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Abstract—Recently there has been significant interest in the
analysis of finite-blocklength performance in different settings.
Specifically, there is an effort to extend the performance bounds,
as well as the Gaussian approximation (dispersion) beyond point-
to-point settings. This proves to be a difficult task, as the
performance may be governed by multiple dependent constraints.
In this work we shed light on these difficulties, using the multiple-
access channel as a test case. We show that a local notion of
dispersion is more informative than that of dispersion regions
sought after thus far. On the positive side, we show that for
channels posessing certain symmetry, the dispersion problem
reduces to the single-user one. Furthermore, for such channels,
linear codes enable to translate single-user achievability bounds
to the multiple-access channel.

I. I NTRODUCTION

The work of Polyanskiy et al. [1] revived the interest in
analyzing the optimal performance subject to blocklength con-
straints. The work considers the point-to-point channel coding
problem, and the results can be roughly divided into two
parts. First, upper and lower bounds are given on the optimal
codebook rateR as a function of the average probability of
error1 Pe and the blocklengthn. Then, for asymptotic analysis,
Pe is taken to be some constantǫ while n is taken to infinity.
It turns out that both the upper and lower bounds have the
same asymptotic behavior, giving rise to: [2]

R = C −
√

V

n
Q−1(ǫ) +O

(

logn

n

)

. (1)

In this celebrated expression,Q−1(·) is the inverse of the
complementary Gaussian CDF,C is the channel capacity, and
V is the channeldispersion, given by the variance of the
information density:

i(x; y)
△
= log

PY |X(y|x)
PY (y)

. (2)

with respect toPX , the channel capacity-achieving distribu-
tion, andPY |X , the channel law. Here and in the sequel,PX is

∗ This work was supported in part by the Israel Science Foundation under
grant 956/12.

† This work was supported in part by the U.S. - Israel Binational Science
Foundation under grant 2008/455.

1Bounds are also given for maximal probability of error, and in particular
the bounds we use in this work, as well as the Gaussian approximation,
are valid under both definitions. However, except for MAC channels with
triangular capacity region which is achievable without time sharing (see
Section III), we only consider average error probability, as it yields more
tractable results in network settings.

assumed to be unique, and the resulting dispersion positive.2

Roughly, this result can be understood as follows. DefineJ as
the event thati(X,Y ), averaged over the transmission block, is
belowR. To the approximation level needed, a decoding error
event amounts to the eventJ . Now defineG to be the event
that a Gaussian variableZ with meanC − R and variance
V/n takes a negative value. By the central-limit theorem
(CLT), the probabilities ofG andJ are approximately equal.
Equation (1) gives the probability ofJ , with the correction
term corresponding to the transitions from the true probability
of a decoding error, to that ofJ and then ofG.

The elegance of both the results and the derivation have mo-
tivated many to work on extensions and refinements. Among
these works, we note those that aim to extend the results
to network settings, and in particular to the multiple-access
(MAC) channel [3]–[5]. Although these works differ, we may
roughly describe the basic approach as follows. Consider a
two-user MAC channel, and define the random vector formed
by the information densities





i1
i2
i1,2





△
=





i(X1;Y |X2)
i(X2;Y |X1)
i(X1, X2;Y )



 , (3)

averaged over the transmission block. Here, the conditional
information densities are the obvious extensions of (2). Now
defineJ1, J2 andJ1,2 as the events that the respective averaged
densities fall below the corresponding element of rate vector

R̃
△
=





R1

R2

R1 +R2



 .

It is shown, that (up to the correction term),

max {P (J1) ,P (J2) ,P (J1,2)} ≤ Pe ≤ P

(

⋃

{J1, J2, J1,2}
)

.

(4)

Finally, a normal approximation is applied to the information
density. That is, a Gaussian vector

Z̃
△
=





Z1

Z2

Z1,2



 (5)

2Detailed treatment is given in [1] to other cases, but the main ideas of this
work are better understood in the more regular case considered.



is defined, with mean




I(X1;Y |X2)
I(X2;Y |X1)
I(X1, X2;Y )



− R̃ (6)

and a covariance matrix that is equal to the covariance of the
information density (3). LetG1, G2 andG1,2 be the events
that the corresponding element ofZ/

√
n falls below zero. Then,

up to correction terms, the eventsJ1, J2 andJ1,2 in (4) can
be replaced byG1, G2 andG1,2.

While this analysis is valid, we show in this work that it has
two important limitations. First, using the Gaussian statistics
of Z̃ to define global “dispersion regions” is problematic,
since it does not capture the nature of convergence to the
boundary of the capacity region. And second, proving tight
finite-blocklength (non-asymptotic) achievable bounds turns
out to be a very difficult task. We demonstrate this using two
important special cases:

1) Orthogonal MAC channels. Here, there are two in-
dependent single-user channels, coupled only via the
joint error-probability constraint. Thus, in principle, any
single-user performance bound directly translates to a
bound on the MAC rate region. We show that even in this
case, alocal approach is more appropriate for describing
the asymptotics.

2) Symmetric MAC channels. In this case (an extension of
a symmetric single-user channel, to be defined precisely
in the sequel) the capacity region is triangular and the
dispersion analysis reduces to a single-user one. We
show, that the reduction goes beyond asymptotics, and
that using linear codes, single-user finite-blocklength
achievability bounds can be utilized.

Sections II, III are devoted to these cases. Then in Sec-
tion IV, we derive the dispersion of a general MAC channel.

II. RECTANGULAR RATE REGION: THE DIFFICULTY OF

DEFINING GLOBAL DISPERSION

In this section we demonstrate the inherent problematic in
deriving meaningful “dispersion regions”. We do so using the
very degenerate case of an orthogonal MAC channel, where
the decoder observes the outputs of two independent point-
to-point channels. We further assume for simplicity that these
two channels are identical. That is,Y = (Y1, Y2) and

PY |X1,X2
(y1, y2|x1, x2) = PY1|X1

(y1|x1)PY2|X2
(y2|x2)

for all x1, x2, y1, y2. In this setting, the two independent point-
to-point channels are coupled only through the definition ofthe
MAC error event: if at least one of the messages was decoded
incorrectly, we declare an error.

Let ǫ(n,R) be the minimum error probability for the single-
user channel, using a code of blocklengthn and rateR. Since
the error events of the sub-channels are independent, we have
that a rate-pair(R1, R2) is achievable at blocklengthn if and
only if:

ǫ(n,R1) ∨ ǫ(n,R2) ≤ ǫ, (7)

where
ǫ1 ∨ ǫ2

△
= ǫ1 + ǫ2 − ǫ1ǫ2

is the probability of the union of independent events. Thus,
the finite-blocklength performance of this MAC channel is
completely dictated by the single-user performanceǫ(n,R),
i.e., the right hand side of (4) holds with equality. We concen-
trate, then, on translating (7) into an asymptotic (dispersion)
expression.

In this simple MAC channel, since the error events of
the users are independent, the asymptotic analysis greatly
simplifies. The eventsJ1 and J2 are just single-user events,
and their union subsumes the eventJ1,2. Thus, in the Gaussian
approximation as well, it is sufficient to take two independent
Gaussian variablesZ1 and Z2, whereZi has meanC − Ri

and varianceV/n. Then, the approximated rate region is given
by the rate pairs for whichP (G1 ∪G2) ≤ ǫ, yielding the rate
region:

[

C −R1

C −R2

]

+

[

1
1

]

O

(

logn

n

)

∈
√

V

n
Σ(ǫ), (8)

where

Σ(ǫ) =

{[

t1
t2

]

: Q(t1) ∨Q(t2) ≤ ǫ

}

.

In order to show the explicit dependence uponV , we uset
which is a standard Gaussian, rather thanz. The achievable
rate-regions in [3]–[5] all reduce to (8) in this degeneratecase.

At first glance, the expression (8) seems quite pleasing, and
indeed resembles (1), where the border of the two-dimensional
region Σ(ǫ) plays the role of a vector extension of the
inverse-Q function. However, the region contracts in both axes
simultaneously. That is, for any choice oft1, t2 on the face of
Σ(ǫ), the trajectory (as a function ofn) of the corresponding
point on the face of (8) always tends to the origin, i.e.,
both rates approach capacity simultaneously. This raises two
questions. First, maybe we can describe the convergence to
the origin in a simpler manner, without resorting to the rather
complicated regionΣ(ǫ)? And second, what happens if we
wish to approach a different point on the face of the capacity
region, where one of the users operates below capacity even
in the infinite-blocklength limit? In order to answer these
questions, we take a different, localized approach.3

Without loss of generality, assume that we wish to approach
a rate-pair(R1, R2) = (C,R∗), where 0 ≤ R∗ ≤ C. We
can describe the trajectory in a parametric way:(R1, R2) =
(R, f(R)), wheref(R) is some function satisfyingf(C) =
R∗. In order to avoid complications, we only take smooth
trajectories; thus we assume thatf(·) is continuously differ-
entiable. We further denote the asymptotic slope of approach
by

λ =
df(R)

dR

∣

∣

∣

∣

R=C

.

3A somewhat similar analysis is performed by Tan and Kosut [5]for a
more general case (in the context of the Slepian-Wolf problem), in addition
to deriving the global region. However, Tan and Kosut do not draw from this
analysis the conclusions that we reach here.



Then for each such trajectory, we can derive a scalar expres-
sion for the asymptotic behavior.

Proposition 1 (Dispersion of the orthogonal MAC channel):
When approaching a rate-pair(C,R∗) with asymptotic slope
λ, the dispersion is given by the following.

1) If R∗ < C thenR1 follows the single-user dispersion
(1).

2) If R∗ = C andλ = 0 then

R1 = C −
√

V

n
Q−1(ǫ) + o

(

1√
n

)

.

(for infinite λ we have the obvious dual)
3) If R∗ = C andλ /∈ {0,±∞} thenR1 andR2 follow (1)

with ǫ replaced byǫ1, ǫ2 respectively. These probabilities
are given by the solution to:

ǫ1 ∨ ǫ2 = ǫ

Q−1(ǫ1)

Q−1(ǫ2)
= λ. (9)

Before outlining the proof, the following remarks shed light
on this result.

Remark 1:The key to this result, is understanding the
behavior of the error probability of the second user, along
the trajectory, see Figure 1. ForR∗ < C, the second user is in
the large-deviations regime, where its error probability decays
to zero fast, andǫ1 ≈ ǫ. Approaching the corner point with a
finite positive slope, the error probability is split between the
users. Thus, they are both in the CLT regime withǫ1, ǫ2 < ǫ.
In the intermediate case, where the corner is approached with
a trajectory tangent to the axis, the error probability of the
second user decays to zero, but may do so slowly.

Remark 2:Unlike (8) which exhibits a rounded dispersion
region, Proposition 1 gives straight lines with a singularity
at the corner points. Technically speaking, both are valid
asymptotic approximations of the region (7). The difference
between the rounded region and the straight lines is of a
lower order than the correction term (non-uniformly around
the corner points), a fact that is hidden by the rather implicit
form of Σ(ǫ).

Remark 3:The analysis above holds, with obvious mod-
ifications, to orthogonal MAC channels where the channels
differ. For example, the second equation in (9) is multiplied
by the square root of the ratio of dispersions. Clearly, it can
be extended to more than two users as well.

Remark 4:As in the single-user case, the analysis also
holds for ǫ > 1/2. The approach to non-corner points will
always be from the outside. As for the corner point, if
ǫ > 1 −

√
2/2 then necessarily at least one ofǫ1, ǫ2 is

greater than1/2. Thus, the approach is from the outside. For
intermediate values ofǫ, it may be from the inside or outside,
depending on the slopeλ.

Remark 5:One may claim that approaching non-corner
points is not interesting, as they are all dominated by the op-
timum (C,C). However, the approach presented here extends
to general MAC channels, where the capacity region may have

a sum-rate face; see Section IV in the sequel.
Remark 6:Approaching the corner point with a slopeλ

has an interesting engineering interpretation: it is the result of
optimizing a linear combination of the rates,R1 + λR2.

Remark 7: It should be noted that the straight-line approx-
imation only holds in the asymptotic (dispersion) sense. For
any finite blocklengthn, there is indeed a tradeoff between
the rates.

Proof outline: For the caseR∗ < C, consider the error
probability of the second user,Pe2,n. By the smoothness of
the trajectory,

lim
n→∞

− log pe2,n
n

≥ lim inf
n→∞

− log ǫ(n,R′)

n
. (10)

for someR′ < C. By large-deviation analysis on the infor-
mation density, one may show that this quantity is positive
(indeed, such analysis yields the random-coding exponent). In
other words, when the second user does not try to approach
capacity, large-deviations analysis applies to that user,and
Pe2,n decays exponentially. Substituting back in (7), we see
that anyR satisfying

ǫ(n,R) = ǫ− δ(n)

is achievable, whereδ(n) is exponentially small. Then it can
be shown that such a small perturbation onǫ does not change
the dispersion behavior, i.e., it inflicts a rate penalty that is
below the correction term in (1). Consequently, for anyR∗ <
C, the dispersion is equal to the single-user dispersion.

For the approach to the corner pointR∗ = C, any trajectory
with 0 < λ < ∞ is tangent to the straight trajectory
corresponding to taking the corresponding(ǫ1, ǫ2) in Σ(ǫ) as
defined via (9). The difference between the dispersion along
these tangent trajectories is (by the smoothness assumption)
only of order1/n. Thus, the dispersion is given by (1), with
the error probability given by (9).

Approaching the corner point withλ = 0 or λ = ∞ lies
somewhere between these cases. Delicate analysis is needed,
taking into account the exact trajectory. In some cases, the
second user is in the moderate-deviations regime [6].

III. T RIANGULAR RATE REGION: EQUIVALENCE TO

SINGLE USER

Whereas in the previous section the error events of the users
were statistically independent, in this section we discussthe
other extreme case, where one of the error events dominates
the others.

A. Achievable Dispersion for Triangular Rate Regions

Consider a MAC channelPY |X1,X2
with input alpha-

bets X1,X2 and output alphabetY. Further, consider an
input distributionPX1

(x1) · PX2
(x2) such that the capacity

region under this distribution is triangular. This impliesthat
I(Y ;X1) = I(Y ;X2) = 0. Therefore

PY |X1
(y|x1) = PY |X2

(y|x2) = PY (y) (11)



C

C

R2

R1

R∗
1st trajectory

2nd trajectory

(a) R∗ < C

R∗
= C

C

R2

R1

1st trajectory

2nd trajectory

(b) R∗ = C

ǫ

0 n
(c) Pe1, Pe2 along the two trajectories in Figure 1(a).

ǫ

0 n
(d) Pe1, Pe2 along the two trajectories in Figure 1(b).

Fig. 1. Schematic view of convergence along different trajectories. Figures 1(a) and 1(b) show the capacity region of anorthogonal MAC channel, and each
sub-figure shows two different trajectories, starting fromthe same rate-pair and approaching the same point(C,R∗). Figures 1(c) and 1(d) comparePe1

(circles) andPe2 (asterisk) along the two trajectories in Figures 1(a) and 1(b) respectively.

for any x1 ∈ X1, x2 ∈ X2, y ∈ Y. Now consider the
information-density vector (3). In the present case, all the
elements are equal. Then, since the rate threshold for the last
eventJ1,2 is higher than the ones inJ1 andJ2, we can always
ignore the other events, as they are subsets of the last event,
and therefore dispersion is a scalar quantity, similar to the
single-user case (1).

In particular, If this input distribution achieves the capacity
region of this MAC channel (i.e., the capacity region is
triangular and time sharing is not required), then an achievable
dispersion of a MAC channel is given by

R1 +R2 = C −
√

V

n
Q−1(ǫ) +O

(

logn

n

)

. (12)

In this expression,C is the maximal sum-rate of the channel,
andV is the variance ofi1,2. This agrees with the expressions
of [3], [5].4

B. Dispersion of Linear-Symmetric Channels

We start with formally defining some special classes of
MAC channels. Then we show that these definitions lead

4The derivation in [4] uses a union bound to simplify the analysis around
corner points; this bound cannot use the special structure of this channel,
where the region has no corner points.

to a triangular capacity region, achievable by a single input
distribution (i.e., time sharing is not required). Moreover, we
show that these channels are equivalent (in terms of error
probability) to a single-user channel, and hence the dispersion
is known.

Definition 1: Consider a MAC channelPY |X1,X2
. For any

random variableX , where the following Markov chain

(X1, X2) ↔ X ↔ Y (13)

holds, the channelPY |X , is called theassociated single-user
channelof the MAC channel.

Notice that when comparing the MAC channel to its asso-
ciated single-user one,

ǫMAC(n,R1, R2) ≥ ǫSU(n,R1 +R2), (14)

since the single-user channel can emulate the MAC channel.
This gives outer bounds on the dispersion; we now concentrate
on a case where we can obtain a meaningful bound.

In order to define a symmetric MAC channel, we first recall
the definition of a symmetric single-user DMC:

Definition 2 ( [7]): A DMC is defined to be symmetric if
its probability transition matrix (using inputs as rows and
outputs of the subset as columns) can be divided column-wise
into sub-matrices, such that for each sub-matrix, the rows are



equal up to permutations, and the columns are equal up to
permutations.

Definition 3: A symmetricMAC channel is defined as a
channel that has an associated single-user channel which isa
symmetric DMC.

Definition 4: A MAC channel with input alphabetX1 =
X2 = F, whereF is a finite field, is calledlinear if there
existsX in (13) such thatX is a linear combination ofX1

andX2 over the field.
The class of linear and symmetric MAC channels includes

the important case of modulo-additive channels over prime-
alphabets, i.e.,Y = (X1 + X2 + N) mod m, where the
alphabets of the input and output are equal to{0, 1, . . . ,m−1},
andm is a prime.

For all linear and symmetric channels, the rate region is
triangular, and it is achieved by a uniform distribution over the
input of both users. Other channels with triangular region may
also be transformed to this form. However, there exist channels
with triangular rate region which do not belong to this class,
e.g., modulo-additive channels over non-prime alphabet.

We conclude this subsection by showing that the right hand
side of (12) is also an upper bound on the sum-rate, thus
characterizing the dispersion of a linear and symmetric MAC
channels. This can be seen by the symmetric DMCPY |X with
X equal to the linear combination ofX1 andX2 over a field:
on one handi(x1, x2; y) = i(x; y) for all x1, x2, y, and on the
other hand the dispersion of the single-user channel is known.

C. Finite-Blocklength Achievability Bounds

Seeing that (12) amounts to single-user dispersion, one
hopes that single-user finite-blocklength achievability bounds
can also be translated to this special class of MAC channels.
However, this doesnot follow from the analysis above, as it
requires a stronger sense of equivalence to a single-user chan-
nel. In the sequel we do show that the following bound can
be extended to MAC channels that are linear and symmetric.
It is known as the “dependence testing” (DT) bound, and the
interested user is referred to [1].

Proposition 2 (DT bound for single user DMC [1], Th.18):
Consider a DMCPY |X with input alphabetX and output
alphabetY. For any distributionPX on X , there exists a
code with blocklengthn and average probability of error:

Pe ≤Pr

[

n · i(X ;Y ) ≤ log
M − 1

2

]

+
M − 1

2
Pr

[

n · i(X ; Ȳ ) > log
M − 1

2

]

, (15)

where M = ⌊exp{nR}⌋ is the codebook size, and̄Y is
statistically independent of(X,Y ), with PȲ (y) = PY (y).

In the context of symmetric point-to-point channels,linear
codesachieve capacity [8], as well as the channel dispersion
and the DT bound [1]. We define a linear codeC (over a finite
field F) via a k × n full-rank generating matrixG, by

C = {c : c = uG, u ∈ F
k}, (16)

The codebook size is equal toM = |F|k (the rate is equal to
R = k/n · log|F|). Clearly, every rate is possible asymptotically
asn → ∞.

A codebook pair for a linear MAC channel can be generated
from a linear code for its associated single-user channel, by
splitting the generating matrix into two sub-matrices (onefor
each user). The sum of codewords is indistinguishable from
a codeword of the single-user code withR = R1 + R2. This
leads to the following proposition.

Proposition 3 ( [9]): Consider a linear MAC channel. Any
error probability which is achievable by the associated single-
user channel using a linear code, is also achievable for the
MAC channel.

For any linear and symmetric MAC channel, the capacity
region is triangular, and it is achieved by a uniform input
distribution. Using linear codes and by Proposition 3, we can
obtain achievable bounds for finite blocklength.

Corollary 1: For any linear and symmetric MAC channel,
linear codes achieve the DT bound (15) withR = R1 +R2.

We now compare this result to previous MAC finite-
blocklength achievability bounds. Existing literature includes
the following.

1) In [10], Slepian and Wolf show that for a given input
distribution and an achievable rate pair with this dis-
tribution, the MAC error probability is upper-bounded
by the sum of three terms, each decaying exponentially
with n. Applying this to triangular MAC channels, one
of these exponents corresponds to the “right” random-
coding error exponent of the single-user channel, but the
others add to the error probability and prevent the bound
from being tight, unless staying far from the face of the
capacity region.

2) In [3], [5], the summation problem is avoided by con-
sidering the different error events jointly. Although no
explicit bounds for finite blocklength are given, one
may obtain such bounds by carefully considering the
correction terms in the proofs of the asymptotic regions.
However, these works rely on the method of types,
yielding large finite-blocklength penalties compared to
the DT bound.

3) In [4], the authors use a simplified approach, which
allows to apply the DT bound. However, the simplifi-
cation also implies that correction terms of all MAC
error events are summed.

It is possible, that with some more efforts these obstacles
can be overcome, and the achievability of the single-user DT
bound be also shown using the results of [3]–[5]. However,
we can point out two main advantages of the linear-codes ap-
proach, beyond its simplicity. First,anysingle-user achievable
rate using linear codes applies to the MAC channel. Indeed,
we do not believe that the DT bound is tight. And second,
in a linear code the average error probability also equals the
maximalprobability of error.

We conclude by pointing out that the linear-codes approach
allows to derive finite-blocklength achievability bounds also
for general MAC channels. We can use a transformation of



R∗

µZ2

µZ1

R

at1R = I1 at2R = I2

Fig. 2. For aK-user MAC channel, an illustration of approaching the point
R∗ which lies on the intersection of two faces of an achievable rate region.

the channel into a linear and symmetric MAC channel, as
described in [9]. While this transformation is lossy in terms
of capacity, and thus is necessarily sub-optimal in terms of
asymptotics (dispersion), it may still be better than other
bounds for some finite blocklengths, when the channel is
“almost” linear and symmetric.

IV. T HE DISPERSION OF AGENERAL MAC CHANNEL

Consider a two-user MAC channel. For any given fixed
distribution, the dispersion is set by three eventsG1, G2

andG1,2, corresponding to the statistics of the corresponding
information densities. In the previous two sections, for a fixed
input distribution, the dispersion of a MAC channel when
approaching a point on the boundary of the achievable region
was shown to have a similar asymptotic behavior as (1), for
any trajectory that is not tangent to the faces of the capacity
region. In Section IV-A we show that this behavior also
extends to general MAC channels. Then, in Section IV-B we
consider the Slepian-Wolf problem, where dual results can be
obtained, and also meaningful outer bounds on the dispersion
can be given. Finally in Section IV-C we go back to the
MAC channel, and discuss the problem of finding the optimal
dispersion when time-sharing is taken into account.

A. Achievable Dispersion Using a Single Input Distribution

In this section we consider a fixed input distribution
PX1

(x1) · PX2
(x2). Recalling (4), the inner bound on the

finite-blocklength region is given by the rate pairs such that the
probability that one of the information densitiesi1, i2 andi1,2
is belowR1, R2 andR1,2, respectively, is belowǫ. We apply
now a local asymptotic analysis, similar to that presented in
the previous sections for special cases. We prefer to present
the problem in more general terms, that allow to see that the
form of the approach is not attached necessarily to the two-
user MAC problem, but can also be applied to other network
problems.

We start with aK-dimensional rate region, defined by linear
inequalities, such that the surface is made of faces (hyper-
planes). These faces are given by

ĀR ≤ Ī . (17)

Here,R = [R1, . . . , RK ]T , Ā is anL̄×K matrix, where each
row corresponds to a constraint (thus,Ī gives the values of

the constraints). In the context of the two-user MAC channel,
K = 2, L̄ = 3 and

Ā =





1 0
0 1
1 1



 .

These L̄ constraints correspond to random variables
i1, . . . , iL̄ and error eventsJ1, . . . , JL̄, similar to those defined
the Introduction. Let the covariance matrix of these variables
be V̄ . Similar to (4), an achievable finite-blocklength rate
region is given by:







R : P





⋃

l=1,...,L

Jl



 ≤ ǫ







. (18)

One could reformulate the Gaussian approximation for this
general presentation. However, we choose to do so directly
for the localized analysis. To this end, suppose that we wish
to approach a pointR∗ on that surface; for such a point,
someL ≤ K constraints are active. Since, as we saw, to the
dispersion approximation, other constraints do not matter(they
only “take” an exponentially small error probability from the
active ones), we concentrate on the active ones only. Therefore,
defineA to be the sub-matrix of̄A by taking only theL rows,
which correspond to the active constraints, and defineI as the
sub-vector of̄I which corresponds to the active constraints.
Then the following equation holds:

AR∗ = I . (19)

Note that this equation does not uniquely determineR∗,
but rather characterizes the hyperplane determined by the
intersection of the constraints. We also define a normalized
version ofA:

B =

[

aT1
‖a1‖

∣

∣

∣

∣

· · ·
∣

∣

∣

∣

aTL
‖aL‖

]T

(20)

We are interested in approachingR∗ in the direction defined
by theK-dimensional unit vectore. That is, we approachR∗

in such a way that:5

R∗ − R
‖R∗ − R‖ = e. (21)

We assume thate is not in the direction of any of the active
constraints.6

For the Gaussian approximation, define the random vector
Z = [Z1, . . . , ZL]

T , which has mean

µZ = I −AR = A(R∗ − R) (22)

and covariance matrixV that equals the sub-matrix of̄V
corresponding to the active constraints. In these terms, wecan
formulate the local dispersion (see Figure 2).

Proposition 4: Consider an achievable finite-blocklength
rate region given by (18). Then, asymptotic achievable rates

5The actual trajectory does not have to be a straight line, andthe results
hold for any continuously-differentiable trajectory which is tangent toe at
R∗, as in Section II.

6Otherwise, more careful analysis in needed, see the second case of
Proposition 1.
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I(X1;Y |X2)

I(X2;Y |X1) R1 +R2 = I(X1, X2;Y )

Fig. 3. Different cases which are considered in Section IV.

when approachingR∗ in the directione are given by:

AR = I − µZ√
n
+ 1 · O

(

logn

n

)

. (23)

The vectorµZ is the solution of the following two equations:
µZ

‖µZ‖
= Be (24)

whereB is given by (20), and

P





⋃

l=1,...,L

{Zl ≤ 0}



 = ǫ. (25)

The first equation gives(L − 1) constraints, defining the
direction of µZ . It is derived by multiplying both sides of
(21) by A, substituting (22) and re-normalizing. The second
equation gives the missing constraint, setting the length of µZ

using the Gaussian statistics ofZ.
An important case is whenL = 1, i.e., when approaching a

point where only one constraint is active (“non-corner” point).
In that case, (23) reduces to scalar dispersion, and

µZ =
√
V Q−1(ǫ),

regardless of the directione. For other points, if one is
interested in the scalar dispersion of a specific rate, or of a
linear combination, it can be derived using linear operations on
(23). Rates or combinations that are not determined this way,
have zero dispersion (they correspond to inactive constraints
at R∗, thus they can be approached arbitrarily fast, without
affecting the other rates).

We now go back to the specific problem at hand, the two-
user MAC channel. Further, we consider the generic case
where the rate-region for the chosen input distribution is a
pentagon. We use the representation above in order to find the
asymptotic approach to different cases, as shown in Figure 3.
We use here the notationI1, I2 and I1,2 for I(X1;Y |X2),
I(X2;Y |X1) andI(X1, X2;Y ), respectively. Also,i1, i2 and
i1,2 denote the corresponding information densities. Due to
symmetry, we can restrict attention to the following cases.

1) Approaching(R∗
1, I2) for R∗

1 < I1. The only active
constraint is given byA = [0 1], resulting in scalar

dispersion, i.e.,R2 behaves according to (1), substitut-
ing C, R and V with I2, R2 and the variance ofi2,
respectively. Note that this is slope-independent, as long
as the approaching trajectory is not on the face. This
is identical to the behavior of non-corner points of a
rectangular region, presented in Section II.

2) Approaching a non-vertex point on the diagonal face,
i.e.,(R∗

1, R
∗
2) for R∗

1+R∗
2 = I1,2, R∗

1 < I1 andR∗
2 < I2.

The only active constraint is given byA = [1 1].
Therefore, the dispersion is again scalar and slope-
independent (unless parallel to an active constraint). It is
given by (1), substitutingC, R andV with I1,2, R1+R2

and the variance ofi1,2, respectively. This is identical
to the behavior in the case of a triangular rate-region,
presented in Section III.

3) Approaching a vertex point(I1, I1,2) with slopee not
proportional to[0 1]T or [1 − 1]T . Here

A =

[

1 0
1 1

]

.

Thus,
µZ

‖µZ‖
= Be=

[

e1
e1+e2√

2

]

.

From here, one may derive the explicit solution; after
projecting in the directionsR1 and R2, it coincides
with the scalar dispersions calculated in [5, Section
V]. While in principal this analysis is similar to that
applied to a corner point in Section II, there are two
differences that make it more involved: there is statistical
dependence between the dominating error events, and
the faces meeting at the corner are not perpendicular.

4) Approaching a vertex point(I(Y ;X1|X2), I(Y ;X2))
with slope e proportional to[0 1]T . As discussed in
Section II, this is an intermediate case between the ones
discussed above. That is, we have thatR1 approaches
I1 with scalar dispersion according to the variance of
i1, but the correction term may be larger than in (1).
A similar situation arises when the approach direction
parallels the sum-rate face.

B. Dispersion of the Slepian-Wolf Problem

The Slepian-Wolf problem [11] is a source-coding setting,
where two correlated sources should be (almost) losslessly
conveyed to a single decoder. The rate region is dual to that
of the MAC problem: each rate should be at least the entropy
of the corresponding source conditioned on the other, and the
sum of rates should be at least the joint entropy. However,
unlike the MAC problem, there is no choice of distributions,
thus no time-sharing is needed. This simplifies the analysis,
and allows to also give a simpleouter boundon the distortion
region.

Indeed, define the entropy density vector as




h1

h2

h1,2





△
=





h(X1|X2)
h(X2|X1)
h(X1, X2)



 = −





logPX1|X2
(x1|x2)

logPX2|X1
(x2|x1)

logPX1,X2
(x1, x2)



 .

(26)



Further, defineJ1, J2 and J1,2 as the events that, when
averaged over a source block,h1 > R1, h2 > R2 and
h1,2 > R1 + R2, respectively. Then, the error probability
is bounded (to the asymptotic approximation of interest for
dispersion) by (4). Since there is no choice of distributions,
this leads directly to inner and outer bounds on the dispersion,
when approaching a point(R1, R2) on the surface of the
capacity region. The inner bound is given by Proposition 4,
substituting information by entropy. It is left to derive the outer
bound, and see when they coincide.

For the outer bound, we can follow the same strategy
as in the derivation of Proposition 4. First we ignore all
constraints not active in the targetR∗. Between the remaining
L constraints, we need to find the limiting one. Since the
expectation vectorµZ is proportional toBe, and the Gaussian
error probability is monotonously decreasing in the ratio
between the expected value and the square root of the variance,
the index of the limiting constraint is given by:

l∗ = argmin
l

[Be]l√
Vl

. (27)

Here,Vl is the variance ofiL. Then, an outer bound is given by
the scalar dispersion (1) corresponding to thel∗ constraint (in
case of multiple minimizers, all of them give a valid bound).

Comparing to the inner bound, we have two distinct cases.
For a non-corner point, as (to the required approximation)
there is only one active constraint, the inner and the outer
bounds coincide. For a vertex point, on the other hand, the
outer bound is loose, as for jointly-Gaussian variables of
positive variance, the probability of the union of error events
is strictly higher than the maximal probability.

C. Discussion: Converse for General MAC Channels

We have thus far avoided the issue of time sharing between
input distributions. In general, such time sharing may be
needed in order to achieve the MAC capacity region itself.
We now discuss the effect of time sharing on finite-blocklength
performance.

First consider the class of symmetric and linear MAC
channels, defined in Section III. For these channels, we showed
that the dispersion is reduced to that of the associated single-
user channel, which is optimal, by using a single (uniform)
input distribution. We now note that capacity may also be
achieved by means of time sharing. In the most extreme
case, one can achieve the points(0, C) and (C, 0) by one
of the users using an optimal point-to-point code, while the
other user transmits a deterministic symbol. Time sharing
amounts to splitting the block and reversing the roles. While
this strategy is capacity achieving, it clearly suffers in terms
of error probability. Namely, the blocklength is shortenedin
proportion to the fraction of the block allocated to each user.
Indeed, if one calculates the achievable dispersion for this
strategy using the expressions in [3], the region obtained is
strictly sub-optimal. This is also the case for time sharing
between other distributions.

As we see in the example above, time sharing comes

at a price.7 It seems plausible that whenever capacity may
be achieved using a single input distribution, the optimal
dispersion is also achieved that way, see [3, Example 1].
We conjecture that this is true; however, we do not see an
immediate proof.

A very different situation arises, when time sharing is
needed in order to achieve some points of the capacity region.
Clearly, for asymptotically long blocklength, a non capacity-
approaching strategy cannot be dispersion optimal. Thus, for
these points, for achieving the optimal dispersion it is neces-
sary to perform time-sharing between at least two codebooks.
Typically, the working point for each of the distributions is a
corner point. Therefore, for such MAC channels, the behavior
at corner points plays a major role. Finding the dispersion-
optimal strategy is beyond the scope of this work.

For finite blocklength, as opposed to asymptotics, the price
of time sharing may be too high. That is, for short enough
blocklength, a single input distribution will likely outperform
any time-sharing strategy, even if it cannot achieve the capacity
region.
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