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Abstract—Recently there has been significant interest in the assumed to be unique, and the resulting dispersion pasitive
analysis of finite-blocklength performance in different sétings.  Roughly, this result can be understood as follows. Defiraes
Specifically, there is an effort to extend the performance bands, 0 event that(X, V), averaged over the transmission block, is
as well as the Gaussian approximation (dispersion) beyondagint- below R. To th o tion level ded. a decodi ’
to-point settings. This proves to be a difficult task, as the elow fi. 10 the approximation leve nge €d, a decoding error
performance may be governed by multiple dependent constrats.  €veNnt amounts to the everit Now defineG to be the event
In this work we shed light on these difficulties, using the muiple- that a Gaussian variablg with meanC' — R and variance
access channel as a test case. We show that a local notion of//n takes a negative value. By the central-limit theorem
dispersion is more informative than that of dispersion regons (CLT), the probabilities ofG and.J are approximately equal.

sought after thus far. On the positive side, we show that for . . . . .
channels posessing certain symmetry, the dispersion pradin Equation (1) gives the probability of, with the correction

reduces to the single-user one. Furthermore, for such charts, t€rm corresponding to the transitions from the true praigbi
linear codes enable to translate single-user achievabiitbounds of a decoding error, to that of and then ofG.

to the multiple-access channel. The elegance of both the results and the derivation have mo-
tivated many to work on extensions and refinements. Among
these works, we note those that aim to extend the results
The work of Polyanskiy et al. [1] revived the interest ino network settings, and in particular to the multiple-asce
analyzing the optimal performance subject to blocklengit-c (MAC) channel [3]-[5]. Although these works differ, we may
straints. The work considers the point-to-point channelin® roughly describe the basic approach as follows. Consider a

problem, and the results can be roughly divided into twgvo-user MAC channel, and define the random vector formed
parts. First, upper and lower bounds are given on the optini) the information densities
codebook rateR as a function of the average probability of

I. INTRODUCTION

error* P, and the blocklength. Then, for asymptotic analysis, i |, | HEGY]X)

P, is taken to be some constantvhile n is taken to infinity. 2| = ?(XQ; YiXiy) |, 3)

It turns out that both the upper and lower bounds have the ‘1,2 (X1, X2 Y)

same asymptotic behavior, giving rise to: [2] averaged over the transmission block. Here, the conditiona
v ) information densities are the obvious extensions of (2wNo

R=C— \/in(e) +0 ( Ogn) . (1) defineJ;, J; andJ; - as the events that the respective averaged

n n densities fall below the corresponding element of ratearect

In this celebrated expressio®)~!(-) is the inverse of the R,

complementary Gaussian CDF,is the channel capacity, and RZ Ry

V is the channeldispersion given by the variance of the Ry + Ry

information density:
It is shown, that (up to the correction term),

() 2 1og TEUI) @
k Pry) max (P (J1) P (J2) P (J12)} < Po <P ({1, o, 12} -
with respect toPy, the channel capacity-achieving distribu- (4)

tion, andPy| v, the channel law. Here and in the sequel, is  Finally, a normal approximation is applied to the inforroati

density. That is, a Gaussian vector
* This work was supported in part by the Israel Science Foimuamnder
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1Bounds are also given for maximal probability of error, ancparticular
the bounds we use in this work, as well as the Gaussian appatirin,
are valid under both definitions. However, except for MAC rofels with
triangular capacity region which is achievable without girsharing (see
Section IIl), we only consider average error probabilitg, itiyields more 2Detailed treatment is given in [1] to other cases, but thenridgas of this
tractable results in network settings. work are better understood in the more regular case comsider



is defined, with mean where A
I(X1;Y|X5) Ve =ete—aon

I(X;Y|Xy) | =R ) s the probability of the union of independent events. Thus,

I(X1, X9;Y) the finite-blocklength performance of this MAC channel is
and a covariance matrix that is equal to the covariance of th@mpletely dictated by the single-user performange 1),
information density (3). LeGG;, G» and G, » be the events i.e., the right hand side of (4) holds with equality. We camce
that the corresponding element#jt/x falls below zero. Then, trate, then, on translating (7) into an asymptotic (dispejs
up to correction terms, the evenfs, J, and.J; 5 in (4) can expression.
be replaced by7;, G2 and G . In this simple MAC channel, since the error events of

While this analysis is valid, we show in this work that it haghe users are independent, the asymptotic analysis greatly

two important limitations. First, using the Gaussian stats Simplifies. The events; and J, are just single-user events,
of Z to define global “dispersion regions” is problematicffmd their union subsumes the evént. Thus, in the Gaussian
since it does not capture the nature of convergence to fi@Proximation as well, it is sufficient to take two indepemide
boundary of the capacity region. And second, proving tigiftaussian variable&’; and Z,, where Z; has meanC' — R;
finite-blocklength (non-asymptotic) achievable boundsmisu and variancé’/». Then, the approximated rate region is given
out to be a very difficult task. We demonstrate this using twey the rate pairs for whiclf (G1 U G2) < ¢, yielding the rate

important special cases: region:
1) Orthogonal MAC channels. Here, there are two in- C - Ry 1 logn %
dependent single-user channels, coupled only via the C—Ry + 1 0 52(6), (8)

joint error-probability constraint. Thus, in principlenya

single-user performance bound directly translates toV4'ere

bound on the MAC rate region. We show that even in this - |

case, docal approach is more appropriate for describing (e) = { { to } HQ(h) VQt2) < 6} ’

the asymptotlcs. . . In order to show the explicit dependence updnwe uset
2) Symmetrlc_ MAC channels. In this case (an_ extension Qyich js a standard Gaussian, rather tharThe achievable
_asymmetnc single-user ghanne_l, tq be _dEmed precisg te-regions in [3]-[5] all reduce to (8) in this degenelcse.
in the sequel) the capacity region is triangular and the s ot glance, the expression (8) seems quite pleasing, and
dispersion analysis rgduces to a single-user One. Ytleed resembles (1), where the border of the two-dimeakion
show, that _the reduction goes beyon.d.asymptotlcs, aﬂ%ion Y(e) plays the role of a vector extension of the
that usinglinear codes single-user finite-blocklength jyerse_q function. However, the region contracts in botisa
achievability bounds can be utilized. simultaneously. That is, for any choice «f ¢, on the face of
Sections I, Il are devoted to these cases. Then in S%(E), the trajectory (as a function of) of the Corresponding
tion 1V, we derive the dispersion of a general MAC channepoint on the face of (8) always tends to the origin, i.e.,
both rates approach capacity simultaneously. This raiges t
guestions. First, maybe we can describe the convergence to

) ] ) _ the origin in a simpler manner, without resorting to the eath
In this section we demonstrate the inherent problematic Bmplicated regiort(¢)? And second, what happens if we

deriving meaningful “dispersion regions”. We do so using tish to approach a different point on the face of the capacity

very degenerate case of an orthogonal MAC channel, WhetRiisn where one of the users operates below capacity even
the decoder observes the outputs of two independent poiff-he  infinite-blocklength limit? In order to answer these
to-point channels..We f.urther assume for simplicity thagstn questions, we take a different, localized approch.
two channels are identical. That i, = (Y1, Yz) and Without loss of generality, assume that we wish to approach

Pyix,.x. (U1, 92121, 82) = Py 1x, (91]21) Py, x, (y2|72) a rate-pa|_r(R1,R2) = (CﬂR_*), where 0 g_ R* < C. We

can describe the trajectory in a parametric wgll;, R2) =

forall =1, 22, y1, yo. In this setting, the two independent point-(R, f(R)), where f(R) is some function satisfying (C) =
tO-pOint channels are COUpled Only thrOUgh the definitiothef R*. In order to avoid CompncationS’ we On|y take smooth
MAC error event: if at least one of the messages was decodgglectories; thus we assume thét) is continuously differ-

incorrectly, we declare an error. entiable. We further denote the asymptotic slope of approac
Let e(n, R) be the minimum error probability for the single-py
user channel, using a code of blocklengthnd rateR. Since 5= df (R)
the error events of the sub-channels are independent, we hav ~ dR e
that a rate-paif Ry, R2) is achievable at blocklength if and
0n|y if: 3A somewhat similar analysis is performed by Tan and Kosutfff]a
’ more general case (in the context of the Slepian-Wolf praplen addition

to deriving the global region. However, Tan and Kosut do nmatdfrom this
e(n, Rl) v E(H’ RQ) <6 (7) analysis the conclusions that we reach here.

Il. RECTANGULAR RATE REGION: THE DIFFICULTY OF
DEFINING GLOBAL DISPERSION



Then for each such trajectory, we can derive a scalar exprassum-rate face; see Section IV in the sequel.

sion for the asymptotic behavior. Remark 6: Approaching the corner point with a slope
Proposition 1 (Dispersion of the orthogonal MAC channebas an interesting engineering interpretation: it is trseilteof

When approaching a rate-pdif’, R*) with asymptotic slope optimizing a linear combination of the rateR; + AR.

A, the dispersion is given by the following. Remark 7:1t should be noted that the straight-line approx-
1) If R* < C then R, follows the single-user dispersionimation only holds in the asymptotic (dispersion) sense. Fo
(1). any finite blocklengthn, there is indeed a tradeoff between
2) If R* = C andX =0 then the rates.
Proof outline: For the caseR* < C, consider the error
R =C— /KQ—I(E) +o (L) _ probability of the second user. . By the smoothness of
n N the trajectory,
(for infinite A we have the obvious dual) . —logpes, © Lmint —loge(n, R') 0
3) If R* = C and\ ¢ {0, 00} thenR; andR; follow (1) Jm ——== > liminf ————. (10

with e replaced by, €5 respectively. These probabilities

, g . I
are given by the solution to: for someR’ < C. By large-deviation analysis on the infor

mation density, one may show that this quantity is positive

€1Ver =¢ (indeed, such analysis yields the random-coding exponknt)
Q Yer) other words, when the second user does not try to approach
0 1(e2) =A (9) capacity, large-deviations analysis applies to that uaed

P.,,, decays exponentially. Substituting back in (7), we see
Before outlining the proof, the following remarks shed tighthat any R satisfying

on this result.
Remark 1:The key to this result, is understanding the e(n, R) = e—d(n)

behavior of the error probability of the second user, along gchievable, wheré(n) is exponentially small. Then it can
the trajectory, see Figure 1. Fér* < C, the second user is in he shown that such a small perturbationeodioes not change
the large-deviations regime, where its error probabilégalys e dispersion behavior, i.e., it inflicts a rate penaltyt tisa
to zero fast, and; ~ ¢. Approaching the corner point with apg|ow the correction term in (1). Consequently, for diy <
finite positive slope, the error probability is split betwete C, the dispersion is equal to the single-user dispersion.

users. Thus, they are both in the CLT regime withe; < €. For the approach to the corner poiit = C, any trajectory

In the intermediate case, where the corner is approachéd Wi, ¢ < )\ < oo is tangent to the straight trajectory

a trajectory tangent to the axis, the error probability of thcorresponding to taking the correspondifg, c2) in X(¢) as

second user decays to zero, but may do so slowly. _ defined via (9). The difference between the dispersion along
Remark 2:Unlike (8) which exhibits a rounded dispersionhese tangent trajectories is (by the smoothness assumptio

region, Proposition 1 gives straight lines with a singiari only of orderl/». Thus, the dispersion is given by (1), with

at the corner points. Technically speaking, both are valifle error probability given by (9).

asymptotic approximations of the region (7). The diffeenc Approaching the corner point with = 0 or A\ = oo lies

between the rounded region and the straight lines is ofsmewhere between these cases. Delicate analysis is needed

lower order than the correction term (non-uniformly arounging into account the exact trajectory. In some cases, the
the corner points), a fact that is hidden by the rather intplicGeond user is in the moderate-deviations regime [6]. m
form of X(e).

Remark 3:The analysis above holds, with obvious mod- ||| TRriaNGULAR RATE REGION: EQUIVALENCE TO
ifications, to orthogonal MAC channels where the channels SINGLE USER

differ. For example, the second equation in (9) is multiglie
by the square root of the ratio of dispersions. Clearly, it ca VWhereas in the previous section the error events of the users

be extended to more than two users as well. were statistically independent, in this section we disdhss
Remark 4:As in the single-user case, the analysis alsher extreme case, where one of the error events dominates

holds fore > 1/2. The approach to non-corner points willthe others.

always be from the outside. As for the corner point, if ) ) ) . .
e > 1 — v2/> then necessarily at least one ef, e, is A Achievable Dispersion for Triangular Rate Regions

greater thart/2. Thus, the approach is from the outside. For consider a MAC channelPy|x, x, with input alpha-
intermediate values of, it may be from the inside or outside,pets x;, X, and output aIphabeD): Further, consider an
depending on the slopk. input distribution Px, (1) - Px,(z2) such that the capacity

Remark 5:0ne may claim that approaching non-cornétegion under this distribution is triangular. This impligsat
points is not interesting, as they are all dominated by the OR(Y; X;) = I(Y; X5) = 0. Therefore

timum (C, C'). However, the approach presented here extends
to general MAC channels, where the capacity region may have Py x, (yl1) = Py x,(ylz2) = Py (y) (11)



1st trajector
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() Peq, Peo along the two trajectories in Figure 1(afd) P.1, P-o along the two trajectories in Figure 1(b).

Fig. 1. Schematic view of convergence along different ttajées. Figures 1(a) and 1(b) show the capacity region asrttrogonal MAC channel, and each
sub-figure shows two different trajectories, starting frime same rate-pair and approaching the same gainR*). Figures 1(c) and 1(d) compar@.
(circles) andPe (asterisk) along the two trajectories in Figures 1(a) arig) i¢spectively

for any 21 € Xi,2z2 € A,y € Y. Now consider the to a triangular capacity region, achievable by a single inpu
information-density vector (3). In the present case, a#l thdistribution (i.e., time sharing is not required). Moregwee
elements are equal. Then, since the rate threshold for e how that these channels are equivalent (in terms of error
event.J; o is higher than the ones iy, and.J;, we can always probability) to a single-user channel, and hence the diéper
ignore the other events, as they are subsets of the last, evenknown.
and therefore dispersion is a scalar quantity, similar ® th Definition 1: Consider a MAC channePy x, x,. For any
single-user case (1). random variableX, where the following Markov chain

In particular, If this input distribution achieves the caj
regiol:] of this MAC cr?annel (i.e., the capacity regig%l is (X1, X2) 0 X oY (13)
triangular and time sharing is not required), then an aelfiles holds, the channePyx, is called theassociated single-user

dispersion of a MAC channel is given by channelof the MAC channel.
% loo Notice that when comparing the MAC channel to its asso-
Ri+Ry=C—1/—Q '(e)+0 ( & ) (12) ciated single-user one,
n n

In this expression(' is the maximal sum-rate of the channel, emac (1, B, Rz) 2 esu(n, By + Ra), (14)
andV is tfle variance of; ». This agrees with the expressionsince the single-user channel can emulate the MAC channel.
of [3], [5]. This gives outer bounds on the dispersion; we now concentrat
on a case where we can obtain a meaningful bound.
In order to define a symmetric MAC channel, we first recall
We start with formally defining some special classes @fie definition of a symmetric single-user DMC:
MAC channels. Then we show that these definitions lead Definition 2 ( [7]): A DMC is defined to be symmetric if
4 o _ - _ its probability transition matrix (using inputs as rows and
The derivation in [4] uses a union bound to simplify the as&lyaround fth b | be divided col .
corner points; this bound cannot use the special structtirthi® channel, putputs ort e.SU set as columns) can be divi e column-wise
where the region has no corner points. into sub-matrices, such that for each sub-matrix, the raws a

B. Dispersion of Linear-Symmetric Channels



equal up to permutations, and the columns are equal upTioe codebook size is equal id = |F|* (the rate is equal to

permutations.

R = k/n-log|F|). Clearly, every rate is possible asymptotically

Definition 3: A symmetricMAC channel is defined as aasn — oo.
channel that has an associated single-user channel which is A codebook pair for a linear MAC channel can be generated

symmetric DMC.

Definition 4: A MAC channel with input alphabef’
Xy = F, whereF is a finite field, is calledinear if there
exists X in (13) such thatX is a linear combination of\;
and X, over the field.

from a linear code for its associated single-user channel, b
splitting the generating matrix into two sub-matrices (doe
each user). The sum of codewords is indistinguishable from
a codeword of the single-user code with= R; + R,. This
leads to the following proposition.

The class of linear and symmetric MAC channels includes Proposition 3 ([9]): Consider a linear MAC channel. Any
the important case of modulo-additive channels over prim@tror probability which is achievable by the associatedlsin

alphabets, i.e.Y = (X; + X2 + N) mod m, where the
alphabets of the input and output are equdltol, . .., m—1},
andm is a prime.

user channel using a linear code, is also achievable for the
MAC channel.
For any linear and symmetric MAC channel, the capacity

For all linear and symmetric channels, the rate region §§9i0n is triangular, and it is achieved by a uniform input

triangular, and it is achieved by a uniform distribution otree

distribution. Using linear codes and by Proposition 3, we ca

input of both users. Other channels with triangular regiaym OPtain achievable bounds for finite blocklength.

also be transformed to this form. However, there exist cebnn
with triangular rate region which do not belong to this clas

e.g., modulo-additive channels over non-prime alphabet.

We conclude this subsection by showing that the right ha
side of (12) is also an upper bound on the sum-rate, thll
characterizing the dispersion of a linear and symmetric MAC

channels. This can be seen by the symmetric DMCy with
X equal to the linear combination df; and X, over a field:
on one hand(x1,x2;y) = i(x;y) for all z1, z2,y, and on the

other hand the dispersion of the single-user channel is know

C. Finite-Blocklength Achievability Bounds

Seeing that (12) amounts to single-user dispersion, one

hopes that single-user finite-blocklength achievabilibuibds

Corollary 1: For any linear and symmetric MAC channel,

dnear codes achieve the DT bound (15) with= R; + Ro.

We now compare this result to previous MAC finite-

Itig;zcklength achievability bounds. Existing literatureludes

following.

1) In [10], Slepian and Wolf show that for a given input
distribution and an achievable rate pair with this dis-
tribution, the MAC error probability is upper-bounded
by the sum of three terms, each decaying exponentially
with n. Applying this to triangular MAC channels, one
of these exponents corresponds to the “right” random-
coding error exponent of the single-user channel, but the
others add to the error probability and prevent the bound
from being tight, unless staying far from the face of the
capacity region.

can also be translated to this special class of MAC channels)
However, this doesot follow from the analysis above, as it
requires a stronger sense of equivalence to a single-uaer ch
nel. In the sequel we do show that the following bound can
be extended to MAC channels that are linear and symmetric.
It is known as the “dependence testing” (DT) bound, and the
interested user is referred to [1].

Proposition 2 (DT bound for single user DMC [1], Th.18):

Consider a DMCPy | x with input alphabet¥ and output  3)

In [3], [5], the summation problem is avoided by con-
sidering the different error events jointly. Although no
explicit bounds for finite blocklength are given, one
may obtain such bounds by carefully considering the
correction terms in the proofs of the asymptotic regions.
However, these works rely on the method of types,
yielding large finite-blocklength penalties compared to
the DT bound.

In [4], the authors use a simplified approach, which

alphabet). For any distributionPx on X, there exists a
code with blocklengtm and average probability of error:

»

Pr {n-i(X;l_/) > log

M
P. <Pr {n-i(X;Y) <log

M-1 M-1

+ } ) (15)
where M = |exp{nR}| is the codebook size, anl is
statistically independent afX, Y"), with Py (y) = Py (y).

In the context of symmetric point-to-point channdisgar

allows to apply the DT bound. However, the simplifi-
cation also implies that correction terms of all MAC
error events are summed.

It is possible, that with some more efforts these obstacles
can be overcome, and the achievability of the single-user DT
bound be also shown using the results of [3]-[5]. However,
we can point out two main advantages of the linear-codes ap-
proach, beyond its simplicity. Firsany single-user achievable
rate using linear codes applies to the MAC channel. Indeed,
we do not believe that the DT bound is tight. And second,

codesachieve capacity [8], as well as the channel dispersidéh a linear code the average error probability also equals th

and the DT bound [1]. We define a linear calléover a finite
field F) via ak x n full-rank generating matrixz, by

C={c:c=uG, uelF*}, (16)

maximalprobability of error.

We conclude by pointing out that the linear-codes approach
allows to derive finite-blocklength achievability boundsaa
for general MAC channels. We can use a transformation of



the constraints). In the context of the two-user MAC channel
K =2, L=3and

1 0
A=10 1
1 1
These L constraints correspond to random variables
PR AR i1,...,i; and error eventdy, ..., J;, similar to those defined
.. R® " the Introduction. Let the covariance matrix of these vdesab

be V. Similar to (4), an achievable finite-blocklength rate

region is given by:
Fig. 2. For aK-user MAC channel, an illustration of approaching the point
R* which lies on the intersection of two faces of an achievahte region.

_ _ _ R:P( |J J]<ey. (18)
the channel into a linear and symmetric MAC channel, as

described in [9]. While this transformation is lossy in term

of Capacity’ and thus is necessar”y sub-optima| in terms Ofone could reformulate the Gaussian apprOXimation for this
asymptotics (dispersion), it may still be better than oth&eéneral presentation. However, we choose to do so directly
bounds for some finite blocklengths, when the channel figr the localized analysis. To this end, suppose that we wish

“almost” linear and symmetric. to approach a poinR* on that surface; for such a point,
somel < K constraints are active. Since, as we saw, to the
IV. THE DISPERSION OF AGENERAL MAC CHANNEL dispersion approximation, other constraints do not métiery

Consider a two-user MAC channel. For any given ﬁxeanl_y “take” an exponentially small error probability frorhet
distribution, the dispersion is set by three evefits, Go act!ve ones), we concentrat_e on_the act!ve ones only. Toreref
and G », corresponding to the statistics of the correspondi fineA to be the sub-matrix ofl by taking only theL rows,
information densities. In the previous two sections, foxadi Which correspond to the active constraints, and defias the
input distribution, the dispersion of a MAC channel whegub-vector ofl which corresponds to the active constraints.
approaching a point on the boundary of the achievable regibRen the following equation holds:
was sh_own to haveT a similar asymptotic behavior as (1), fpr AR* = |. (19)
any trajectory that is not tangent to the faces of the capacit . . _
region. In Section IV-A we show that this behavior alsVote that this equation does not uniquely determiRe,
extends to general MAC channels. Then, in Section IV-B weut rather characterizes the hyperplane determined by the
consider the Slepian-Wolf problem, where dual results aan fntersection of the constraints. We also define a normalized

obtained, and also meaningful outer bounds on the disperskgrsion of A: o ar 17

can be given. Finally in Section IV-C we go back to the B = {Ha—lu ﬁ] (20)
MAC channel, and discuss the problem of finding the optimal ! L

dispersion when time-sharing is taken into account. We are interested in approachiRg in the direction defined

by the K-dimensional unit vectoe. That is, we approacR*
A. Achievable Dispersion Using a Single Input Distributionin such a way that:

In this section we consider a fixed input distribution g =
Px, (z1) - Px,(z2). Recalling (4), the inner bound on the IR* =R
finite-blocklength region is given by the rate pairs suctha We assume that is not in the direction of any of the active
probability that one of the information densitigs i, andi; » constraint$.
is below Ry, Ry and R; 2, respectively, is below. We apply For the Gaussian approximation, define the random vector
now a local asymptotic analysis, similar to that presented Z = [Z, ..., Z;]T, which has mean
the previous sections for special cases. We prefer to presen N
the problem in more general terms, that allow to see that the pz =1 —AR=AR"—R) (22)
form of the approach is not attached necessarily to the twand covariance matri¥/ that equals the sub-matrix of
user MAC problem, but can also be applied to other netwoderresponding to the active constraints. In these terms;ame
problems. formulate the local dispersion (see Figure 2).

We start with ak’-dimensional rate region, defined by linear Proposition 4: Consider an achievable finite-blocklength

inequalities, such that the surface is made of faces (hypgite region given by (18). Then, asymptotic achievablesrate
planes). These faces are given by

e (22)

5The actual trajectory does not have to be a straight line, thadesults

AR <. (17) hold for any continuously-differentiable trajectory whidés tangent toe at
- - R*, as in Section Il.
_ T . . ,
Here,R = [Rlv ce RK] , Alis anL x K matrix, where each 60therwise, more careful analysis in needed, see the secasd of

row corresponds to a constraint (thusgives the values of Proposition 1.



R2 dispersion, i.e.R5 behaves according to (1), substitut-
ing C, R andV with I, Ry, and the variance ofs,

respectively. Note that this is slope-independent, as long
as the approaching trajectory is not on the face. This
is identical to the behavior of non-corner points of a
rectangular region, presented in Section Il

2) Approaching a non-vertex point on the diagonal face,
i.e.,(Ry,Rs)for R{+R5 = I 2, R} < I andR} < L.
The only active constraint is given by = [1 1].
Therefore, the dispersion is again scalar and slope-
independent (unless parallel to an active constraint3. It i
given by (1), substituting’, R andV" with I; 2, R1+ R2

I(X1;Y|X2) and the variance of, o, respectively. This is identical

to the behavior in the case of a triangular rate-region,

presented in Section III.

Fig. 3. Different cases which are considered in Section IV.

when approachin®” in the directione are given by: 3) Approaching a vertex pointly, 11 2) with slopee not
) proportional to[0 1] or [1 — 1]7. Here
Uz ogn
AR=1-—=+1-0 . 23
Frro(*) ) a=[1 0]
The vectoruz is the solution of the following two equations: N
Thus,
fz = Be (24) —,LLZ = Be= |: e1e+162 :|
[zl [z V2
where B is given by (20), and From here, one may derive the explicit solution; after
projecting in the directions?; and R», it coincides
P U {(Zi<0} | = (25) with the scalar dispersions calculated in [5, Section
=1L B V]. While in principal this analysis is similar to that
] ] . ) o applied to a corner point in Section II, there are two
_The first equation give¢/, — 1) constraints, defining the differences that make it more involved: there is statistica
direction of uz. It is derived by multiplying both sides of dependence between the dominating error events, and

(21) by A, substituting (22) and re-normalizing. The second  the faces meeting at the corner are not perpendicular.
equation gives the missing constraint, setting the len§ttz0 4) Approaching a vertex point(Y; X1|X2), I(Y; Xs))

using the Gaussian statistics &f . with slope e proportional to[0 1]7 . As discussed in
An important case is wheh =1, i.e., Wh‘?” approactnng_ a Section Il this is an intermediate case between the ones
point where only one constraint is active ( non-corner [g11)] discussed above. That is, we have tiiat approaches
In that case, (23) reduces to scalar dispersion, and I, with scalar dispersion according to the variance of
g = \/VQA(E)’ i1, but the_corr_ecnon_ term may be larger than_m (_1).
A similar situation arises when the approach direction
regardless of the directioe. For other points, if one is parallels the sum-rate face.

interested in the scalar dispersion of a specific rate, or of a _. . .
linear combination, it can be derived using linear operetion B. Dispersion of the Slepian-Wolf Problem
(23). Rates or combinations that are not determined this way The Slepian-Wolf problem [11] is a source-coding setting,
have zero dispersion (they Correspond to inactive Comﬂ;gaiWhel'e two correlated sources should be (almost) Iosslessly
at R*, thus they can be approached arbitrarily fast, withogenveyed to a single decoder. The rate region is dual to that
affecting the other rates). of the MAC problem: each rate should be at least the entropy
We now go back to the specific problem at hand, the tw@f the corresponding source conditioned on the other, aad th
user MAC channel. Further, we consider the generic caS8ém of rates should be at least the joint entropy. However,
where the rate-region for the chosen input distribution is &like the MAC problem, there is no choice of distributions,
pentagon. We use the representation above in order to find tgs no time-sharing is needed. This simplifies the analysis
asymptotic approach to different cases, as shown in Figure®d allows to also give a simptiter boundon the distortion
We use here the notatioh, I> and I; » for I(X;;Y|X,), region. _ _
I(X2;Y|X1) and (X1, X,:Y), respectively. Alsojy, i» and Indeed, define the entropy density vector as
i1,2 denote the corresp_onding information dens_ities. Due tp p, N h(X1|X>) log Py, |x, (€1]22)
symmetry, we can restrict attention to the following cases. he | 2| h(X2|X1) | = — | logPx,x, (22]21)
1) Approaching(R;, I2) for R} < I;. The only active hi 2 h(X1, X5) log Px, x, (%1, %2)
constraint is given byA = [0 1], resulting in scalar



Further, defineJ;, Jo and J;» as the events that, whenat a price! It seems plausible that whenever capacity may
averaged over a source block; > R;, ha > R, and be achieved using a single input distribution, the optimal
hi2 > Ri + Ry, respectively. Then, the error probabilitydispersion is also achieved that way, see [3, Example 1].
is bounded (to the asymptotic approximation of interest falle conjecture that this is true; however, we do not see an
dispersion) by (4). Since there is no choice of distribigionimmediate proof.
this leads directly to inner and outer bounds on the dispersi A very different situation arises, when time sharing is
when approaching a pointR;, R2) on the surface of the needed in order to achieve some points of the capacity region
capacity region. The inner bound is given by Proposition Llearly, for asymptotically long blocklength, a non capgci
substituting information by entropy. It is left to derivestbuter approaching strategy cannot be dispersion optimal. Thars, f
bound, and see when they coincide. these points, for achieving the optimal dispersion it isesec
For the outer bound, we can follow the same strateggary to perform time-sharing between at least two codebooks
as in the derivation of Proposition 4. First we ignore allypically, the working point for each of the distributiorns a
constraints not active in the target. Between the remaining corner point. Therefore, for such MAC channels, the belravio
L constraints, we need to find the limiting one. Since that corner points plays a major role. Finding the dispersion-
expectation vectopz is proportional toBe, and the Gaussian optimal strategy is beyond the scope of this work.
error probability is monotonously decreasing in the ratio For finite blocklength, as opposed to asymptotics, the price
between the expected value and the square root of the variard time sharing may be too high. That is, for short enough
the index of the limiting constraint is given by: blocklength, a single input distribution will likely outgerm
[Bel; any time-sharing strategy, even if it cannot achieve thaciap

. 27) region.
NiTi (27) reg

Here,V; is th.e variance of.. Then, an .outer bound is given by The authors thank Anatoly Khina for helpful comments on
the scalar dispersion (1) corresponding to theonstraint (in the manuscript

case of multiple minimizers, all of them give a valid bound).

Comparing to the inner bound, we have two distinct cases.
For a non-corner point, as (to the required approximationl Y. Polyanskiy, H. Poor, and S. Verdd, “Channel codinterm the finite
there is only one active constraint, the inner and the outer Slgcgfg?_tg;;g'”,\],E;EZ%EOT_WS' Information Theorwol. 56, no. 5,
bounds coincide. For a vertex point, on the other hand, thg] V. Strassen, “Asymptotische Abschatzungen in Shaanieformation-
outer bound is loose, as for jointly-Gaussian variables of stheorie,” inTrans. Third Prague Conf. Information Theory962, pp.

" . - . 679-723.
positive variance, the probability of the union of error etge [3] Y. W. Huang and P. Moulin, “Finite blocklength coding fanultiple

[* = arg mlin
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Indeed, if one calculates the achievable dispersion fas thi
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As we see in the example above, time sharing comesy serve as a means to reduce complexity.



