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Abstract—Uncoded transmission provides a simple, delay-less
and robust scheme for communicating a Gaussian source over
a filter channel under the mean squared error (MSE) distortion
measure. Unfortunately, its performance is usually inferior to
the all-digital solution, consisting of a rate-distortion code for the
source followed by a capacity achieving code for the channel. The
performance loss of uncoded transmission comes from the fact
that except for very special cases, it is impossible to achieve simul-
taneous matching of source to channel and channel to source by
linear means. We show that by combining prediction and modulo-
lattice arithmetic, we can match any stationary Gaussian source
to any inter-symbol interference, colored-noise Gaussian channel,
hence we achieve Shannon’s optimum attainable performance
R(D) = C. This scheme is based upon a novel analog modulo-
lattice solution to the joint source-channel coding problem for a
Gaussian Wyner-Ziv source and a dirty-paper channel.

I. INTRODUCTION
We consider the case where a Stationary Gaussian source

S needs to be transmitted over a stationary Gaussian channel.
Using the separation principle, one can construct an all-digital
system, consisting of source and channel coding schemes. For
known sources and channels, this scheme is optimal although
it suffers from large delay and complexity. However, if the
channel noise level turns out to be higher than expected the
reconstruction may suffer from very large distortion, while if
the channel has lower noise level than expected, there is no
improvement in the distortion. In contrast, it is well known
that if we are allowed one channel use per source sample, the
source is white (source samples are i.i.d.) and the channel is
white as well (additive noise channel with i.i.d. noise samples),
then analog transmission is optimal in the sense of mean
squared error. In such a system, the encoder will consist only
of multiplication by a constant factor that adjusts the source
to the channel power constraint, while the decoder is simply a
multiplication by another constant factor, which materializes
Wiener estimation of the source from the channel output.
Such a system achieves the Shannon bound R(D) = C, and
moreover it does so with low complexity (two multiplications
per sample), zero delay and full robustness (the encoder does
not need to know the channel noise level).
While analog single-letter codes are very appealing, in most

cases they are sub-optimal. In [7], the question of optimal-
ity of single-letter codes is investigated, and source-channel
pairs that admit such a solution are termed probabilistically
matched. It is not hard to verify, that the example above is the
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only case where a Gaussian source is probabilistically matched
to a power-constrained Gaussian channel under MSE criterion.
If we allow delay in the system while still seeking a linear
time-invariant (LTI) solution (c.f. a scheme involving filters), a
somewhat wider class of source-channel pairs match, but even
this relaxed demand is met only in very special cases, since an
LTI system can not allocate power from one frequency band
to another. Seeing that it is generally not possible to gain the
full advantages of codeless schemes, it is natural to search at
least for “soft” transmission schemes. Such schemes will be
optimal for a specific scenario, but their resulting distortion
will improve when the system noise level decreases.
Simple practical cases, in which any pure analog LTI

scheme will suffer from very poor performance, include dis-
joint source and channel frequency bands, bandwidth expan-
sion and bandwidth compression. Many solutions have been
offered for such scenarios, especially for the special case of
bandwidth expansion. Most of these solutions share, explicitly
or implicitly, the hybrid analog-digital (HDA) approach, allo-
cating different power and bandwidth resources to analog and
digital source representations. For treatment of the bandwidth
expansion problem, see for example [16], [12], [15]. A recent
work [13] generalizes the discussion to sources with memory,
while the channel is still white.
In this paper we present a new soft transmission scheme,

that is general for all source spectra and all channel spectra.
Unlike existing HDA solutions, our scheme does not involve
splitting the source or channel into frequency bands, or using
a superposition of digital encoders. Rather, our solution treats
the source and channel in the time domain. We use ideas of
prediction, inspired by precoding [17] and differential pulse
code modulation (DPCM)-like quantizers [10] , combined with
the concept of solving side-information problems by modulo
operations w.r.t. a multi-dimensional lattice [20]. In the context
of channel coding, the combination of precoding and modulo-
lattice transmission is optimal for colored Gaussian channels
[20, Section VII-B]. As for source coding, there has been
much interest in Wyner-Ziv (WZ) video coding, exploiting
the dependence between consecutive frames at the decoder
rather than at the encoder (see for example [14]). On the
more theoretical side, it is shown in [19] that a DPCM-
like encoder using prediction to exploit the source mem-
ory achieves the Gaussian-quadratic rate-distortion function
(RDF), and a scheme where prediction is used in the decoder
only relates to the DPCM scheme the same way that a precoder
scheme relates to an optimal feed forward equalizer - decision
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Fig. 1. A Simple High-SNR Scheme
feedback equalizer (FFE-DFE) scheme [2]. We incorporate
these ideas into a joint source/channel coding scheme.
In order to demonstrate our basic ideas, we start in Section
II with describing our scheme in the high-SNR case. In
Section III we show a solution to the Gaussian-Quadratic joint
source/channel writing on dirty paper (WDP) and Wyner-Ziv
(WZ) problems, which also serves to present elements needed
for extending the analog matching scheme to general SNR.
Finally in Section IV we arrive at the general-SNR analog
matching scheme.

II. ANALOG MATCHING FOR HIGH SNR
Figure 1 illustrates our scheme in the limit of high SNR.
The high-SNR assumption simplifies the scheme considerably,
allowing to concentrate on the core of the scheme.
Let the source be a discrete-time stationary Gaussian pro-

cess Sn with power spectrum Ss(ej2πf ), which can be viewed
as an AR process constructed from i.i.d. innovations Qn, by
a (possibly infinite-order) filter A(z):

Sn = Qn + Sn ∗ an
∆
= Qn + Jn , (1)

where an is the (causal) impulse response of the filter A(z)
and ∗ denotes convolution. The channel is defined2 by some
monic, minimum-phase causal channel filterH(z) and additive
white Gaussian noise Zn of power N , which will be included
in the channel for our purpose.:

Yn = Xn ∗ hn + Zn
∆
= Xn + In + Zn , (2)

and an input power constraint P . The decoder produces an
estimate Ŝn of the source, and the distortion D is defined as
the mean square estimation error D = E{E2

n} where En =
Ŝn − Sn. The optimum performance R(D) = C is given in
the high SNR limit by:

D =
N

P
Pe

(

SS(ej2πf )
)

=
N

P
E{Q2

n} , (3)

where the entropy-power of a spectrum S(ej2πf ) is given by:

Pe

(

S(ej2πf )
)

= exp

∫ 1
2

− 1
2

ln
(

S(ej2πf )
)

df . (4)

The modulo-Λ operation is defined as follows: Let the
basic lattice cell be the interval ν0 = (−∆

2
, ∆

2
). The modulo

operation adds an integer multiplication of ∆ s.t. the output
lies within ν0. If the dither Dn is independent of the input
2Under the Paley-Wiener conditions, a Gaussian channel of any transfer

function and noise spectrum can be transformed into such a channel. This
can be achieved by a whitened matched-filter at the receiver front-end (see
for example [8])

and uniform on ν0, then choosing ∆ =
√

12P ensures that the
power constraint is satisfied [18]. Define the predictor outputs:

Ĩn = Xn ∗ pcn

J̃n = Ŝn ∗ psn , (5)

and then the encoder and decoder are respectively:

Xn =
[

kSn − Ĩn + Dn

]

mod Λ (6)

Ŝn =
[Yn − kJ̃n] mod Λ

k
+ J̃n . (7)

Combining (1), (6) and (2), the channel output is:

Yn = [k(Qn + Jn) − Ĩn + Dn] mod Λ + In + Zn .

Substituting this in (7) and using the fact that

(a mod Λ + b) mod Λ = (a + b) mod Λ

we have that:

Ŝn =

[

k(Qn + Jn − J̃n) + In − Ĩn + Zn

]

mod Λ

k
+ J̃n .

(8)
The key feature of the scheme, is that the source predictor can
cancel the effect of the source AR filter, while the channel
predictor can cancel the effect of the channel ISI. To see this,
we note that if we choose:

Pc(z) = H(z) − 1

Ps(z) = A(z) , (9)

then:

Ĩn = In

J̃n = Jn + En ∗ an . (10)

Substituting this back in (8), we find that

Ŝn =

[

k(Qn − En ∗ an) + Zn

]

mod Λ

k
+ J̃n . (11)

Under the high SNR conditions, the noise Zn and reconstruc-
tion error En are very small comparing to kQn, and if

k2E{Q2
n} $ P (12)

then the modulo operation in (11) will have no effect, with
high probability. Under this assumption we will have:

Ŝ = Sn +
Zn

k
(13)

and D = N
k2 . We see that for achieving the distortion of

(3) we need to satisfy (12) with equality, so that the scheme
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Fig. 2. The Wyner-Ziv / Dirty Paper Coding Problem
presented here achieves the optimum up to a constant margin
factor. It will become evident in the sequel that this factor
can be eliminated by using a high dimensional modulo-lattice
operation. Note that using a ”naive” coding scheme, only
adjusting the source power to the channel power constraint as
in the memoryless case, we would get the distortion N

P
E{S2

n},
which can be much higher than the optimum distortion when
the source is highly predictable.

III. ANALOG JOINT GAUSSIAN WYNER-ZIV SOURCE AND
DIRTY PAPER CHANNEL CODING

Consider the joint source-coding problem for the the Gaus-
sian Wyner-Ziv source and dirty paper channel with MSE
distortion measure depicted in Figure 2. The source and
channel are defined by

Sn = Qn + Jn , (14)

Yn = Xn + Zn + In (15)

respectively, whereQn and Zn are discrete-time i.i.d. Gaussian
process with power σ2

Q and N respectively. The channel input
power constraint is P . Jn is some arbitrary sequence, which
forms the source side information known at the decoder only.
In is another arbitrary sequence which forms the channel
side information, known at the encoder only. The sequences
Qn, Zn, In, Jn are all mutually independent. We seek the
encoder and decoder pair that will produce the best estimate
of Sn in the mean squared error sense. We arrive at a
solution which, beyond solving this joint source-channel side-
information problem, includes elements needed for the analog
matching scheme to work for general SNR.
This is a special case of the joint source-channel problem for

WZ source and Gel’fand-Pinsker channel, discussed in [11].
The main result therein is that the separation principle holds
for the problem, i.e. the combination of WZ source coding
scheme and GP channel coding scheme achieves minimum
distortion. They also present optimality conditions for joint
single-letter codes, which can be seen as an extension to the
results of [7] to side-information problems. In the Gaussian
case presented here, single-letter codes are not feasible, but we
show that the only non-linear, vector component required is a
modulo-lattice operation. By the separation principle, optimal
performance is given by RWZ(D) = CWDP , yielding:

DOPT =
N

P + N
σ2

Q . (16)

We include here a brief summary of lattice properties
needed for this work. Let Λ be a K-dimensional lattice, de-
fined by the generator matrix G ∈ RK×K . The lattice includes

all points {G · i : i ∈ ZK} where Z = {0,±1,±2, . . .}.
The nearest neighbor quantizer associated with Λ is defined
by Q(x) = arg minl∈Λ ‖x − l‖ where ‖ · ‖ denotes Eu-
clidean norm. The modulo-lattice operation is defined by: x
mod Λ = x − Q(x). Let the basic Voronoi cell of Λ be
ν0 = {x : Q(x) = 0}. If the dither vector d is independent of
x and uniformly distributed over ν0, then [x + d] mod Λ is
uniformly distributed over ν0 as well, and independent of x.
The normalized second moment of a lattice is:

G(Λ) =
1

K

∫

ν0
‖x‖2dx

[
∫

ν0
dx]1+

2
K

.

We define a sequence of good lattices ΛK as a sequence of
lattices s.t. the normalized second moment is asymptotically
optimal: limK→∞ G(ΛK) = 1

2πe
and at the same time the

probability of a Gaussian i.i.d. sequence with the same second
moment as ν0 to fall within ν0 approaches one as K → ∞.
Such lattices exist [4], and we will assume throughout the
paper the use of such lattices.
In the joint source-channel coding system depicted in Figure
3, a K-dimensional vector encoder:

X = [kS + D − αI] mod Λ (17)

translates a source sequence S to a channel input X, and a
vector decoder:

Ŝ =
α

k
{[αY − D − k

√

βJ] mod Λ} + J , (18)

produces the estimate Ŝ from the channel outputY. The dither
vector D is uniformly distributed over ν0 and independent of
S. For this system we have the following optimality result:
Theorem 1: Let the system be defined by (14),(15),(17) and

(18) with dimension K. Let the square distortion be DK . For
α = P

P+N
and k approaching k0

∆
=

√

αP
σ2

Q

, and for a sequence
of good lattices ΛK ,

lim
K→∞

DK = DOPT ,

where DOPT was defined in (16).
Proof: The sequence at the input of decoder modulo is

given by:

T = α(X + Z + I) − D − kI

= kZ − (1 − α)X + αZ − M , (19)

where M is the displacement caused by the encoder dithered
modulo operation. We want to ensure correct decoding, which
is the event where the displacement of the dithered decoder
modulo exactly cancels the dithered encoder modulo, i.e.

T + M = kZ̃ − (1 − α)X + αZ ∈ ν0 . (20)

Since X and Z are independent, the power of T is minimized
by the Wiener coefficient α = P

P+N
, yielding T+M = kQ̃+

Neq with E{(Neq
n )2} = PN

P+N
= αN . By the properties of

dithered modulo-lattice operation, X is independent of Q̃ and
uniformly distributed over ν0. Exists an exponentially good
sequence of lattice ΛK such that the probability of correct
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Fig. 3. Analog Wyner-Ziv / Dirty Paper Coding Scheme
decoding approaches 1 as K → ∞ (see [6, Section III-B]
for discussion about the case of a combination of a Gaussian
part, and a part uniformly distributed over the basic lattice
Voronoi cell, such as N eq

n ). Thus we need only demand that
k2σ2

Q + E{(Neq
n

2} ≤ P , or: k < k0. Under this condition:

Ŝ =
α

k
(T + M) + J = S +

α

k
Neq + (1 − α)Z . (21)

Choosing k approaching k0 we have:

D =
α2E{(Neq

n )2}
k2
0

+ (1 − α)2σ2
Q = DOPT

Remarks:
1. A solution to the same problem using previously known

results: By [11], one can build separate source and channel
encoder/decoder pairs. By [20], each of these pairs can be
based on a nested lattice. In comparison, our scheme does
not require a nested lattice (it uses a lattice parallel to the
coarse lattice of nested schemes), and in addition the source
and channel lattices collapse into a single one.
2. In our system the process Qn occupies at the lattice input

only a power of αP , strictly smaller than the channel power P .
This differs from the capacity-achieving nested lattice strategy
of [6]. In [5] it is shown that if the ”data” (fine lattice) occupies
a portion of power γP with α ≤ γ ≤ 1, capacity is still
achieved. In [1] a similar observation is made, and a code of
power αP is presented as a preferred choice, since it allows
easy iterative decoding between the information-bearing code
and the coarse lattice. In the case of analog transmission,
however, we have no choice: Optimality under a continuous
distortion measure requires that the equivalent channel is
additive rather than modulo-additive, thus necessarily γ = α.

IV. ANALOG MATCHING FOR GENERAL SNR
The high-SNR scheme of Section II and the side-
information scheme of Section III bare close similarity. Evi-
dently, we can identify the WZ side-information as the output
of the source predictor, while the WDP side-information is
the channel ISI. As mentioned in Section I, such connections
were already made in channel and source coding.
The generalization of the scheme presented in Section II to

general SNR requires the following considerations:
1. MMSE estimation. While the predictors in the high-SNR
scheme of Section II perfectly cancel the source and channel
memory, optimality in the general case requires to avoid noise
amplification. Hence, the channel predictor is replaced by the
DFE of the optimal MMSE FFE-DFE solution [2], while the
source predictor is replaced by a ”noisy predictor” [19].

2. Deflated lattice input. As shown in Section III, correct
lattice decoding requires that the total of encoder lattice input
and equivalent channel noise power be less than the lattice
cell power. In order to ensure that, the encoder gain k must
be adjusted as to “leave room” for the noise.
3. Spectral shaping. In order to achieve the full Gaussian

channel capacity, the signal at the channel input must have the
channel water-filling spectrum [3]. Similarly, when quantiza-
tion is equivalent to additive white Gaussian noise (AWGN)
channel, in order to achieve the Gaussian-quadratic RDF the
signal at the quantizer input must have the source reverse
water-filling spectrum. The shaping filter which achieves this
spectrum is called pre-filter, while an MMSE filter following
the quantizer is called post-filter [18].
Combining these ingredients, the general-SNR scheme is

identical to the scheme depicted in Figure 1, except for the
addition of pre- and post-filters as the encoder first stage and
decoder last stage respectively, a shaping filter as the encoder
last stage and a linear filter as the decoder first stage. If the
channel capacity is C and DOPT = R−1(C), then the pre-
and post-filters are defined by

|F1(e
j2πf )|2 = |F2(e

j2πf )|2 = max
(

1 −
SS(ej2πf )

Θ
, 0

)

F1(e
j2πf ) = F2(e

j2πf )∗ , (22)

where Θ corresponds with the reverse water-filling solution for
S at distortion level DOPT . The channel shaping filter gives a
white process of power P the channel water-filling spectrum.
The linear filter consists of a whitened matched-filter for the
channel (see for example [8]), together with the linear part of
the optimal channel MMSE FFE-DFE solution [2].
For optimality, we need high lattice dimension. We assume

that we have K independent source-channel pairs in parallel,
which allows a K-dimensional dithered modulo-lattice opera-
tion across these pairs. Other operations are done in parallel.
Also note, that without the high-SNR assumption it is not

possible in general to represent the source as an AR process,
thus the “source” part of Figure 1 is not relevant.
For this scheme we have the optimality Theorem, the proof

for which will be included in a full paper to appear:
Theorem 2: For the system described above with dimension

K, let the square distortion be DK . For an appropriate choice
of k and for a sequence of good lattices ΛK ,

lim
K→∞

DK = DOPT = R−1(C) .

Remarks:
1. If we want to work with a dimension K > 1, but we
only have one source and one channel, we face a fundamental
problem: The filters’ states should be updated every sample,
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while the modulo operation are done block-wise. This can
be overcome, at the price of large delay, by applying the
interleaving approach developed in [9] for FFE-DFE receivers,
and used for precoding in [20, Section VII-B], to our scheme.
2. The optimality of the scheme is based upon correct
decoding at the decoder lattice. In practice, when the dimen-
sion K is finite, the probability for incorrect decoding is not
negligible. In the case of incorrect decoding, the distortion is
bounded as well, because of the bounded modulo output, and
has approximately the source power. By taking small enough k
we can make the error probability as small as desired, but the
distortion in the case of correct decoding will grow inversely
proportional to k2. One can find the k that minimizes the
overall distortion for a given lattice.
3. Denote the pre-filtered version of the source by Un,

and the reconstruction before post-filtering by Vn. The key
to understanding the scheme, is that between Un and Vn

there is an equivalent AWGN channel. This equivalent noise,
composed of the channel AWGN and self noise (Xn), is scaled
down by k. The factor k, in turn, is set by the variance
of prediction error of Un from Vn, for correct decoding. It
turns out, that k can be chosen such that correct decoding
holds and the AWGN between Un and Vn has variance Θ
corresponding with the source water-filling solution. Since the
optimal predictor of Un from Vn is identical to the optimal
predictor of Vn from itself, which is the one-step predictor
for the spectrum SV (ej2πf ) = SU (ej2πf ) + Θ. The resulting
prediction error of Un is [19]:

σ2
Un|Vn−1,Vn−2,... = Pe

(

SU (ej2πf ) + Θ
)

− Θ . (23)
4. Note that the only “digital” component in this scheme is
the modulo-lattice operation. This is equivalent to the coarse
lattice in nested-lattice schemes, or to shaping needed for
capacity-approaching and RDF-approaching schemes. While
we do use this component, we do not use a fine lattice,
equivalent to the words of a codebook. In other words, when
transmitting a Gaussian source through a Gaussian channel,
the only digital coding needed is for shaping.
We conclude by specializing analog matching to the case

of bandwidth expansion. Let the source and channel be both
white, with ρ > 1 channel uses per source sample (ρ not
necessarily integer). We choose to work with a sampling
rate corresponding with the channel bandwidth, thus in our
discrete-time model the channel is white, but the source is
band-limited to a frequency of 1

2ρ
. As a result, the linear

filter L(ej2πf ) becomes a scalar and the channel predictor
Pc(z) becomes zero. The channel shaping filter is not needed,
as the white modulo output already matches the channel
water-filling spectrum, and the source pre- and post-filters
become both ideal low-pass filters of width 1

2ρ
and height

√

1 − D
σ2

S

=

√

1 −
(

1 + P
N

)−ρ
. The noise between Un and

Vn is Θ = ρD, and substituting in (23) we see that the part
of Un unpredictable at the decoder has variance

σ2
Un|Vn−1,Vn−2,... = ρσ2

S

P

N

(

1 +
P

N

)−ρ
.

The resulting distortion achieves the optimum:

D = σ2
S

(

1 +
P

N

)−ρ
.

For this special case, the issue of improvement of distortion
with SNR has been addressed in previous work, especially
[12], [13] with an outer bound derived in [15]. Using our
scheme, it is possible to decrease distortion for better SNR by
changing only the post-filter in the decoder. Investigating the
performance of such a system, or other variations of our basic
scheme, is left for future research.
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