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Abstract—We consider transmission of a colored Gaussian
source through a power constrained colored Gaussian broadcast
channel subject to a mean-squared error distortion measure. It is
well known that separation of source and channel coding cannot
achieve the point R(D) = C simultaneously for more than one
receiver. We characterize the distortion region achieved by the
recently proposed joint source/channel “analog matching” coding
scheme. In the special case of equal bandwidth (but arbitrary
source and channel spectra) and in the limit of high signal to
noise ratio (SNR), we prove that full robustness is asymptotically
possible, i.e., the encoder becomes SNR-independent and each
decoder approaches the ideal performance R(D) = C. This result
extends the well known optimality of analog transmission in the
white source / white channel case. Our results are based upon
an encoder which employs modulo-lattice arithmetics, i.e. the
transmitted signal is the residue of an analog signal with respect
to a lattice.

I. INTRODUCTION
We consider the problem of transmitting a Gaussian source

over a Gaussian broadcast channel. The source is defined by
a spectrum SS(f) limited to bandwidth BS . The channel has
an input power constraint E{X 2

n} ≤ P , where ( ) denotes
time average. The channel to each of the M receivers is a
bandlimited additive Gaussian noise channel:

Y (m)
n = gn ∗ Xn + Z(m)

n , m = 1, . . . , M (1)

where ∗ denotes convolution, gn is the impulse response
of an ideal low pass filter of bandwidth BC and the noise
sequence Z (m)

n seen by the the receiver m is Gaussian with
spectrum SZ(m)(f), bandlimited to BC (here and onward
we use f to denote frequency for discrete-time process, i.e.
S(f) ∆= S(z)|z=ej2πf ). We define the channel signal to noise
ratio (SNR) for the m-th user as:

SNR(m) ∆=
P

N (m)

∆=
P

Var{Z(m)
n }

. (2)

The reconstruction distortion is measured by the average mean
square error (MSE):

D(m) = E{(Ŝ(m)
n − Sn)2} ∆= E{E(m)

n
2
} . (3)

An equivalent representation of the channels (1) consists of a
filter (“inter-symbol interference” (ISI)) followed by additive
white Gaussian noise (AWGN):

Y (m)
n = X(m)

n ∗ h(m)
n + W (m)

n , (4)

where Var{W (m)
n } = N0 for all m. The filter H(f) is ban-

dlimited to BC , and inside this band it satisfies the connection
with the model (1):

SZ(f) =
N0

|H(f)|2 . (5)

From Shannon, we know that the distortion at each receiver
must satisfy:

R(D(m)) ≤ C(m) , (6)

where R(D) is the source rate-distortion function and C (m)

is the capacity of the m-th channel (1). Ideally, each receiver
m would achieve the optimal point to point distortion D ∗(m)

associated with equality in (6). However, this is generally
not possible simultaneously for more than one receiver. The
question of what can be achieved is still open. It is well
known, that a separation-principle based solution (i.e. succes-
sive refinements source coding followed by broadcast channel
coding) does not yield the optimal trade-off between the
distortions D(m)[1]. On the other hand, an analog solution
is not generally optimal even for the point to point problem.
It turns out, that the ratio of the source and channel

bandwidths plays a major role in the analysis of the achievable
distortion region. We define the bandwidth expansion factor:

ρ =
BC

BS
. (7)

We call the situation where ρ > 1 and ρ < 1 generalized
bandwidth expansion (GBE) and generalized bandwidth com-
pression (GBC), respectively. In between these cases we have
the equal bandwidth case of ρ = 1. The distinction between
these three cases is well known in the case where the source
and the channel are white, where we have:
1. Matching bandwidth, white spectra: For the case of

white source and channel with ρ = 1, analog transmission
achieves the ideal performance (6) with an encoder which
is independent of the noise variance [3], and therefore is
simultaneously optimal for all the decoders. In such a system,
the encoder and the decoders will each consist only of one
multiplication by a constant factor.
2. Bandwidth expansion: In the white setting with ρ > 1

channel uses per each source sample, (6) amounts to:
Var{Sn}

D(m)
≤

(
1 + SNR(m)

)ρ
. (8)

Various broadcasting strategies have been offered for this case
[1], [7], [10], [9]. They most share the hybrid digital-analog
(HDA) approach, transmitting a combination of digital and
analog signals, trying to combine the point to point optimality
of digital transmission with the simplicity and robustness of
analog transmission. [10] gives an outer bound for two re-
ceivers, showing that if the encoder is designed for optimality



with respect to the bad receiver, than the distortion in the good
receiver is at most inversely proportional to its SNR, i.e. far
from (8).
3. Bandwidth compression: This varies from the previous

case, in that we are allowed less than one channel use per
source sample. This case has been treated in [7], [8], [9], where
HDA system are suggested, but there is no known non-trivial
outer bound.
In this paper we give a unified treatment to any source and

channel spectra. In the case of equal bandwidth (ρ = 1) and
for high SNR, we show a scheme which is robust in the sense
that the ideal performance (equality in (6)) is approached for
all noise variance (but otherwise fixed spectral shape) using
a single encoder. Thus, in the high SNR limit this scheme
generalizes the perfect matching property of white sources and
channels [3] to the colored case. For the GBE and GBC cases
(ρ $= 1), we derive achievable distortions regions, and analyze
the limitations of our method. We conjecture that no scheme
can do better asymptotically, when the encoder is optimized
for one receiver.
Our results are based upon a scheme presented in [6],

called the analog matching scheme. This scheme can ”match”
any given source spectrum to any given channel spectrum
optimally, by treating the source and the channel in the time
domain. The underlying principle is inspired by precoding
[12] and differential pulse code modulation (DPCM) [5], and
it is based on prediction and on solving side-information
problems using modulo lattice operations [13]. the solution
is analog in the sense that it does not contain analog-to-digital
(A/D) conversion; the only non-linear components are a single
modulo-lattice operation at the encoder and another modulo-
lattice operation at the decoder.
The rest of this paper is organized as follows: We start in

Section II by giving some preliminaries. Then in Section III we
prove our basic robustness result using a zero-forcing scheme
which is asymptotically optimal at high SNR. In Section IV
we analyze the performance of a minimum mean-squared error
scheme which is suitable for any ρ and optimal for a given
noise.

II. PRELIMINARIES: SPECTRAL DECOMPOSITION AND
SHANNON BOUNDS

The Paley-Wiener condition for a spectrum S(f) is:
∣∣∣∣∣

∫ 1
2

− 1
2

log
(
S(f)

)
df

∣∣∣∣∣ < ∞ .

This condition holds for example if the spectrum S(f) is
bounded away from zero. Whenever the Paley-Wiener con-
dition holds, the spectrum has a spectral decomposition:

S(f) = B(z)B∗
(

1
z∗

)∣∣∣∣
z=ej2πf

Pe

(
S(f)

)
, (9)

where B(z) is a monic causal filter, and the entropy-power of
the spectrum Pe

(
S(f)

)
is defined by:

Pe

(
S(f)

)
= exp

∫ 1
2

− 1
2

log
(
S(f)

)
df . (10)

The optimal predictor of a process having a spectrum S(f)
from its infinite past is B(z) − 1, a filter with an impulse
response satisfying bn = 0 for all n ≤ 0, with the prediction
mean squared error (MSE) being the entropy power. Conse-
quently, the prediction gain of a spectrum S(f) is:

Γ
(
S(f)

)
=

Var{Sn}
Var{Sn|Sn−1

−∞}
=

∫ 1
2
− 1

2
S(f)df

Pe

(
S(f)

) . (11)

Note that this gain is 1 for a white spectrum (representing
an unpredictable process), and bigger than 1 otherwise, and
it is finite whenever the Paley-Wiener condition holds. Equiv-
alently, the process can be represented as generated from its
innovations by the filter B∗ (

1
z∗

)
, where these innovations also

constitute the minimum MSE prediction errors of the process.
We define the source and channel prediction gains ΓS and

ΓC to be the prediction gains of the spectra SS(f) and SZ(f)
respectively.
The Gaussian-Quadratic rate-distortion function (RDF) is

given by:
R(D) =

1
2

∫ 1
2

− 1
2

log
SS(f)
D(f)

df , (12)

where the distortion spectrum D(f) is given by the reverse
water-filling solution: D(f) = min

(
θS , S(f)

)
with the water

level θS set by the distortion level D: D =
∫ 1/2
−1/2 D(f)df . The

channel capacity for the additive Gaussian channel is given by:

C =
∫ 1

2

− 1
2

log
(

1 +
P (f)
SZ(f)

)
df , (13)

where the channel input spectrum P (f) is given by the water-
filling solution: P (f) = max

(
θC − SZ(f), 0

)
with the water

level θC set by the power constraint P : P =
∫ 1/2
−1/2 P (f)df .

When the source and noise spectra satisfy the Paley-Wiener
conditions, the Shannon lower bound (SLB) for the RDF and
the Shannon upper bound (SUB) for the channel capacity [11,
Thm. 18 and Thm. 23] are defined. The SLB is given by:

R(D) ≥ 1
2

log
(

1
ΓS

Var{Sn}
D

)
∆= RSLB(D) (14)

and it is tight for a Gaussian source whenever the distortion
level D is low enough such that D(f) = D = θ, while the
SUB is:

C ≤ 1
2

log [ΓN · (1 + SNR)] ∆= CSUB , (15)

with the SNR given by (2). The bound is tight for a Gaussian
channel whenever the SNR is high enough such that SZ(f)+
P (f) = P +N = θC . Though the Shannon bounds may never
hold with equality if the spectra are not bounded away from
zero, they are asymptotically tight. Using this fact, comparing
the SLB and SUB leads to the following representation of the
ideal performance (6):
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Figure 1: The Zero-Forcing Scheme

Proposition 1: Let R(D∗) = C, then:

1
1 + SNR

Var{Sn}
D∗ ≤ ΓSΓC , (16)

with equality if and only if the SLB and SUB hold with
equality. Furthermore if the noise spectrum is held fixed while
the allowed power P is taken to infinity:

lim
SNR→∞

1
SNR

Var{Sn}
D∗ = ΓSΓC . (17)

III. BROADCASTING BY ZERO-FORCING ANALOG
MATCHING FOR ρ = 1

In this section we concentrate on the case of equal source
and channel bandwidth (ρ = 1 in (7)). For this case we
present a simple scheme which is not optimal for any non-zero
noise spectrum, yet is asymptotically optimal at high SNR. We
call it a zero-forcing (ZF) scheme, because the filtering and
prediction done assume the limit of low noise, just as a receiver
employing zero-forcing equalization does. We assume that the
source is an auto-regressive (AR) process of some finite order:

Sn = Qn +
L∑

l=1

alSn−l
∆= Qn + Jn , (18)

where an is the impulse response of the filter A(z) and Qn is
the source i.i.d. innovations process of power Pe

(
S(f)

)
. The

channel is given by the equivalent ISI form (4) with the noise
variance N0 = N

ΓC
, and with H(z) set by (5) being a monic,

minimum-phase filter of some finite order. Note that under
these conditions, both the source and noise spectra satisfy the
Paley-Wiener conditions.
For these source and channel we show that the ZF scheme

approaches optimality in the limit of high SNR. By that, we
give a constructive proof to the following achievability result,
which arbitrarily approaches equality in (6):

Theorem 1: (Robustness at unknown high SNR) For an
AR source Sn, a channel with finite impulse response H(z)
and any ε > 0, there exists a sufficiently large SNR0 such that
a single encoder achieves a distortion D satisfying

R
(
(1 − ε)D

)
≥ C

for all SNR ≥ SNR0, where the channel SNR is defined in
(2).

Figure 1 illustrates the ZF analog matching scheme. Moti-
vated by the form (17), the basic idea behind the workings of

the analog matching scheme is of reducing the original mod-
ulation problem (a colored source through a colored channel)
into that of transmitting the source innovations Qn through
the equivalent noise innovations channel. Thus, the analog
matching scheme uses source and channel prediction to extract
the corresponding innovations and enjoy the desired prediction
gains. However, unlike the more common configuration, the
scheme predicts the source at the decoder side and inverts the
channel at the encoder side.
The encoder and decoder of the scheme are given by:

Xn =
[
βSn − Ĩn

]
mod Λ (19)

and
Ŝn =

[Yn − βJ̃n] mod Λ
β

+ J̃n (20)

respectively, where In and J̃n denote the source and channel
predictor outputs respectively. While the channel ISI is can-
celed completely, the source innovations can be only recovered
up to the effect of the estimation error:

J̃n = Jn + En ∗ an . (21)

The lattice Λ is defined by the generator matrixG ∈ RK×K .
The lattice includes all points {G · i : i ∈ ZK} where Z =
{0,±1,±2, . . .}. The nearest neighbor quantizer associated
with Λ is defined by

Q(x) = arg min
l∈Λ

‖x − l‖

where ‖ · ‖ denotes Euclidean norm. The modulo-lattice
operation is defined by:

x mod Λ = x − Q(x) .

The dither vector D is uniformly distributed over the basic
lattice cell (for which Q(x) = 0), and is independent of the
input.
The scheme depends upon correct decoding of the modulo-

lattice operation. That is, the modulo-lattice operations in
the encoder and decoder should exactly cancel each other.
This happens in the limit of high lattice dimension when the
signal power at the decoder lattice output does not exceed the
lattice cell power (per dimension) when using good lattices
[2], which are simultaneously good for quantization and for
channel coding, leading to the following equivalence:
Proposition 2: Equivalence to an additive output power-

constrained channel [6, Sec. III] In the K-dimensional
channel depicted in Figure 2a, let Q and Z be Gaussian i.i.d.
vectors, let Zeq = αZ− (1−α)X and let the dither vector D
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Figure 2: Basic Channel Equivalence

be uniformly distributed over the basic cell of the lattice Λ.
Then exist a sequence of good lattices ΛK such that each of
the components of Ŝ approaches one which is created by the
channel (2b) in the mean square sense.
Using this, we are ready to state the performance of the

scheme of Figure 1.

Theorem 2: Let DK denote the distortion associated with
the system above with a K-dimensional lattice ΛK . Let ΓS−1

be the prediction gain of the spectrum S−1
S (f). For a sequence

of good lattices [2] of normalized second moment P , and for
SNR >

ΓS−1
ΓC

:
lim

K→∞
DK =

N

β2ΓC
,

provided that the gain β satisfies

β2 < ΓS

[
1 − ΓS−1

ΓCSNR

]
P

Var{Sn}
. (22)

The proof is left for the full paper. It is based upon identifying
the ZF analog matching scheme with the scheme of Figure
2a, and then examining the condition for satisfying the output
power-constraint for invoking the equivalence of Proposition
2, specifically the power of the error term in (21). Note
that the predictor inputs need to be updated at each instant,
while the modulo-lattice operation is done in K-blocks. This
apparent contradiction is solved by an interleaving mechanism
which follows the method applied in [4] to decision feedback
equalizers (DFE).
Now, if we know that SNR ≥ SNR0, we can choose β

approaching the r.h.s. of (22) for SNR 0, and then we can
deduce directly from Theorem 2 and from (16):
Corollary 1: For any SNR0 >

ΓS−1
ΓC

exists a single en-
coder, such that

D

D∗ ≤ 1 + SNR

SNR

SNR0

SNR0 −
ΓS−1
ΓC

for all SNR ≥ SNR0, where D∗ is the ideal distortion (6).
We note that the loss in distortion has two terms. The

first term reflects the loss of any zero-forcing system w.r.t.
an optimal MMSE system, while the second one is the loss
due to ”leaving space” for the noise in order to ensure
correct decoding. This is not the optimal performance using
this encoder, since we also used a fixed decoder instead of
adjusting it to the SNR. However, we see that the two terms

approach 1 for high SNR, which is sufficient for proving our
main robustness result, Theorem 1.
Until now we have assumed that we know the shape of

SZ(f) up to a constant gain. What happens if we do not know
it? Obviously, we can not use channel prediction, thus we
can not scale the distortion down according to the channel
prediction gain. However, by using source prediction we still
enjoy the source prediction gain.
The zero-forcing approach can not be extended to cases

where ρ $= 1. In the GBE case, the source prediction gain
is infinite. The gain β we can use is thus only limited by
the noise level, and it becomes unboundedly large for low
noise. Thus, fixing β so that correct decoding holds for SNR 0,
causes unlimited loss as SNR → ∞. In the GBC case, the
channel prediction gain is infinite, and the optimal predictor
is undefined. Trying to use any suboptimal predictor will again
result in an unbounded loss as SNR → ∞, since this predictor
will not completely revert the channel filter, and the residual
ISI will limit the performance when the channel noise is small.

IV. BROADCASTING BY OPTIMAL MMSE ANALOG
MATCHING FOR ANY ρ

The Gaussian degraded broadcast channel problem with
general spectra is still open. For the general case, nor were
schemes suggested, neither is there a known non-trivial outer
bound. In this section we constructively show achievable dis-
tortions, and conjecture the behavior of the outer bound in the
limit of high SNR. Our analysis is based upon the minimum
mean squared error (MMSE) analog matching scheme we
presented in [6, Sec. IV]. This scheme approaches equality
in (6) for a given source and channel. It differs from the
ZF scheme described above, by replacing the predictors with
MMSE predictors and adding two additional filter pairs: A
source pre- and post-filter (which can be thought of as a source
shaping filter and source optimal estimator, respectively) and
a channel pre- and post-filters (which can be thought of as a
channel shaping filter and a channel feed-forward equalizer,
respectively).
Abandoning the equal BW case, we still assume that the

source and the channel satisfy the Paley-Wiener condition
inside the bands BS and BC respectively. We assume that an
analog matching encoder was designed for a noise spectrum
SZ0(f) (with associated SNR of SNR0 according to (2)),
and examine the distortion achieved when the actual noise
spectrum is SZ(f), everywhere equal to or lower than SZ0(f).
Under these degraded channel conditions, correct decoding in
the decoder lattice for SZ0(f) also assures correct decoding
for SZ(f), and the problem of finding the optimal SZ(f)-
dependent decoder becomes a linear estimation problem. For
this worst channel SZ0(f) and for optimal distortion (6), we
find the water-filling solutions (12),(13), resulting in the source
and channel water levels θS and θC respectively, and in a
source-channel passband F0, which is the intersection of the
inband frequencies of the source and channel water-filling
solutions. Under this notation we have the following Theorem,
the proof of which will be included in the full paper to follow:
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Theorem 3: For a sequence of good lattices ΛK and for
any noise spectrum SZ0(f), exists a single encoder (which
approaches (6) for SZ0(f)), such that for any spectrum
SZ(f) ≤ SZ0(f)∀f , a suitable decoder can achieve:

lim
K→∞

DK =
∫ 1

2

− 1
2

D(f)df ,

where the distortion spectrum D(f) satisfies:

D(f) =

{ SS(f)
1+Φ(f) , if f ∈ F0

min
(
SS(f), θS

)
, otherwise

}
, (23)

with
Φ(f) =

[
1 − SZ0(f) − SZ(f)

θC

]
·

SS(f) − θS

θS

SNR

SNR0
. (24)

Remarks:
1. Outside F0, there is no gain where the noise spectral

density is lower than expected. Inside F0, the distortion
spectrum is strictly monotonously decreasing in SZ(f), but
the dependence is never stronger than inversely proportional.
It follows, that the overall distortion D is at most inversely
proportional to the SNR. This is to be expected, since all the
gain comes from linear estimation.
2. In the unmatched case modulation may change perfor-

mance. That is, swapping source frequency bands before the
analog matching encoder will change F0 and Φ(f), resulting
in different performance as SZ(f) varies. It can be shown that
the best robustness is achieved when SS(f) is monotonously
decreasing in SZ(f).
3. The degraded channel condition is not necessary. The

exact condition can be stated in terms of SS(f), SZ0(f) and
SZ(f), though it is cumbersome.
Bandwidth Expansion and Compression:
For bandwidth expansion and compression, the scheme

above achieves:
D

Var{Sn}
=

1 − min(ρ, 1)(
1 + SNR0

)ρ +
min(ρ, 1)

1 + Φρ(SNR, SNR0)
, (25)

where
Φρ(SNR, SNR0)

∆=
1 + SNR

1 + SNR0

[
(1 + SNR0)

ρ − 1
]

.

This is worse than the performance reported in [7], [10] for
these cases, although the difference vanishes for high SNR.
The basic drawback of analog matching compared to meth-

ods developed specifically for these special cases seems to
be, that these methods apply different ”zooming” to different
source or channel frequency bands, analog matching uses the
same ”zooming factor” β for all bands. Enhancements to the
scheme, such as the combination of analog matching with pure
analog transmission, may improve these results.
On the Asymptotic Behavior for High SNR:
Now we fix the shape of the noise spectrum SZ(f) up

to a constant gain, and examine the distortion as a function
of the SNR. Fundamentally, the asymptotic behavior of the
distortion at high SNR is only a function of the bandwidth
expansion factor ρ (7). We define the asymptotic distortion

slope for a continuum of schemes operating on spectra with
BW expansion factor ρ as:

λ(ρ) ∆= lim
SNR0→∞

log
( D

D0

SNR

SNR0

)
(26)

where D is the distortion level attained at SNR and D0 is
achieved at SNR0, wherever the limit exists and is fixed for
all SNR ≥ SNR0. By Proposition 1, a continuum of schemes
achieving the ideal performance (6) satisfies λ(ρ) = ρ.
For the analog matching scheme, we know by Theorem

3 that the distortion spectrum is asymptotically linear with
noise variance inside F0, but constant outside F0. Since the
distortion outside F0 is zero for GBE (ρ > 1) but non-zero
for GBC(ρ < 1), we have the following:
Corollary 2: For any source and channel spectra of BW

ratio ρ, a single MMSE analog-matching encoder optimal at
SNR0 can achieve the asymptotic distortion slope:

λ(ρ) =
{

1, if ρ ≥ 1
0, otherwise

}
.

This asymptotic slope agrees with the outer bound of
[10] for the (white) bandwidth expansion problem. For the
bandwidth compression problem, no outer bound is known,
but we are not aware of any proposed scheme with a non-zero
asymptotic slope. We believe this to be true for all spectra:
Conjucture 1: For any source and channel spectra of BW

ratio ρ, no single encoder which satisfies R(D0) = C at SNR0

can have a better slope than that of Corollary 2.
By this conjecture, analog matching is asymptotically opti-

mal among all encoders ideally matched to one SNR.

REFERENCES
[1] B. Chen and G. Wornell. Analog Error-Correcting Codes Based on

Chaotic Dynamical Systems. IEEE Trans. Communications, 46:881–
890, July 1998.

[2] U. Erez, S. Litsyn, and R. Zamir. Lattices Which are Good for (Almost)
Everything. IEEE Trans. Info. Theory, IT-51:3401–3416, Oct. 2005.

[3] T.J. Goblick. Theoretical limitations on the transmission of data from
analog sources. IEEE Trans. Info. Theory, IT-11:558–567, 1965.

[4] T. Guess and M. Varanasi. An Information-Theoretic Framework for
Deriving Canonical Decision-Feedback Receivers in Gaussian Channels.
IEEE Trans. Info. Theory, IT-51:173–187, Jan. 2005.

[5] N. S. Jayant and P. Noll. Digital Coding of Waveforms. Prentice-Hall,
Englewood Cliffs, NJ, 1984.

[6] Y. Kochman and R. Zamir. Analog Matching of Colored Sources to
Colored Channels. In ISIT-2006, Seattle, WA, 2006.

[7] U. Mittal and N. Phamdo. Hybrid Digital-Analog (HDA) Joint Source-
Channel Codes for Broadcasting and Robust Communications. IEEE
Trans. Info. Theory, IT-48:1082–1103, May 2002.

[8] K. Narayanan, M. P. Wilson, and G. Caire. Hybrid digital and analog
costa coding and broadcasting with bandwidth compression. Technical
Report 06-107, Texas A&M University, College Station, August 2006.

[9] V. M. Prabhakaran, R. Puri, and K. Ramchandran. A Hybrid Analog-
Digital Framework for Source-Channel broadcast. In Proceedings of
the 43rd Annual Allerton Conference on Communication, Control and
Computing, 2005.

[10] Z. Reznic, M. Feder, and R. Zamir. Distortion Bounds for Broadcasting
with Bandwidth Expansion. IEEE Trans. Info. Theory, IT-52:3778–3788,
Aug. 2006.

[11] C. E. Shannon. A mathematical theory of communication. Bell Syst.
Tech. J., Vol. 27:623–656, Oct. 1948.

[12] M. Tomlinson. New automatic equalizer employing modulo arithmetic.
Elect. Letters, 7:138–139, March 1971.

[13] R. Zamir, S. Shamai, and U. Erez. Nested Linear/Lattice Codes
for Structured Multiterminal Binning. IEEE Trans. Info. Theory, IT-
48:1250–1276, June 2002.

5


