality, where linear codes achieve
the best known exponents in the single-user setting and the
optimal exponent above the critical rate, this performance carries
over to the MAC setting. At least at low rates, where expurgation
is needed, our approach strictly improves performance over
previous results, where expurgation was used at most for one
of the users. Even when the MAC channel is not additive, it may
be transformed into such a channel. While the transformation is
lossy, we show that the distributed structure gain in some “nearly
additive” cases outweighs the loss, and thus the error exponent
can improve upon the best known error exponent for these cases
as well. Finally we apply a similar approach to the Gaussian
MAC channel. We obtain an improvement over the best known
achievable exponent, given by Gallager, for certain rate pairs,
using lattice codes which satisfy a nesting condition.

I. INTRODUCTION

The error exponent of the multiple access (MAC) channel

is a long-standing open problem. While superposition and

successive decoding methods lead to capacity, they may not be

optimal in the sense of error probability: the decoding process

may be improved by considering that the transmission of other

users is a codeword, rather than noise. However, finding the

optimal performance is a difficult task, beyond the difficulties

encountered in a point-to-point channel. Early results include

the works of Slepian and Wolf [1], Gallager [2] and Pokorny

and Wallmeier [3]. Applying the results of [1] to the important

special case of a (modulo) additive MAC channel, e.g., the

binary symmetric case, it follows that the random-coding ex-

ponent of the corresponding single-user channel is achievable

for the MAC channel. This exponent is optimal above the

critical rate [1]. However, for lower rates it is outperformed by

the expurgated exponent (in the single-user case). The reason
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that the expurgated exponent is not achieved in [1] is that

the sum of two good (expurgated) single-user codebooks does

not result in a good single-user one, and in particular, the

sum of two codebooks with good minimum-distance properties

may not be good in that respect. Liu and Hughes [4] and

recently Nazari et al. [5] have proposed improvements over

earlier results. Specifically, Nazari et al. suggest to apply

expurgation to one of the codebooks. While this certainly

improves performance, it still does not allow to achieve the

single-user expurgated exponent.

For additive MAC channels we make the basic observation,

that by “splitting” a linear codebook between the users, any

error probability achievable in the corresponding single-user

channel using linear codebooks is achievable for the MAC

channel as well. This implies for prime (e.g. binary) alphabets,

that the best currently known error exponents for any code

(not necessarily linear) are achievable for the MAC channel,

including the random-coding and expurgated exponents. The

improvement over previous results stems from the use of

linear codes, which are inherently expurgated; thus using them

provides “joint expurgation” even in a distributed setting.

But what happens outside the special case of additive chan-

nels? To see this, we go back to settings where the application

of linear codes to additive communications networks has a

capacity advantage, see e.g. [6], [7], [8]. We are inspired by

the fact that in the context of first-order (capacity) analysis

of networks, the advantage of linear codes has indeed been

extended to some non-additive channels [9]. In [9] a modulo-

lattice transformation is derived, that allows to obtain a virtual

additive channel from any original MAC channel, albeit with

a loss of capacity. It is shown in [9] that in some situations,

the gain offered by the ability to use linear codes outweighs

the loss inflicted by the transformation. In this work we adopt

the same ideas to the MAC exponent problem: we show that

for MAC channels that are “nearly symmetric”, indeed the

transformation in conjunction with using linear codes improves

upon the best known exponents so far at low rates. We note

that when one considers less symmetric channels, the results

of [5] outperform those of the new scheme.

The technique we propose, of splitting a linear codebook,

may be interpreted as nested linear codebooks, where the

codebook of one user is nested in that of the the other.

We leverage this observation to extend our approach beyond



discrete alphabets, and consider the exponent of the Gaussian

MAC channel. As in the discrete case, the sum of the code-

books, as seen by the decoder, is a single linear code, which

is inherently expurgated. However, unlike the discrete case,

the exponent we obtain is inferior to the single-user exponent.

Moreover, there is a rate loss in comparison to the single user

capacity. Still, despite this loss, we improve upon the best

previously known error exponent [2] for certain power pairs

and certain rate pairs.

The rest of the paper is organized as follows. We start

with the discrete MAC channel, where Section II presents

the background and definitions. Then, Section III describes

the coding technique for the modulo additive MAC channel.

Section IV describes a technique for transforming a general

discrete MAC channel into a modulo additive one (with some

loss). Section V presents an analysis of the special case of

the binary MAC channel. We then turn to the Gaussian MAC

channel, where after some background on error exponents of

Gaussian channels in Section VI, Section VII describes the

coding technique by using distributive nesting, and derives its

performance. Finally, in Section VIII we discuss the results

and give some conclusions.

II. DISCRETE CASE: BACKGROUND AND DEFINITIONS

A. Single-User Channel

Consider the single-user discrete memoryless channel

(DMC) defined by PY |X(·|·), where X and Y are the channel

input and output, respectively, with discrete alphabets X and

Y . We recall some results regarding the error exponent of this

channel, see [10].

The error exponent of the channel is defined as

ESU(R) = lim sup
n→∞

− 1

n
log ǫn, (1)

where ǫn is the minimal possible error probability of codes

(averaged over the codewords) with block length n and rate R.

The best known achievable error exponent for this channel,

denoted by ESU(R), is given by the maximum between the

expurgated error exponent ESU
ex (R) and the random-coding

error exponent ESU
r (R), where [10]:

ESU
r (R) = max

0≤ρ≤1
max
PX

[E0(ρ, PX)− ρR] ,

where PX is some distribution over the scalar channel input X
and

E0(ρ, PX)
△
= − log

∑

y∈Y

(

∑

x∈X
PX(x)PY |X(y|x)1/(1+ρ),

)1+ρ

.

The expurgated exponent is given by:

ESU
ex (R) = sup

ρ≥1
max
PX

[Ex(ρ, PX)− ρR] ,

where

Ex(ρ, PX)
△
= −ρ log

∑

x1∈X

∑

x2∈X
PX(x1)PX(x2)

×





∑

y∈Y

√

PY |X(y|x1)PY |X(y|x2)





1/ρ

.

The expurgated exponent is larger than the random-coding

exponent below some rate RSU
ex (this range is thus called “the

expurgation region”). Above the critical rate RSU
cr , the random-

coding exponent is larger, and is known to be optimal.

B. MAC Channel

Consider a two-user discrete memoryless MAC channel

PY |X1,X2
, where X1, X2 are the channel inputs and Y is

its output, over (discrete) alphabets X1,X2 and Y respec-

tively. Denote the codebook of user i by Ci, and its rate by

Ri = 1/n log|Ci|.
Following Slepian and Wolf [1], we define the error event as

the event that at least one of the messages from the message

pair is decoded in error.1 The error exponent of the MAC

channel is defined as

EMAC(R1, R2) = lim sup
n→∞

− 1

n
log ǫn, (2)

where ǫn is the minimal possible error probability for codes

of length n, with the rate-pair (R1, R2).

Slepian and Wolf [1] found an achievable error exponent

that is given by the minimum of three random-coding error

exponents corresponding to different error events.2 The first

two correspond to making an erroneous decision on one mes-

sage, by a genie-aided decoder, i.e., one that has knowledge of

the message of the other user as side information. The third

error event corresponds to making an erroneous decision in

both messages. For positive rates, the third exponent, denoted

by ESW
r3 , is equal to the error exponent of a single-user channel

with input equal to the input-pairs of the MAC channel (still

statistically independent symbol-pairs) and with rate equal to

the sum rate. Therefore ESW
r3 depends only on the sum rate

(see also [2]). Each of these three events amounts to an error

event over a single-user channel. Therefore, each exponent is

equal to Gallager’s random coding error exponent [10] for the

corresponding single-user channel.

C. Additive-Noise Single-User Channel

Consider the following DMC:

Y = X ⊕N, (3)

where all variables are defined over the alphabet Zm =
{0, 1, . . . ,m− 1} and ⊕ denotes addition over this alphabet,

i.e., modulo an integer m. The noise N is additive, i.e.,

statistically independent of the channel input X .

1Other definitions, leading to an error exponent region, were considered
in [11].

2Slepian and Wolf [1] considered a more general case of a MAC channel
with correlated sources, and obtained with an achievable error exponent that
is the minimum of four error exponents. Gallager [2] reformulated this result
to the channel-only problem, in which case, the results simplify to only three
of the exponents.
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Fig. 1. Comparing the random coding error exponent of a additive-noise
single-user channel, with the best known error exponent. The channel is
an additive binary symmetric channel (BSC) with noise ∼ Bernoulli(0.02).
The two dots show the expurgation rate and the critical rate of this channel
respectively.

The random-coding error exponent of this channel (3) can

be expressed in terms of Rényi entropy (see e.g. [12]):

ESU
r (R) = max

0≤ρ≤1
ρ
[

logm− h 1
1+ρ

(N)−R
]

,

where hβ(N) is the Rényi entropy of order β, and is defined

by3

hβ(N) =
β

1− β
log

(

m−1
∑

n=0

PN (n)β

)
1
β

. (4)

As for general channels, the best known error exponent of this

channel is larger than ESU
r (R) in the expurgation region, as

can be seen in Figure 1.

In the context of additive channels, it is important to

consider linear codes. We define a linear code C via a k × n
generating matrix G, by

C = {c : c = uG, u ∈ Z
k
m}, (5)

The rate4 is equal to R = k/n logm. Clearly, for any rate, there

exists a linear code of this rate asymptotically as n → ∞. We

define ESU
L (R) to be the error exponent of linear codes, i.e., as

(1), except that ǫn is the minimal possible error probability of

linear codes only. We also denote the best known achievable

error exponent of linear codes by ESU
L (R). We note that

for single-user additive channels of the form (3), when the

alphabet size m is a prime, the best known error exponent

of linear codes, ESU
L (R), is equal to the best known error

exponent of the channel ESU(R) (see [13], [10], [14]), and

in particular is optimal above the critical rate. In addition, we

note that for linear codes the average error probability (over the

codewords) is equal to the maximal error probability, due to

3In the limit of ρ = 1, Rényi entropy becomes the Shannon entropy.
4We assume a full-rank matrix G.

their structure (i.e., the maximum likelihood decoding regions

are identical up to translation).

D. Additive-Noise MAC Channel

A channel which is of particular interest in this work is the

additive MAC channel

Y = X1 ⊕X2 ⊕N, (6)

where all variables are defined over the alphabet Zm =
{0, 1, . . . ,m− 1} and ⊕ denotes addition over this alphabet,

i.e., modulo an integer m. The noise N is additive, i.e., is

statistically independent of the pair (X1, X2).
Viewing the joint codebook X = X1 ⊕X2 as a single-user

codebook, we get the channel (3) (over the same alphabet)

Y = X ⊕N, (7)

which we call the associated single-user channel of (6).

Any codebook pair (C1, C2) for the MAC channel can be

used to construct a corresponding codebook for its associ-

ated single-user channel, by the Minkowski sum codebook

C = C1 + C2. However, not every single-user codebook C
can be decomposed in such a manner. Moreover, since the

associated single-user channel is equivalent to cooperation

between the encoders, then when comparing the MAC channel

to its associated single-user one, it follows that

EMAC(R1, R2) ≤ ESU(R1 +R2).

For additive MAC channels, in [1] it is shown that5

EMAC(R1, R2) ≥ ESU
r (R1 +R2).

Thus, EMAC(R1, R2) is equal to ESU(R1 + R2) above the

expurgation rate and optimal above the critical rate. However,

the best known error exponent for the associated single-user

channel though, is larger in the expurgation region; recall

Figure 1.

We note that simple time sharing, where every user uses an

expurgated codebook, improves on the Slepian-Wolf random-

coding bound [1] in some cases, particularly for low enough

rates and as the channel noise becomes weaker.

Since [1], there were several improvements [4], [5] to the

achievable error exponent. However, these do not close the gap

to the best known error exponent of the associated single-user

channel. In the next section, we close this gap for modulo-

additive MAC channels, by attaining expurgation for all users.

III. CODING FOR MODULO-ADDITIVE DISCRETE MAC

CHANNELS

In this section we first describe a coding scheme for

additive-noise discrete MAC channels, that achieves the best

known error exponent of linear codes for its associated single-

user channel. In particular, for prime alphabet size, it achieves

the best known error exponent for the associated single-user

channel. This is equivalent to full cooperation of the encoders,

5Since it can be shown that for the discrete additive MAC channel, out of
the three error exponents discussed above, the third, ESW

r3
, always dominates.



and thus it is optimal (in terms of error exponent) whenever

the optimum is known for the single-user channel (i.e., above

its critical rate).

Consider the additive-noise MAC channel, as given in (6),

with alphabet size m. We construct a codebook pair for

the MAC channel using linear codes. We use a good linear

code for the associated single-user channel (7), which we

decompose into two linear sub-codes, one for each user.

Let G be a k × n generating matrix of a linear code

C (see (5)) with rate R = k/n logm. For some integers

k1 + k2 = k, define the rates

Ri =
ki
n

logm, i = 1, 2.

Decompose the codeword c into two codewords:

c = c1 ⊕ c2 = (u1×k1 | u1×k2)

(

Gk1×n

Gk2×n

)

(8)

△
= u1G1 ⊕ u2G2. (9)

Thus, we have a pair of codebooks:

Ci = {ci : ci = uiGi, ui ∈ Z
ki
m}; i = 1, 2. (10)

Therefore, the sum of codewords is indistinguishable from a

codeword of the single-user code with R = R1+R2. Clearly,

for any rate-pair such a construction is possible asymptotically

as n → ∞. A similar claim holds for a general number of users

as well. We thus have the following.

Proposition 1: The coding technique above achieves the

best error probability of linear codes for the single-user

channel. Thus, it achieves the exponentESU
L (R), and for prime

m it achieves ESU(R) as well.

Remark: The result also holds for an additive MAC chan-

nel (6) where the alphabet size m is a power of a prime and

addition is over the field.

The previously best known error exponent is given by

Nazari et al. [5]. In their derivation, codewords are expurgated

from only one of the codebooks. Since our bound achieves

the best known error exponent of the associated single-user

channel (for the special case of additive MAC channels with

prime alphabet size), it must be at least as good the one found

by Nazari et al. For low enough rate-pairs we expect our bound

to be strictly better, since full expurgation is required in order

to achieve the error exponent of the associated single-user

channel. When considering more than two users, the gap is

expected to increase since expurgation of one user becomes

less significant. In the sequel, we show how this advantage

can be leveraged to non-additive MAC channels.

The distributed-structure code construction presented in this

section can be interpreted in terms of nested linear codes. Two

linear codes are nested if one of them (the coarse codebook)

is a subset of the other (the fine codebook). For the code

described in this section, the single-user codebook is the fine

code C. The coarse codebook C1 ⊆ C is the codebook of

the first user. This forms a quotient group C/C1, where any

member of this group (i.e., coset) is a different “translate” of

the coarse codebook C1. A selection of representatives from

every coset forms a codebook C2 for the second user. Any such
selection of coset representatives leads to the same fine code

C1 ⊕ C2 = C, and therefore is a good selection. As a special

case, in the code construction which is described above, the

coset representatives are selected such that they form a linear

code.

This nested linear codes approach can be extended to

the continuous alphabet case. Consider the modulo-additive

channel where the channel alphabets and noise are continuous:

Y = (X1 +X2 +N) mod 1. (11)

First assume that the input alphabets are p−1·Z (which is equal

to the integers multiplied by 1/p), where p is prime. Linear

codes achieve the best known error exponent for a single user

modulo-prime additive channel (See Section III). Therefore for

prime p, nested linear codes achieve this exponent. Taking p
to infinity one can approach as closely as desired an optimal

codebook pair for continuous alphabet inputs. This will lead to

a distributed coding technique for the Gaussian MAC channel

in the sequel.

IV. TRANSFORMING A GENERAL DISCRETE MAC

CHANNEL INTO AN ADDITIVE CHANNEL

With the aim of applying a similar scheme to general (non-

additive) discrete memoryless MAC channels PY |X1,X2
, in this

section we describe a method for transforming such channels

into additive-noise MAC channels. We refer to the obtained

channel after the transformation as the resulting virtual chan-

nel. The transformation is a discrete and scalar modification

of the Modulo-Lattice Transformation for continuous MAC

channels [9].

The transformation is defined for any finite alphabet size m,

regardless of the alphabet sizes of the inputs and the output.

For simplicity, we assume throughout this section that m is

prime. Let Vi ∈ Zm be the input of the ith user to the virtual

channel, and Ui ∼ Uniform(Zm) be its dither (i.e., common

randomness at the ith encoder and at the decoder), which is

statistically independent of the dither of the other user and of

V1, V2. Each encoder computes X ′
i = Vi ⊕ Ui and applies a

scalar precoding function fi : Zm → X to it. The inputs to

the channel are therefore given by

Xi = fi(X
′
i). (12)

Note that due to the dither, X ′
i is uniformly distributed over

Zm and is statistically independent of V1, V2. Let

S = k1X
′
1 ⊕ k2X

′
2,

where ki ∈ Zm, and multiplication is over Zm. Let Ŝ = g(Y )
be some scalar “estimator” function of S from the channel

output Y . Denote the estimation error by N = Ŝ ⊖ S (i.e., a

subtraction operation over Zm). We define the output of the

virtual channel as

Y ′ △
= Ŝ ⊖ (k1U1 ⊕ k2U2) (13)



Proposition 2 (The virtual MAC channel): Applying the

transformation leads to the following virtual channel:

Y ′ = k1V1 ⊕ k2V2 ⊕N, (14)

where N = Ŝ ⊖ S is statistically independent of the channel

inputs (V1, V2).
Proof: We have:

Y ′ = Ŝ ⊖ (k1U1 ⊕ k2U2)

= Ŝ ⊖ S ⊕ S ⊖ (k1U1 ⊕ k2U2)

= N ⊕ k1(V1 ⊕ U1)⊕ k2(V2 ⊕ U2)⊖ (k1U1 ⊕ k2U2)

= k1V1 ⊕ k2V2 ⊕N.

Notice that the transformation is not unique, and one is free

to choose the alphabet size m, the precoding functions fi(·)
and the estimator of S. We call any virtual MAC channel (14)

that can be obtained by some choice of parameters, a feasible

virtual MAC channel. Since we assume that the alphabet size

m is prime, it follows that a feasible single-user channel:

Y = X ⊕N, (15)

is the associated single-user channel of a feasible virtual MAC

channel (14).

Applying this transformation to any MAC channel, we have

the following.

Proposition 3: Let ǫn be the best error probability achiev-

able with a code of length n on a MAC channel. Then

ǫn ≤ ǫ̃n,

where ǫ̃n is the best error probability achievable by a linear

code of the same length on a feasible virtual MAC chan-

nel (14).

Applying Proposition 3 to exponents, leads to our main

result:

Theorem 1: For any MAC channel, and any associated

feasible single-user channel (15) with alphabet of prime car-

dinality,

EMAC(R1, R2) ≥ ESU(R1 +R2).

Remarks:

• Notice that this transformation is lossy in terms of capac-

ity. However, since the resulting channel is an additive-

noise channel, efficient coding techniques and known

bounds can be easily applied. In particular, for MAC

channels, expurgation in all the users can be applied by

using linear codes as in Section III.

• We expect the benefit from this coding technique to

outweigh the loss when the channel is “close” to additive.

In the next section, we give a binary example which

illustrates this property with a single parameter.

• We note that this transformation is applicable to various

non-additive network problems, where structure can im-

prove the best-known achievable rate region (see e.g. [6],

[7], [8]). In such settings, the gain will appear also as

a “capacity gain” rather than only in the probability of

error.

V. BINARY CASE

In this section we confine the discussion to binary MAC

channels, i.e. channels with binary inputs and output. We

denote this general (i.e., non-additive) channel PY |X1,X2
as:

Y = X1 ⊕X2 ⊕ Z, (16)

where the “additive” noise Z
△
= Y ⊕ (X1 ⊕X2) may depend

on the channel input pair (X1, X2).

A. Analysis of the Virtual Channel

A natural choice for the parameter m of the transformation

is clearly m = 2. We select f(x) = x, k1 = k2 = 1 and

Ŝ = g(Y ) = Y . This leads to the following effective noise

of the virtual channel: N = Z . However, Z is statistically

independent of (V1, V2) due to the transformation. Therefore,

the probability distribution of the effective additive noise N
of the virtual channel, is equal to the marginal distribution of

Z , i.e.:

N ∼ Bernoulli(γ), (17)

with

γ =
1

4

∑

x1,x2∈{0,1}
Pr(Z = 1|X1 = x1, X2 = x2). (18)

The virtual channel is then an additive MAC channel given

by:

Y = V1 ⊕ V2 ⊕N, (19)

where N , given in (17)-(18), is statistically independent of

(V1, V2).

B. Example: Almost Additive Binary MAC Channel

We now use the analysis of the previous subsection in order

to study an example of an almost additive-noise binary MAC

channel. Specifically, we consider the following MAC channel:

Y = X1 ⊕X2 ⊕ Z (20)

Z
△
= Z1 ⊕ 1{X1 6=X2} · Z2, (21)

where Z1 ∼ Bernoulli(q), Z2 ∼ Bernoulli(p), and 1{X1 6=X2}
is the indicator function of the event X1 6= X2. The value of

p determines the deviation of the channel from additivity. For

small p the channel is nearly an additive MAC channel.

In Figure 2 we compare the resulting error exponent of the

virtual channel with the Slepian-Wolf random coding expo-

nent [1] for symmetric rate pairs.6 For the comparison we take

the limit of zero rate-pair, where the gain due to expurgation

is maximal. As p increases, the coding technique developed in

this paper gains less since the channel transformation looses

more as the channel becomes less additive.

6For the channel parameter q = 0.1 of Fig. 2 and zero rate-pair, the
exponent of time sharing between expurgated codebooks is below the Slepian-
Wolf random coding exponent for all p.
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Fig. 2. Comparing error exponents for the almost additive binary MAC (20)-
(21). The dashed line is the Slepian-Wolf bound [1]. The solid line is the error
exponent of the virtual channel, which is achieved according to Corollary 1.
Here q = 0.1 and the comparison is at zero rate-pair.

For small enough p and for low enough rates we expect this

bound to be strictly larger then the best known error exponent

for this channel [5]. This is since [5] applies expurgation only

to the user with larger rate, while the bound presented here

achieves two-user expurgation. Nazari et al. [5] studied a non-

symmetric example, where Pr(Z = 1|X1 = 1, X2 = 1) = 1
2 ,

and all the other conditional probabilities of Z are equal to

0.01. In this case the coding scheme described here is inferior

to the one of [5], as expected since the channel is far from

being additive.

VI. GAUSSIAN CHANNELS: PRELIMINARIES

In this section we recall some results for Gaussian channels

and give some definitions, similar to the ones presented in

Section II for the discrete case. There are two differences in

the model with respect to the discrete case: the channel input

is continuous and is subject to a power constraint; the additive

noise is restricted to Gaussian.

A. Single-User Channel

Consider the single-user additive white Gaussian noise

(AWGN) channel:

Y = X + Z, (22)

where X ∈ R is the input to the channel and is subject to a

power constraint:

1

n

n
∑

j=1

x2
j ≤ P, (23)

where n is the codeword length. The noise Z ∼ N (0, N) is

an additive noise, i.e., is statistically independent of X . The

capacity of this channel is given by C(A)
△
= 1/2 log(1 + A),

where A
△
= P/N is the signal to noise ratio (SNR).

The error exponents ESU(R,A), ESU(R,A), ESU
ex (R,A)

and ESU
r (R,A) are defined similar to the ones in Section II-A.

However, while in the unconstrained case, the optimal distri-

bution (in the sense of error exponent) of the input symbols

was given by an i.i.d. distribution, in the constrained case,

the optimal distribution includes statistical dependence due

to codebook shaping (see e.g., [10, Chapter 7]). Specifically,

spherical shell codebooks are used, and this leads to the best

known error exponents. In particular, above the critical rate,

the random coding error exponent is optimal, and is given by

ESU
r (R,A) =

A

4β

[

(β + 1)− (β − 1)

√

1 +
4β

A(β − 1)

]

+
1

2
log

{

β − A(β − 1)

2

[
√

1 +
4β

A(β − 1)
− 1

]}

,

where β
△
= exp(2R). The critical rate is

RSU
cr (A) =

1

2
log γ,

where

γ =
1

2

(

1 +
A

2
+

√

1 +
A2

4

)

.

Below the critical rate, the random coding error exponent is

given by

ESU
r (R,A) = 1− γ +

A

2
+

1

2
log

(

γ − A

2

)

+
1

2
log γ −R.

The expurgated exponent is given by

ESU
ex (R,A) =

A

4

(

1−
√

1− exp(−2R)
)

and it is larger than the random coding error exponent below

the expurgated rate, given by:

RSU
ex (A) =

1

2
log

(

γ − A

4

)

.

In the high-SNR limit A ≫ 1, ESU(R,A) approaches the

Poltyrev exponent, defined by:

EP (µ)
△
=















0, µ ≤ 1
1
2 [(µ− 1)− logµ] , 1 < µ ≤ 2
1
2 log

eµ
4 , 2 ≤ µ ≤ 4

µ
8 , µ ≥ 4

, (24)

where µ = (1 + A) exp(−2R). The Poltyrev exponent at the

critical values µ = 1, µ = 2 and µ = 4 correspond to C(A),
RSU

cr (A) and RSU
ex (A), respectively.

B. MAC Channel

Consider a two-user memoryless Gaussian MAC channel:

Y = X1 +X2 + Z, (25)

where X1, X2 are the inputs to the channel, and are subject

to power constraints as in (23) with powers P1 and P2



respectively. The additive noise Z ∼ N (0, N) is independent
of the pair (X1, X2). Without loss of generality, let P1 ≥ P2.

We denote the SNRs by Ai
△
= Pi/N (i = 1, 2). Denote the

codebook of user i by Ci, and its rate by Ri = 1/n log|Ci|.
The error exponent of the channel EMAC(R1, R2, A1, A2) is

defined similar to (2).

The best known achievable error exponent for this channel

is given by Gallager [2], denoted here by EG
r (R1, R2, A1, A2).

This exponent is derived via analyzing the same error events

which are defined by Slepian and Wolf [1], and described

in Section II-B. Thus, this exponent is also given by the

minimum between three exponents. Inspired by the fact that

spherical-shell codebooks are good for the single-user Gaus-

sian channel, Gallager derived a lower (achievable) bound

EG
r (R1, R2, A1, A2) using such codebooks for the MAC chan-

nel. In the sequel, we use an upper bound on the exponent

EG
r (R1, R2, A1, A2) derived in [2], which is equal to the

exponent which corresponds to the third error event, EG
r3(R1+

R2, A1, A2) (which is analogous to the ESW
r3 (R1 +R2) of the

discrete case):

EG
r (R,A1, A2)

△
= EG

r3(R,A1, A2)

= (1 + ρ) log
e
√
θ1θ2

1 + ρ
− θ1 + θ2

2

+
ρ

2
log

(

1 +
A1

θ1
+

A2

θ2

)

− ρR, (26)

where R
△
= R1 + R2, and the expression is optimized over

ρ ∈ [0, 1] and over ri for:

θi
△
= (1 + ρ)(1 − 2riPi), θi ∈ [0, 1 + ρ]. (27)

The associated single-user channel of (25) is defined as in

the discrete case in Section II-D:

Y = X + Z, (28)

where X represents X1 + X2. However, in contrast to the

discrete case, here there are power constraints on X1 and X2.

Since there is no cooperation between the transmitters, the best

power we can hope to achieve in the associated single-user

channel is the sum of powers. Therefore the power constraint

of input of the associated single-user channel is given by P
△
=

P1+P2. Thus, the error-exponent of the associated single-user

channel

ESU(R1 +R2, A1 +A2)

serves as a benchmark for the error exponent of the MAC

channel. The exponent EG
r (R1, R2, A1, A2) is strictly smaller

than the single-user exponent. Moreover, it is strictly smaller

than the random coding error exponent ESU
r (R1 + R2, A1 +

A2) [2].

C. Lattices Preliminaries

This section presents mathematical background that is re-

quired for the code construction in the continuous alphabets

case and its error-probability analysis. For a more thorough

treatment of lattices, the reader may refer to [15] and the

references therein.

A lattice Λ is a discrete subgroup of the Euclidean space

R
n with the ordinary vector addition operation. A Lattice may

be specified in terms of a generating matrix. Thus, an n × n
real-valued matrix G defines a lattice by

Λ = {λ = Gx : x ∈ Z
n} . (29)

A coset of Λ is any translate of it, i.e., x+Λ, where x ∈ R
n.

Any set Ω of coset representatives is called a fundamental

region. Therefore, every x ∈ R
n can be uniquely expressed

as x = λ + r, where λ ∈ Λ, r ∈ Ω. The Voronoi region

of Λ with respect to the origin, denoted by V , is a set of

minimum Euclidean norm coset representatives of Λ, where
ties are broken arbitrarily. The nearest-neighbor quantizer of

a point x ∈ R
n is defined by:

Q(x) = λ, if x ∈ λ+ V and λ ∈ Λ. (30)

1) Good Lattices: We define two notions of “good” lattices.

Let rcovΛ denote the covering radius of Λ, i.e., the radius of

the smallest ball containing the Voronoi region V . Let reffecΛ

denote the effective radius of the Voronoi region, i.e., the

radius of a sphere having the same volume as V . We say that

a sequence of lattices Λ(n) ∈ R
n, n = 1, 2, . . . , is good for

covering if lim infn→∞ rcov
Λ(n)/r

effec
Λ(n) = 1. Choosing a sequence

of lattices which are good for covering with rcov
Λ(n) =

√
nP

leads to reffec
Λ(n) =

√

n(P − δn), where limn→∞ δn = 0+, and
in addition that 1/n

∑n
i=1 x

2
i ≤ P for any point in x ∈ V .

Rogers [16] established the existence of sequence of lattices

which are good for covering (which we denote as Rogers-

good).

A sequence of lattices Λ(n) ∈ R
n , n = 1, 2, . . . , is said to

be Poltyrev-good if for an n-dimensional vector Z with i.i.d.

Gaussian entries with zero mean and power N :

Pr
(

Z /∈ V(n)
)

< e
−n

[

EP

(

ρ2

Λ(n)

)

−on(1)
]

, (31)

where V(n) is the Voronoi region of Λ(n), ρΛ(n) is the Voronoi-

to-noise ratio:

ρΛ(n)

△
=

reffec
Λ(n)√
nN

=
[Vol

(

V(n)
)

]1/n√
2πeN

+ on(1), (32)

with on(1) → 0 as n → ∞, and EP (µ) is the Poltyrev

exponent defined in (24). The Poltyrev exponent is the best

known achievable error exponent in the unrestricted additive

noise white Gaussian (AWGN) setting [17], where the rate is

measured per unit volume.

2) Nested Lattice Codes: Here we recall nested-lattice

codes for a single-user AWGN channel. The construction

of codes for the Gaussian MAC channel is described in

Section VII, and builds on nested lattice codes.

We say that a coarse lattice Λ0 is nested in a fine lattice

Λ1 if Λ0 ⊆ Λ1, i.e., Λ0 is a sublattice of Λ1. We denote

their Voronoi regions with respect to the origin by V0 and V1

respectively, and the volumes of the Voronoi regions by V0

and V1 respectively.



A translate of Λ0 by a point of Λ1 is called a coset of Λ0

relative to Λ1. Any set of coset representatives of Λ0 relative to

Λ1 is called a nested-lattice code (Λ1,Λ0). However, in power

constrained codebooks, we select a set of coset representatives

with minimal power, which may be defined by taking the

intersection of a fine lattice Λ1 with the Voronoi region (w.r.t.

the origin) of a sublattice Λ0, i.e., C = Λ1 ∩ V0. This special

case of nested lattice codes is denoted by (Λ1,Λ0)Vor.
Thus, the number of codewords is equal to V0/V1. We call

(V0/V1)
1/n the nesting ratio of the lattices. The code rate is

thus equal to the normalized per dimension logarithm of the

nesting ratio: R = 1/n log(V0/V1).
The existence of simultaneously Rogers-good and Poltyrev-

good nested lattices sequence Λ0 ⊆ Λ1 ⊆ · · · ⊆ ΛL−1 for

any nesting level L and any choice of nesting ratios is shown

in [18].

VII. CODING FOR GAUSSIAN MAC CHANNELS:

DISTRIBUTED NESTING

In this section we describe a code construction for the MAC

channel, which is based on distributed structure. It consists of

two codebooks, where both are subsets of the same lattice,

thus their Minkowski sum forms a subset of the fine lattice.

It has the property that every pair of codewords results in a

different point of the fine lattice. In addition, the fine lattice is

a good lattice for the associated single-user channel. Hence,

inherently from the code, the decoding is done jointly for the

two users.

The resulting exponent from this coding scheme is given by

the following.

Theorem 2: For a Gaussian MAC channel with SNRs

(A1, A2) and rates (R1, R2),

EMAC(R1, R2, A1, A2) ≥ Estruct
r (R1, R2, A1, A2)

△
= Ep(min(µ1, µ2)), (33)

where the Poltyrev exponent EP (·) was defined in (24), and

µ1 = µ1(R1, R2, A1, A2) = A1 exp[−2(R1 +R2)], (34)

µ2 = µ2(R1, R2, A1, A2) = A2 exp[−2R2]. (35)

Unlike the discrete modulo-additive case, this exponent is

strictly smaller than the exponent of the associated single-user

channel. Furthermore, it is positive only inside the region

Rstruct
△
=

{

(R1, R2) : R1 +R2 ≤ 1

2
logA1; R2 ≤ 1

2
logA2

}

,

(36)

which is strictly smaller than the MAC capacity region (see

Figure 3). Thus, the code presented here is sub-optimal in

terms of capacity. Still, for certain rate-pairs it improves on

the best previously known error exponent for the Gaussian

MAC channel as derived in [2].

In Section VII-A we present an extension of the one-

dimensional continuous modulo additive channel (11) from

Section III to higher dimensions, in which the exponent of

the associated single-user channel is indeed achieved. Then in

Section VII-B we discuss the difference between this problem

and the power-constrained Gaussian channel, in terms of

coding and performance. Section VII-C describes the coding

scheme, while Section VII-D evaluates the resulting error

exponent, thus proving Theorem 2. Finally, in Section VII-E

we compare the performance to previously-known bounds.

A. Distributed Structure for the Modulo Lattice Additive MAC

Channel with Continuous Alphabets

Extending the one-dimensional continuous modulo additive

channel (11) to higher dimensions, we get the following

channel:

Y = (X1 + X2 + Z) mod Λ0, (37)

where Λ is a lattice over Rn and Z is a Gaussian i.i.d. vector

with zero mean and power N . The best known error exponent

of the associated single-user channel

Y = (X+ Z) mod Λ0 (38)

is achieved by a nested lattice codebook (Λ1,Λ0), with some

lattice Λ0 ⊆ Λ1 (see [19]). This exponent is also achievable in

the MAC channel by using a nested pair lattices (in which Λ0

is nested), since they form an indistinguishable codebook

from the one of the associated single user. Hence, extending

the coding technique of Section III to the continuous case

also achieves the best known error exponent (the Poltyrev

exponent (24) with µ = ρ2Λ, where the Voronoi-to-noise

ρΛ = reffecΛ /
√
nN as defined in (32)) of the associated of the

single-user channel, and is optimal above its critical rate.

B. The Effect of the Power Constraint

Comparing the Gaussian MAC channel (25) to the modulo-

lattice MAC (37), there are two differences: the first is that the

Gaussian channel does not perform a modulo lattice operation

and the second is that the powers of the channel inputs are

constrained. In order to demonstrate the effect of the power

constraint, in this section we consider the case of scalar (one-

dimensional lattice) codebooks, i.e., uncoded transmission.

For the associated single-user channel (28) of the Gaussian

MAC channel, at high SNR, the optimal codebook for un-

coded transmission approaches a pulse-amplitude modulation

(PAM) constellation, which is a set of equidistant points,

symmetrically around zero, that satisfy the power constraint.

This constellation is a one-dimensional nested-lattice code-

book (Z, LZ)Vor, where L is the constellation size and it

is odd. Therefore, C = {0, 1, . . . , L− 1} − (L − 1)/2 =
{0,±1, . . . ,±(L− 1)/2}. This demonstrates one effect of the

power constraint: while in the associated single-user channel of

the modulo-lattice MAC channel (37) the coset representatives

could be selected arbitrarily, in the power-constrained case, the

coset representatives must be selected such that the the power

constraint is satisfied. Thus we select minimal Euclidean

norm coset representatives. This effect carries over to the

multidimensional construction described in Section VII-C.

In order to build a good scalar codebook pair for the Gaus-

sian MAC channel, we use the observation that under certain
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Fig. 3. The boundary of the capacity region of the Gaussian MAC is given the thick solid line. The boundary of the achievable region of the structured
code, Rstruct, is given by the thin solid line. The dash-dot line is the point where µ1 = µ2, which is equivalent to R1 = 1/2 log P1/P2. This line separates
between the region which µ1 is dominant and the region which µ2 is dominant in the error exponent of the structured code (33). The dash line denotes the
boundary of the expurgation region of this exponent, which is min{µ1, µ2} ≥ 4.

conditions, the Minkowski sum of two PAM signals is also a

PAM signal. Therefore a good (scalar) code for the associated

single-user channel is constructed in a distributed manner.

Specifically, consider the triplet of nested lattices L0Z ⊆
L1Z ⊆ Z, where the ratio L0/L1 is odd. Then the codebook of

the first user is given by the nested-lattice code (L1Z, L0Z)Vor,
i.e. C1 = {0, L1, 2L1, . . . , L0 − L1} − (L0 − L1)/2. The

codebook of the second user is given by the nested-lattice

code (Z, L1Z)Vor, i.e. C2 = {0, 1, . . . , L1 − 1} − (L1 − 1)/2.
Thus the Minkowski sum of the codebooks is equal to

the nested-lattice code (L2Z,Z)Vor, i.e., C = C1 + C2 =
{0,±1, . . . ,±(L0 − 1)/2}. The transformation c = c1 + c2
where c1 ∈ C1, c2 ∈ C2 is injective, i.e., the codeword

pair can be resolved from their sum without ambiguity (see

Figure 4). Thus, from the point of view of the decoder,

the sum-constellation may have resulted from transmission

of a PAM codebook of a single user. Indeed, it is a PAM

constellation with |C1|·|C2| points, where the distance between
the points is equal to that of C2. The error probability can

be calculated directly from here. This demonstrates another

effect of the power constraint that did not appear in the

modulo-lattice MAC channel: The Minkowski addition of the

codebooks can be seen as tiling the codebook with the weaker

power, C2, around the points of the codebook with the stronger

power, C1, such that the resulting points are equidistant. For

such a construction, the powers of the codebooks must be non-

equal, and in particular, the power of the weaker user should

be such that its PAM constellation fits between two points of

the PAM constellation of the stronger user (see Figure 4).

Note that if the constellations were designed independently,

e.g. by using PAM constellations with distances that do

not result in a PAM constellation, some points would have

been closer, resulting in higher error probability. In the high-

dimensional case we strive to preserve this distance uniformity

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

(a) The codebook of the second user (with the weaker power) C2.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

(b) The codebook of the first user (with the stronger power) C1.

−8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

−6 + C2 −3 + C2 0 + C2 +3 + C2 +6 + C2

(c) The joint codebook as seen at the decoder, i.e., the Minkowski sum C1 +
C2.

Fig. 4. One-dimensional example: the circles are points of the codebook
of the first user. The dots are the superposition of the the two codebooks
(L1 = 3, L0 = 15).

behavior. We will thus require that the decoding (Voronoi)

region of the corresponding single-user codebook, as seen by

the decoder, remains the same as the Voronoi region of C2.
Extending this example to higher dimensions will preserve

this distance property, but will result in a shaping loss.

Therefore, in addition to the distance properties between the

codebook points, we want the corresponding codebook of the

associated single-channel to have “good” shaping. Similarly

to the coding technique which is described here, this will

be achieved by using a triplet of “good” nested lattices. In

the one-dimensional case of PAM constellation, the tiling was

perfect, in the sense that with an appropriate power-pair and

an appropriate rate-pair, the resulting codebook as seen at the



decoder is a PAM constellation with the sum powers and sum

rates. However, the coding technique which is proposed in the

sequel for the multidimensional case does not accomplish a

perfect shaping region as the one of the associated single-user

channel, and therefore does not achieve the single-user error

exponent. Furthermore, there is a capacity loss, which explains

some of the loss in Theorem 2 in respect with the capacity

region of the MAC channel (the other loss which disappears

at high SNR, is due to using a suboptimal decoder).

C. Codebooks Construction

Consider the Gaussian MAC channel (25) with SNRs

A1, A2 and rates R1, R2. Recall that without loss of generality

we assume that A1 ≥ A2 (equivalently, P1 ≥ P2). We only

consider rate-pairs inside Rstruct (36). Furthermore we assume

that A2 ≥ 1 (P2 ≥ N ), otherwise this rate-region is empty.

In our construction, the actual transmission power of the

second user may be lower than the constraint P2, in order to

increase the exponent when larger rates for the first user are

sought. This actual power is given by:

P̃2
△
= min {P2, P1 exp(−2R1)} . (39)

In addition, denote

Ñ
△
= P̃2 exp(−2R2). (40)

Notice that these choices ensure that N ≤ Ñ ≤ P̃2 ≤ P2. The

codebook generation uses a triplet of nested lattices: Λ
(n)
0 ⊆

Λ
(n)
1 ⊆ Λ

(n)
2 , where the covering radii are given by:

rcovV(n)
0

=
√

nP1, rcovV(n)
1

=

√

nP̃2, rcovV(n)
2

=
√

nÑ,

where V(n)
i is the Voronoi region of Λ

(n)
i w.r.t. the origin.

Each lattice sequence is both Rogers-good and Poltyrev-good.7

Denote the volume of V(n)
i by V

(n)
i . Since the lattices are

Rogers-good, we have:

V
(n)
0 = [2πe(P1 − δ1,n)]

n/2,

V
(n)
1 = [2πe(P̃2 − δ2,n)]

n/2,

V
(n)
2 = [2πe(Ñ − δ3,n)]

n/2,

where δi,n → 0+ as n → ∞. See Figure 5 for an illustration

of the nested lattices.

The codebook of the second user is given by the nested

lattice code (Λ
(n)
2 ,Λ

(n)
1 )Vor, i.e.: C(n)

2 = Λ
(n)
2 ∩V(n)

1 . The rate

of the second user is given by the nesting ratio:

R
(n)
2 =

1

n
log

V1

V2
−→
n→∞

1

2
log

P̃2

Ñ
= R2. (41)

The codebook of the first user is given by the nested lattice

code (Λ
(n)
1 ,Λ

(n)
0 )Vor, i.e.: C(n)

1 = Λ
(n)
1 ∩ V(n)

0 . The rate of the

first user results from the nesting ratio:

R
(n)
1 =

1

n
log

V0

V1
−→
n→∞

1

2
log

P1

P̃2

= R1. (42)

7Such a chain of nested lattices exists by [18]. Less restrictive constraints
on the goodness of the lattices may suffice.

Fig. 5. Nested lattice with ratio 3,3: The thick-dashed line is the Voronoi
partition of Λ0, where the region in the center is V0, which is the shaping
region of the first user. The thick points are the points of Λ1, and the thick-
solid line is its Voronoi partition. The thick-solid line region in the center is
V1, which is the shaping region of the second user. The thin dots (together
with the thick ones) are the points of Λ2, and the thin-solid line is its Voronoi
partition.

Since Λ
(n)
1 and Λ

(n)
2 are Rogers-good lattices, as explained in

Section VI-C1, it follows that C(n)
1 and C(n)

2 satisfy the power

constraints P1 and P2 respectively. Notice that the Minkowski

sum of the two codebooks is a subset of the fine lattice Λ
(n)
2 .

D. Error Probability Analysis

The Minkowski sum of the codebook pair, which is a subset

of the fine lattice Λ
(n)
2 , can be interpreted as the corresponding

codebook of the associated single-user channel. Thus, we

can use a lattice decoder for joint decoding of the message

pair. A lattice decoder is simply a lattice quantizer (30). An

achievable8 error exponent using lattice decoder is given by the

Poltyrev exponent (24) with µ given according to the Voronoi-

to-noise ratio given by (32) (see [15]):

µstruct = µstruct(R1, R2, A1, A2)

△
= lim

n→∞
ρ2Λ(n)

= lim
n→∞

(

V
(n)
2

)2/n

2πeN

=
Ñ

N

=
1

N
·min {P2, P1 exp(−2R1)} exp(−2R2)

= min {A2 exp(−2R2), A1 exp[−2(R1 +R2)]} .
= min {µ2, µ1} ,

where µ1 and µ2 are defined in (34), (35). This proves

Theorem 2 for all rates in Rstruct. Since outside Rstruct this

VNR satisfies µstruct ≤ 1, it also proves the theorem for all

rates.

8We analyze the error probability of the nested lattice codebooks that are
described in [18]. This ensemble builds on Construction A [20].



Note that the boundary where µ1 = µ2 corresponds for the

case where R1 = 1/2 log A1/A2, and for smaller rates for the

first user we use the maximal allowed power for transmission

of the second user. In this case, µ2 is dominant.

E. Performance Comparison

We now show that the suboptimal encoding-decoding

scheme above outperforms the spherical-shells exponent for

some rate pairs.

For given A1, A2 and a fixed R1 = 1/2 logA1/A2, Fig-

ure 6 compares the upper bound on the spherical-shells error-

exponent EG
r (26) with the distributed-structure error exponent

Estruct
r (33). We can see that below a certain rate R2, dis-

tributed structure has a strictly larger error exponent than the

spherical-shells one. These exponents are also compared with

ESU(R1 +R2, A1 +A2), which is used here as a benchmark.

Above the critical rate it is an upper bound. Figure 6(a) shows

a high SNR case, where the second user has half of the power

of the first user. The error exponent of the distributed structure

code is strictly larger than the one of the spherical-shells

codebooks in part of the rate region. Figure 6(b) shows a high

SNR case, where the second user is much weaker than the

first one; therefore it is almost a single user case. Figure 6(c)

shows a low SNR case, where the second user looses since

it is not equal to the single-user capacity C(Ã2). Figure 6(d)

shows a case, where the second user is much weaker than the

first one, and therefore the first user looses rate since it is not

equal to the single-user capacity C(A1). In the last two cases,

the error exponent of the distributed structure code is lower

than the one of the spherical-shells code.

While for general (i.e., non-structured) infinite constel-

lations, Poltyrev’s exponent (24) in the range of squared

Voronoi-to-noise ratio larger than 4 is achieved by expurgation,
for (infinite) lattices it is inherently achieved with high prob-

ability over the ensemble of [18], since all codewords have

the same error probability [17].9 We note that the distributed

structure code is superior to the spherical-shells in (part of) the

expurgation region of Poltyrev’s exponent (µ ≥ 4). This may

imply that the “inherent expurgation” of lattices contributes to

some of the gain of this code over the spherical-shells one.

VIII. DISCUSSION AND CONCLUSION

By using linear codes, we have shown that for modulo-

additive MAC channels with a prime alphabet size, the achiev-

able error exponent is equal to the best known exponent

of the associated single-user channel. In addition, we have

demonstrated that linear codes offer improvement to the best

known MAC error exponent for “almost additive” channels.

While we chose to present the results for two-user MAC

channels, the approach immediately extends to any number

of users, allowing for full expurgation of the combined linear

code. It is therefore reasonable to expect that at low rates and

at least for modulo-additive channels, the gain over the best

previously known achievable error exponent will increase with

9For the ensemble of [18] the fraction of “bad lattices” goes to zero as
n → ∞.

the number of users. The approach of transforming a MAC

channel into an additive one is also applicable to a wide variety

of non-additive network setups, where structure is beneficial

in terms of capacity.

In the Gaussian MAC case, the motivating observation

of this approach is the fact that the sum of two uniformly

distributed codebooks over spherical shells is not a uniform

distribution over a spherical shell. We use the fact that the sum

of two nested lattices is a lattice, and this function is reversible.

This technique, however, loses even in the sum rate. In order to

understand the loss, we can view the codebook at the channel

output as a tiling of the codebook of the weaker user over the

codebook of the stronger one. We do not expect this tiling

to be perfect, i.e., to constitute a good shaping region for

the associated single-user channel, since the resulting shaping

region exceeds the optimal shaping region of the associated

single-user channel. Even without perfect tiling, we expect that

the results can be significantly improved. Last, we note that

a lattice version [9] of the transformation which was applied

in the discrete case (Section IV) can be applied to almost

additive Gaussian noise channels in order to improve the error

exponent of the channel.
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(a) Balanced, high SNRs: A1 = 30 dB, A2 = 27 dB.
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(c) Balanced, low SNRs: A1 = 6 dB, A2 = 3 dB.
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Fig. 6. Comparing the error exponent of the spherical-shells code which is upper bounded by EG
r (R1 +R2, A1, A2) (dashed line) to the error-exponent of

the distributed structure Estruct
r (R1, R2, A1, A2) (solid line). ESU(R1 + R2, A1 + A2) of the associated single user channel is shown by the dash-dot line

of the associated single user channel. The two dots indicate the expurgation rate Rex(A1 +A2) and the critical rate Rcr(A1 +A2). The horizontal axis is
the fraction of rate of the weak user from the maximum achievable by the distributed nesting technique, while R1 = 1/2 logA1/A2 is fixed, and therefore
µ1 = µ2.
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