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Abstract

Analog (uncoded) transmission provides a simple and robustscheme for communicating a Gaussian

source over a Gaussian channel under the mean squared error (MSE) distortion measure. Unfortunately,

its performance is usually inferior to the all-digital, separation-based source-channel coding solution,

which requires exact knowledge of the channel at the encoder. The loss comes from the fact that except

for very special cases, e.g. white source and channel of matching bandwidth (BW), it is impossible to

achieve perfect matching of source to channel and channel tosource by linear means. We show that

by combining prediction and modulo-lattice operations, itis possible to match any colored Gaussian

source to any colored Gaussian noise channel (of possibly different BW), hence achieve Shannon’s

optimum attainable performanceR(D) = C. Furthermore, when the source and channel BWs are equal

(but otherwise their spectra are arbitrary), this scheme isasymptotically robust in the sense that for

high signal-to-noise ratio a single encoder (independent of the noise variance) achieves the optimum

performance. The derivation is based upon a recent modulo-lattice modulation scheme for transmitting

a Wyner-Ziv source over a dirty-paper channel.
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I. INTRODUCTION

Digital transmission of analog sources relies, at least from a theoretical point of view, on Shannon’s

source-channel separation principle. Being both optimal and easy to implement, digital techniques replace

today traditional analog communication even in areas like voice telephony, radio and television. This trend

ignores, however, the fact that the separation principle does not hold for communication networks, and

in particular for broadcast channels and compound channels[6], [37], [29]. Indeed, due to both practical

and theoretical reasons,joint source-channel coding and hybrid digital-analog schemes are constantly

receiving attention of researchers in the academia and the industry.

In this work we consider transmission under the mean-squared error (MSE) distortion criterion, of

a general stationary Gaussian source over a power-constrained channel with inter-symbol interference

(ISI), i.e. the transmitted signal is passed through some linear filter, and additive white Gaussian noise

(AWGN). 1

Shannon’s joint source-channel coding theorem implies that the optimal (i.e., minimum distortion)

performanceDopt is given by

R
(

Dopt
)

= C, (1)

whereR(D) is the rate-distortion function of the source at MSE distortion D, andC = C(P ) is the

channel capacity at power-constraintP , both given by the well-known water-filling solutions [6]. By

Shannon’s separation principle, (1) can be achieved by a system consisting of source and channel coding

schemes. This system usually requires large delay and complex digital codes. An additional serious

drawback of the all-digital system is that it suffers from a “threshold effect”: if the channel noise turns

out to be higher than expected, then the reconstruction willsuffer from very large distortion, while if the

channel has lower noise than expected, then there is no improvement in the distortion [37], [29], [2].

In contrast, analog communication techniques (like amplitude or frequency modulation [5]) are not

sensitive to exact channel knowledge at the transmitter. Moreover, in spite of their low complexity and

delay, they are sometimes optimal: if we are allowed one channel use per source sample, and the source

and noise are white (i.e. have i.i.d. samples), then a “single-letter” coding scheme achieves the optimum

performance of (1), see e.g. [11]. In this scheme, the transmitter consists of multiplication by a constant

factor that adjusts the source to the power constraintP , so it is independent of the channel parameters.

1It turns out, that for the purpose of analysis it is more convenient to use a colored-noise channel model rather than an ISI

one; this is deferred to Section II.
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Only the receiver needs to know the power of the noise in orderto optimally estimate the source from

the noisy channel output (by multiplying by the “Wiener coefficient”).

For the case ofcolored sources and channels, however, such a simple solution is notavailable, as

single-letter codes are only optimal in very special scenarios [10]. A particular case is when the channel

bandwidth is not equal to the source bandwidth, but otherwise they are white (i.e., a white source is sent

through an AWGN channel with some average number of channel uses per source sample). As it turns

out, even if we consider more general linear transmission schemes, [1], still (1) is not achievable in the

general colored case. How far do we need to deviate from “analog” transmission in order to achieve

optimal performance in the colored case? More importantly,can we still achieve full robustness?

In this work we propose and investigate asemi-analogtransmission scheme. This scheme achieves

the optimum performance of (1) forany colored source and channel pair without explicit digital coding,

hence we call it theAnalog Matching(AM) scheme. Furthermore, for the matching bandwidth case

(BC = BS, but arbitrary source and channel spectra), we show that theAnalog Matching transmitter is

asymptotically robustin the high signal-to-noise ratio (SNR) regime, in the sensethat it becomes invariant

to the variance of the channel noise. Thus, in this regime, the perfect SNR-invariant matching property

of white sources and channels [11] generalizes to the equal-BW colored case.

Previous work on joint source/channel coding for the BW-mismatch/colored setting mostly consists

of hybrid digital analog (HDA) solutions, which involve splitting the source or channel into frequency

bands, or using a superposition of encoders (see [25], [18],[24], [22], [19] and references therein),

mostly for the cases of bandwidth expansion (BC > BS) and bandwidth compression (BC < BS) with

white spectra. Most of these solutions, explicitly or implicitly, allocate different power and bandwidth

resources to analog and digital source representations, thus they still employ fulldigital coding. Other

works [2], [30] treat bandwidth expansion by mapping each source sample to a sequence of channel

inputs independently; by the scalar nature of these mappings, they do not aim at optimal performance.

In contrast to HDA solutions, the AM scheme treats the sourceand channel in thetime domain,

using linearprediction, thus it also has the potential of shorter delay. Furthermore, it does not involve

any quantization of the source or digital channel code, but rather it appliesmodulo-lattice arithmeticto

analog signals. This modulation allows to take advantage ofside information - here based on prediction

- while keeping the analog nature of transmission.

Table I demonstrates the place of the Analog Matching schemewithin information-theoretic time-

domain schemes. For the separate colored Gaussian source and channel problems, digital coding schemes,

based upon the combination of prediction and memoryless codebooks, are optimal: differential pulse code
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Problem Conventional prediction Side-information based solution

Source coding DPCM compression WZ video coding

Channel coding FFE-DFE receiver Dirty-paper coding = precoding

Joint source-channel coding Does not exist Analog matching

Table I: Information-Theoretic time-domain solutions to colored Gaussian source and channel problems.

modulation (DPCM) in source coding (see [13] for basic properties and [35] for optimality), and feed-

forward-equalizer / decision-feedback-equalizer (FFE-DFE) receiver in channel coding (see [3]).2

The optimality of DPCM hinges on prediction being performedusing the reconstruction rather than the

source itself.3 Identical predictors, with equal outputs, are employed at the encoder and at the decoder. An

alternative approach, advocated for low-complexity encoding, is “Wyner-Ziv video coding” (see e.g. [23]).

In this approach, prediction is performed at the decoder only and is treated as decoder side-information

[32]. In the context of the AM scheme, however, decoder-onlyprediction is not an option but a must:

since no quantization is used, but rather the reconstruction error is generated by the channel, the encoder

does not have access to the error and the side-information approach must be taken.

In the channel counterpart, the FFE-DFE receiver cancels the effect of past channel inputs by filtering

past decoder decisions (assumed to be equal to these inputs). In order to avoid error propagation,

sometimes precoding [27], where the filter is moved to the encoder, is preferred; this can be seen as a

form of dirty-paper coding[4] , where the filter output plays the role of encoder side-information. Again,

the AM scheme must use the “encoder side-information” variant: if no channel code is used, then the

decoder cannot make digital decisions regarding past channel inputs, so virtually it has no access to these

inputs.

To summarize, the AM scheme uses source prediction at the decoder, and channel prediction at the

encoder, and then treats the predictor outputs as Wyner-Zivand dirty-paper side-information, respectively;

see Figure 1. Digital solutions to these side-information problems rely on binning, which may also be

materialized in a structured (lattice) way [36]. AM treats these two side-information problems jointly

2In the high-rate limit it is easy to see the role of prediction: the rate-distortion function amounts to that of the white source

innovations process, while the channel capacity is the additive white Gaussian noise channel capacity with the noise replaced

by its innovations process only. We stick to this limit in theintroduction; for general rates, see Section II.

3Extracting the innovations of the un-quantized source is sometimes called “D∗PCM” and is known to be strictly inferior to

DPCM; see [13], [35].
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Figure 1: Workings of the AM scheme in the high-SNR limit. Thesource is assumed to have an auto-

regressive (AR) model. mod Λ is the modulo-lattice operation.

usingmodulo-lattice modulation(MLM) , an approach proposed recently for joint Wyner-Ziv and dirty-

paper coding [15]. However, combining these pieces turns out to be a non-trivial task. The interaction

of filters with high-dimensional lattice codes raises technical difficulties which are solved in the sequel.

The rest of the paper is organized as follows: We start in Section II by bringing preliminaries regarding

sources and channels with memory, as well as modulo-latticemodulation and side-information problems.

In Section III we prove the optimality of the Analog Matchingscheme. In Section IV we analyze the

scheme performance for unknown SNR, and prove its asymptotic robustness. Finally, Section V discusses

applications of AM, and is advantage relative to other approaches (e.g. HDA) in terms of delay.

II. FORMULATION AND PRELIMINARIES

In Section II-A we formally present the problem. In the rest of the section we bring preliminaries

necessary for the rest of the paper. In Sections II-B to II-D we present results connecting the Gaussian-

quadratic rate-distortion function (RDF) and the Gaussianchannel capacity to prediction, mostly following

[35]. In sections II-E and II-F we discuss lattices and theirapplication to joint source/channel coding

with side information, mostly following [15].

A. Problem Formulation

Figure 2 demonstrates the setting we consider in this paper.The sourceSn is zero-mean stationary

Gaussian, with spectrumSS(ej2πf ). As for the channel, for the purpose of the analysis to followwe
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Figure 2: Colored Gaussian joint source/channel setting.

break away with the ISI model discussed in the introduction,and use a colored noise model:4

Yn = Xn + Zn, (2)

whereXn andYn are the channel input and output,Zn is zero-mean additive stationary Gaussian noise

with spectrumSZ(ej2πf ), assumed to be finite for all2|f | ≤ BC and infinite otherwise. The channel

input Xn needs to satisfy the power constraintVar{Xn} ≤ P , and the distortion of the reconstruction

Ŝn is given byD = Var{Ŝn − Sn}.

B. Spectral Decomposition and Prediction

Let An be a zero-mean discrete-time stationary process, with power spectrumSA(ej2πf ). The Paley-

Wiener condition is given by [28]:
∣

∣

∣

∣

∣

∫ 1

2

− 1

2

log
(

SA(ej2πf )
)

df

∣

∣

∣

∣

∣

< ∞ , (3)

where here and in the sequel logarithms are taken to the natural base. It holds for example if the spectrum

SA(ej2πf ) is bounded away from zero. Whenever the Paley-Wiener condition holds, the spectrum has a

spectral decomposition:

SA(ej2πf ) = Q(z)Q∗

(

1

z∗

)∣

∣

∣

∣

z=j2πf

Pe

(

SA

)

, (4)

whereQ(z) is a monic causal filter, and the entropy-powerPe (SA) of the spectrum is defined by:

Pe(SA)
∆
= Pe

(

SA(ej2πf )
)

= exp

∫ 1

2

− 1

2

log
(

SA(ej2πf )
)

df . (5)

The optimal predictorof the processAn from its infinite past is

P (z) = 1 − Q−1(z) , (6)

4The transition between the two models is straightforward using a suitable front-end filter at the receiver (provided that the

ISI filter is invertible).
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a filter with an impulse response satisfyingpn = 0 for all n ≤ 0. The prediction mean squared error

(MSE) is equal to the entropy power of the process:

Var{An|A
n−1
−∞} = Pe(SA) . (7)

The prediction error process can serve as a white innovations process for AR representation of the process.

We define theprediction gainof a spectrumSA(ej2πf ) as:

Γ(SA)
∆
= Γ

(

SA(ej2πf )
)

∆
=

∫

1

2

− 1

2

SA(ej2πf )df

Pe (SA)
=

Var{An}

Var{An|A
n−1
−∞}

≥ 1 , (8)

where the gain equals one if and only if the spectrum is white,i.e. fixed over all frequencies|f | ≤ 1
2 . A

case of special interest, is where the process is band-limited such thatSA(ej2πf ) = 0 ∀|f | > B
2 where

B < 1. In that case, the Paley-Wiener condition (3) does not hold and the prediction gain is infinite. We

re-define, then, the prediction gain of a process band-limited toB as the gain of the process downsampled

by 1
B , i.e., 5

Γ(S) =

1
B

∫

B

2

−B

2

SA(ej2πf )df

exp
[

1
B

∫

B

2

−B

2

log
(

SA(ej2πf )
)

df
] . (9)

We will use in the sequel prediction from a noisy version of a process: Suppose thatCn = An + Wn,

with Wn additive white with powerθ. Then it can be shown that the noisy prediction error has variance

(see e.g. [35]):

Var{An|C
n−1
−∞ } = Pe(SA + θ)− θ . (10)

Note that for anyθ > 0, the spectrumSA(ej2πf )+θ obeys (3), so that the conditional variance is non-zero

even if An is band-limited. In the caseθ = 0, (10) collapses to (7).

C. Water-Filling Solutions and the Shannon Bounds

The RDF for a Gaussian source with spectrumSS(ej2πf ) under an MSE distortion measure is given

by:

R(D) =
1

2

∫ 1

2

− 1

2

log
SS(ej2πf )

D(ej2πf )
df , (11)

5A similar definition can be made for more general cases, e.g.,when the signal is band-limited to some band which does not

start at zero frequency.
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where thedistortion spectrumD(ej2πf ) is given by the reverse water-filling solution:D(ej2πf ) =

min
(

θS, S(ej2πf )
)

with the water levelθS set by the distortion levelD:

D =

∫ 1/2

−1/2
D(ej2πf )df .

The Shannon lower bound(SLB) for the RDF of a source band-limited toBS is given by:

R(D) ≥
BS

2
log

SDR
ΓS

∆
= RSLB(D) , (12)

where SDR, thesignal-to-distortion ratio, is defined as:

SDR
∆
=

Var{Sn}

D
(13)

andΓS
∆
= Γ(SS) is the source prediction gain (9). This bound is tight for a Gaussian source whenever the

distortion levelD is low enough such thatD < BS min|f |≤BS
SS(ej2πf ), and consequentlyD(ej2πf ) =

θS = D
BS

for all |f | < BS . Note that the bound reflects a coding rate gain ofBS/2 log(ΓS) with respect

to the RDF of a white Gaussian source.

The capacity of the colored channel (2) where the noiseZn has spectrumSZ(ej2πf ), bandlimited to

BC , is given by:

C =

∫
BC

2

−
BC
2

log

(

1 +
P (ej2πf )

SZ(ej2πf )

)

, (14)

where theoptimum channel input spectrumP (ej2πf ) is given by the water-filling solution:P (ej2πf ) =

max
(

θC − SZ(ej2πf ), 0
)

inside the band, with thewater levelθC set by the power constraintP :

P =

∫ BC/2

−BC/2
P (ej2πf )df .

The Shannon upper bound(SUB) for the channel capacity is given by:

C ≤
BC

2
log [ΓC · (1 + SNR)]

∆
= CSUB , (15)

where SNR, thesignal-to-noise ratio, is defined as:

SNR
∆
=

P

N

∆
=

P
∫ BC/2
−BC/2 SZ(ej2πf )df

, (16)

andΓC
∆
= Γ(SZ) is the channel prediction gain (8). The bound is tight for a Gaussian channel whenever

the SNR is high enough such thatP ≥ BC max|f |≤BC
SZ(ej2πf ) − N and consequentlySZ(ej2πf ) +

P (ej2πf ) = θC = P+N
BC

. Note that the bound reflects a coding rate gain ofBC/2 log(ΓC) with respect

to the AWGN channel capacity.

8



We now connect the capacity and RDF expressions. In terms of the SDR and SNR defined above, and

denoting the inverse of the RDF byR−1(·), the optimal performance (1) becomes:

SDRopt ∆
=

Var{Sn}

R−1(C(SNR))
. (17)

Let thebandwidth ratiobe

ρ
∆
=

BC

BS
. (18)

Combining (12) with (15), we have the following asymptotically tight upper bound on the Shannon

optimum performance. It shows that the prediction gains productΓSΓC gives the total SDR gain relative

to the case where the source and channel spectra are white.

Proposition 1:
SDRopt

(1 + SNR)ρ
≤ ΓSΓC ,

with equality if and only if the SLB and SUB both hold with equality. 6 Furthermore, if the source and

the channel noise both satisfy the Paley-Wiener condition (3) inside their respective bandwidths, then

when the SNR is taken to infinity by increasing the power constraint P while holding the noise spectrum

fixed:

lim
SNR→∞

SDRopt

SNRρ = ΓSΓC . (19)

D. Predictive Presentation of the Gaussian RDF and Capacity

Not only the SLB and SUB in (12) and (15) can be written in predictive forms, but also the rate-

distortion function and channel capacity, in the Gaussian case. These predictive forms are given in terms

of the forward-channel configurations depicted in Figure 3.

For source coding, letF1(e
j2πf ) be any filter with amplitude response satisfying

|F1(e
j2πf )|2 = 1 −

D(ej2πf )

SS(ej2πf )
, (20)

whereD(ej2πf ) is the distortion spectrum materializing the water-fillingsolution (11). We callF1(e
j2πf )

andF2(e
j2πf ) = F ∗

1 (ej2πf ) the pre- and post-filters for the sourceS [34].

6The SLB and SUB never strictly hold with equality ifSS(ej2πf ) is not bounded away from zero, orSZ(ej2πf ) is not

everywhere finite. However, they do hold asymptotically in the high-SNR limit, if these spectra satisfy the Paley-Wiener condition

(3).
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Ŝn

Zn

Vn

variance

(a) RDF-achieving configuration using filters and AWGN channel.
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Figure 3: Forward-channel configurations for the RDF and capacity.

As a consequence of (10), the pre/post filtered AWGN depictedin Figure 3a satisfies [35]:

R(D) =
1

2
log

(

1 +
Var{Un|V

n−1
−∞ }

Var{Zn}

)

, (21)

whereVar{Zn} = θS. Note that in the limit of low distortion the filters vanish, prediction fromUn is

equivalent to prediction fromVn, and we go back to (12). Defining the source Wiener coefficient

αS = 1 − exp (−2R(D)) , (22)

(21) implies that

Var{Un|V
n−1
−∞ } =

αS

1 − αS
θS . (23)

For channel coding, letG1(e
j2πf ) be any filter with amplitude response satisfying

|G1(e
j2πf )|2 =

P (ej2πf )

θC
, (24)

whereP (ej2πf ) and θC are the channel input spectrum and water level materializing the water-filling

solution (14).G1(e
j2πf ) is usually referred to as the channel shaping filter, but motivated by the the

similarity with the solution to the source problem we call ita channel pre-filter. At the channel output

we placeG2(e
j2πf ) = G∗

1(e
j2πf ), known as a matched filter, which we call a channel post-filter.

In the pre/post filtered colored-noise channel depicted in Figure 3b, let the inputX̃n be white and

define the (non-Gauusian, non-additive) noiseZ̃n = Ỹn − X̃n. Then the channel satisfies (see [9], [35]):

C =
1

2
log

(

Var{X̃n}

Var{Z̃n|Z̃
n−1
−∞ }

)

(25)
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where Var{X̃n} = θC . Note that in the limit of low noise the filters vanish, prediction from Z̃n is

equivalent to prediction fromZn, and we go back to (15). Defining the channel Wiener coefficient

αC = 1 − exp (−2C) , (26)

(25) implies that

Var{Z̃n|Z̃
n−1
−∞ } =

1 − αC

αC
θC . (27)

Combining (22) with (26), we note that in a joint source-channel setting where the optimum perfor-

mance (1) is achieved,

αS = αC = α . (28)

A connection between the water-filling parameters and conditional variances can be derived using (23)

and (27).

The predictive presentations (21) and (25) translate the process mutual information rates̄I(Sn; Ŝn)

and Ī(Xn;Yn) to the conditional mutual informationsI(Un;Vn|V
n−1
−∞ ) and I(X̃n; X̃n + Z̃n|Z̃

n−1
−∞ ),

respectively. This is highly attractive as the basis for coding schemes, since it allows to use the combination

of predictors and generic optimal codebooks forwhite sources and channels, regardless of the actual

spectra, without compromising optimality. See e.g. [12], [35]. In the source case, (21) establishes the

optimality of a DPCM-like scheme, where the prediction error of Un from the past samples ofVn is

being quantized and the quantizer is equivalent to an AWGN. For channel coding, (25) implies a noise-

prediction receiver, which can be shown to be equivalent to the better known MMSE FFE-DFE solution

[3].

E. Good Lattices for Quantization and Channel Coding

Let Λ be aK-dimensional lattice, defined by the generator matrixG ∈ R
K×K . The lattice includes

all points {l = G · i : i ∈ Z
K} whereZ = {0,±1,±2, . . .}. The nearest neighbor quantizer associated

with Λ is defined by

Q(x) = arg min
l∈Λ

‖x− l‖ ,

where ties are broken in a systematic way. Let the basic Voronoi cell of Λ be

V0 = {x : Q(x) = 0} .

The second moment of a lattice is given by the variance of a uniform distribution over the basic Voronoi

cell, per dimension:

σ2(Λ) =
1

K
·

∫

V0
‖x‖2dx
∫

V0
dx

. (29)
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The modulo-lattice operation is defined by:

x mod Λ = x− Q(x) .

The following is the key condition that has to be verified in the analysis to follow.

Definition 1: (Correct decoding) We say that correct decoding of a vectorx by a latticeΛ occurs,

whenever

x mod Λ = x ,

i.e., x ∈ V0.

For a dither vectord which is independent ofx and uniformly distributed over the basic Voronoi cell

V0, [x + d] mod Λ is uniformly distributed overV0 as well, and is independent ofx [33].

We assume the use of lattices which are simultaneously good for source coding (MSE quantization)

and for AWGN channel coding [7]. Roughly speaking, a sequence of K-dimensional lattices isgood

for MSE quantizationif the second moment of these lattices tends to that of a uniform distribution over

a ball of the same volume, asK grows. A sequence of lattices isgood for AWGN channel codingif

the probability of correct decoding (1) of a Gaussian i.i.d.vector with element variance smaller than

the square radius of a ball having the same volume as the lattice basic cell, approaches zero for large

K. There exists a sequence of lattices satisfying both properties simultaneously, thus for these lattices,

correct decoding holds with high probability for Gaussian i.i.d. vectors with element variance smaller than

σ2(Λ), for large enoughK. This property also holds when the Gaussian vector is replaced by a linear

combination of Gaussian and “self noise” (uniformly distributed over the lattice basic cell) components.

The following formally states the property used in the sequel.

Definition 2: (Combination noise) Let Z1, . . . ,ZL be mutually-i.i.d. vectors, independent ofZ0,

uniformly distributed over the basic cell ofΛ, and letZ0 be a Gaussian i.i.d. vector with element variance

σ2(Λ). Then for any real coefficients,
∑L

l=0 αlzL is a combination noise with compositionα0, . . . , αL.

Proposition 2: (Existence of good lattices) Let {ΛK} denote a sequence ofK-dimensional lattices

with basic cells{VK} of fixed second momentσ2. Let {ZK} be a corresponding sequence of combination

noise vectors, with fixed composition satisfying:
L
∑

l=1

α2
l < 1 .

Then there exists a sequence{ΛK} such that:

lim sup
K→∞

Pr{ZK mod ΛK 6= Zk} = 0 .
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+

J

β Σ α
β Σ

Power ConstraintP

(b) Asymptotic equivalent real-additive channel for

“good” lattices. The equivalent noiseZeq = αZ −

(1 − α)X is independent ofQ, and asymptotically

Gaussian.

Figure 5: MLM Wyner-Ziv / dirty-paper coding.

This is similar to [15, Poposition 1], but with the single “self-noise” component replaced by a

combination. It therefore requires a proof, included in theappendix.

13



F. Coding for the Joint WZ/DPC Problem using Modulo-LatticeModulation

The lattices discussed above can be used for achieving the optimum performance in the joint source/channel

Gaussian Wyner-Ziv/dirty-paper coding,7 depicted in Figure 4. In that problem, the source is the sum of

an unknown i.i.d. Gaussian componentQn and an arbitrary componentJn known at the decoder, while

the channel noise is the sum of an unknown i.i.d. Gaussian componentZn and an arbitrary componentIn

known at the encoder. In [15] the MLM scheme of Figure 5a is shown to achieve the optimal performance

(1) for suitableα andβ. This is done showing asymptotic equivalence with high probability (for good

lattices) to the real-additive channel of Figure 5b. Theoutput-power constraintP in that last channel

reflects the element variance condition in order to ensure correct decoding of the vectorβQn + Zeqn

with high probability, according to Proposition 2. When this holds, the dithered modulo-lattice operation

at the encoder and the decoder perfectly cancel each other. This way, the MLM scheme asymptotically

translates the SI problem to the simple problem of transmitting the unknown source componentQn over

an AWGN, where the known source componentJn and the channel interferenceIn are not present.

III. T HE AM SCHEME

In this section we prove the optimality of the Analog Matching scheme, depicted in Figure 6, in the limit

of high lattice dimension. We assume for now that we haveK mutually-independent identically-distributed

source-channel pairs in parallel,8 which allows aK-dimensional dithered modulo-lattice operation across

these pairs. Other operations are done independently in parallel. To simplify notation we omit the index

k of the source/channel pair (k = 1, 2, . . . ,K), and use scalar notation meaningany of the K pairs; we

denote by bold lettersK-dimensional vectors, for the modulo-lattice operation. Subscripts denote time

instants. Under this notation, the AM encoder is given by:

Un = f1n ∗ Sn

X̃n = [βUn − In + Dn] mod Λ

In = −

∞
∑

m=1

pCmX̃n−m

Xn = g1n ∗ X̃n , (30)

7An alternative form of this scheme may be obtained by replacing the lattice with a random code and using mutual information

considerations; see [31].

8We will discuss in the sequel how this leads to optimality fora single source and a single channel.
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Figure 6: The Analog Matching scheme.

while the decoder is given by:

Ỹn = g2n ∗ Yn

Y ′
n = Ỹn −

∞
∑

m=1

pCmỸn−m

Vn =
1

β

[

Ỹn − βJn − Dn

]

mod Λ + Jn

Jn =

∞
∑

m=1

pSkVn−k

Ŝn = f2n ∗ Vn , (31)

where∗ denotes convolution. For each filter of frequency responseH(ej2πf ), the corresponding impulse

response is denoted by small lettershn. Each of theK parallel channels is given by the colored noise

model (2).

The filters used in the scheme are determined by the optimal solutions presented in Sections II-C

and II-D. The channel capacity, and corresponding water-level θC , are given by (14). This determines,

through the optimality condition (1), the distortion levelD. Using thatD, the RDF, and corresponding

water-levelθS, are given by (11). The filtersF1(e
j2πf ) andF2(e

j2πf ) are then chosen according to (20),
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andG1(e
j2πf ) andG2(e

j2πf ) according to (24). We also useα of (28). Finally,PS(ej2πf ) andPC(ej2πf )

are the optimal predictors (6) of the spectra

SV (ej2πf )
∆
= |F1(e

j2πf )|2SS(ej2πf ) +
1 − α

β2
θC (32)

and

SZ̃(ej2πf )
∆
=
(

1 − |G1(e
j2πf )|2

)2
θC + |G1(e

j2πf )|2SZ(ej2πf ) (33)

respectively, where we take|G1(e
j2πf )|2SZ(ej2πf ) = 0 wherever|G1(e

j2πf )| = 0 even if SZ(ej2πf ) is

infinite.

The analysis we apply to the scheme shows that at each time instant it is equivalent to a joint

source/channel side-information (SI) scheme, and then applies the Modulo-Lattice Modulation (MLM)

approach presented in Section II-F. The key to the proof is showing that with high probability the correct

decoding event of Definition 1 holds, thus the modulo-lattice operation at the decoder exactly cancels the

corresponding operation at the encoder. As the distribution of the signal fed to the decoder modulo-lattice

operation depends upon the past decisions through the filters memory, the analysis has arecursivenature:

we show, that if the scheme is in a “correct state” at time instant n, it will stay in that state at instant

n+1 with high probability, resulting in optimal distortion. Formally, for the decoder modulo-lattice input:

Tn = β(Un − Jn) + Zeqn , (34)

we define the desired state as follows.

Definition 3: We say that the Analog Matching scheme iscorrectly initialized at time instancen, if

all signals at all timesn − 1, n − 2, . . . take values according to the assumption that correct decoding

(see Definition 1) held w.r.t.Tn−1,Tn−2, . . ..

Using this, we make the following optimality claim.

Theorem 1:(Asymptotic optimality of the Analog Matching scheme) Let D(N,K) be the achievable

expected distortion of the AM scheme operating on input blocks of time durationN with lattice dimension

K. Then there exists a sequenceN(K) such that

lim
K→∞

D(N(K),K) = Dopt ,

whereDopt was defined in (1), provided that at the start of transmissionthe scheme is correctly initialized.
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Figure 7: The scheme in the high-SNR limit.

In Section III-A we gain some insight into the workings of thescheme by considering it in the

uqual-BW high-SNR regime, while in Section III-B we cosiderthe important special cases of bandwidth

expansion and compression. Section III-C contains the proof of Theorem 1, and then in Section III-D

we discuss how one can implement a scheme based on the theorem.

A. The Scheme in the Equal-BW High-SNR Regime

In the equal-BW case (BS = BC ) and in the limit of high resolution (Dopt ≪ Pe(SS)), the scheme can

be simplified significantly. In this limit, the filters approach zero-forcingones: both source and channel

pre- and post-filters collapse to unit all-pass filters, while the source and channel predictors become just

the optimal predictors of the spectraSS(ej2πf ) andSZ(ej2πf ), respectively. The receiver filter1−PC(z)

is then a whitening filter for the noise, and the channel fromXn to Y ′
n is equivalent to a white-noise

inter-symbol interference (ISI) channel:

Y ′
n = Xn −

∞
∑

m=1

pCmXn−m + Wn , (35)

whereWn is AWGN of variancePe(SZ). Under these conditions, the source can always be modeled as

an auto-regressive (AR) process:

Sn =

∞
∑

m=1

pSmSn−m + Qn , (36)

whereQn is the white innovations process, of powerPe(SS).

The resulting scheme is depicted in Figure 7. It is evident, that the channel predictor cancels all of

the ISI, while the source predictor removes the source memory, so that effectively the scheme transmits

the source innovation through an AWGN channel. The gains of source and channel prediction areΓS =

Pe(SS)/Var{Sn} and ΓC = Pe(SZ)/Var{Zn}, respectively (recall (8)). In light of (19), the product
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of the two is indeed the required gain over memoryless transmission. In fact, if we assume that the

modulo-lattice operations have no effect, then the entire scheme is equivalent to the AWGN channel:

Ŝn = Sn +
Wn

β
.

Letting β2 = P/Var{Qn}, we than have that:

SDR=
β2 Var{Sn}

Var{Wn}
=

β2ΓCSNRVar{Sn}

P
= ΓSΓCSNR

which is optimal at the limit, recall (19). In order to satisfy the power constraint, the lattice second

moment must beP , thus the gainβ amplifies the source innovations to a power equal to the lattice

second moment; as we will prove in the sequel, this choice ofβ indeed guarantees correct decoding, on

account of Proposition 2.

B. The BW Mismatch Case

At this point, we present the special cases ofbandwidth expansionand bandwidth compression, and

see how the analog matching scheme specializes to these cases. In these cases the source and the channel

are both white, but with different bandwidth (BW). The source and channel prediction gains are both

one, and the optimum condition (17) becomes:

SDRopt = (1 + SNR)ρ , (37)

where the bandwidth ratioρ was defined in (18).

For bandwidth expansion (ρ > 1), we choose to work with a sampling rate corresponding with the

channel bandwidth, thus in our discrete-time model the channel is white, but the source is band-limited to

a frequency of12ρ . As a result, the channel predictorPC(z) vanishes and the channel post-filters become

the scalar Wiener factorα. The source water-filling solution allocates all the distortion to the in-band

frequencies, thus we haveθS = ρD and the source pre- and post-filters become both ideal low-pass filters

of width 1
2ρ and height

√

1 −
1

SDRopt =

√

1 −
1

(1 + SNR)ρ
. (38)

As the source is band-limited, the source predictor is non-trivial and depends on the distortion level. The

resulting prediction error ofUn has variance

Var{Un|V
n−1
−∞ } =

ρVar{Sn}

(1 + SNR)ρ−1 ,

and the resulting distortion achieves the optimum (37).
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For bandwidth compression (ρ < 1), the sampling rate reflects the source bandwidth, thus the source

is white but the channel is band-limited to a frequency ofBC = ρ
2 . In this case the source predictor

becomes redundant, and the pre- and post-filters become a constant factor equal to (38). The channel

pre- and post-filters are ideal low-pass filter of widthρ
2 and unit height. The channel predictor is the

SNR-dependent DFE. Again this results in achieving the optimum distortion (37). It is interesting to note,

that in this case the outband part of the channel errorZ̃n is entirely ISI (a filtered version of the channel

inputs), while the inband part is composed of both channel noise and ISI, and tends to be all channel

noise at high SNR.

C. Proof of Theorem 1

We start the optimality proof by showing that the Analog Matching scheme is equivalent at each time

instant to a WZ/DPC scheme, as in Section II-F. Specifically,the equivalent scheme is shown in Figure

8a, which bears close resemblance to Figure 5a. The equivalence is immediate using the definitions of

In (30) andJn (31), since they are constructed in the encoder and the decoder usingpastvalues ofX̃n

andVn, respectively, thus at any fixed time instant they can be seenas side information. It remains to

show that indeed the unknown noise component is white, and evaluate its variance.

Lemma 1: (Equivalent side-information scheme) Assume thatVar X̃n = θC , then

Z ′
n

∆
=

Y ′
n − In

α
− X̃n

is a white process, independent of allUn, with variance

Var{Z ′
n} =

1 − α

α
θC .

The proof of this lemma appears in the appendix. Now we note, that if the modulo-lattice operations

in the equivalent scheme of Figure 8a can be dropped, this will result in a scalar additive white-noise

channel (see Figure 8):

Vn = Un +
Zeqn

β
, (39)

where

Zeqn = αZ ′
n − (1 − α)X̃n (40)

is a white additive noise term of variance

Var{Zeqn} = α Var{Z ′
n} = (1 − α)θC . (41)
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Figure 8: Equivalent channels for the Analog Matching scheme.

Together with the source pre/post filtersF1(e
j2πf ) andF2(e

j2πf ), we can have the forward test channel

of Figure 3a. Furthermore, ifβ2 equals

β2
0

∆
= (1 − α)

θC

θS
(42)

then the additive noise variance isθS , resulting in optimal performance. The relevant conditionis that

correct decoding (recall Definition 1) holds forTn (34). Using the concept of correct initialization

(Definition 3), we first give a recursive claim.

Lemma 2: (Steady-state behavior of the Analog Matching scheme) Assume that the Analog Match-

ing scheme is applied, using a latticeΛ = ΛK of dimensionK which is taken from a sequence of lattices

of second momentθC which are simultaneously good for source and channel codingin the sense of

Proposition 2. Then the probability that correct decoding does not hold in the present instance can be

bounded bype(K), where

lim
K→∞

pe(K) = 0 ,

given that the scheme is correctly initialized and thatβ > β0 (42).
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Now we translate the conditional result above (again provenin the appendix), to the optimality claim

for blocks.

Proof of Theorem 1: We chooseN(K) to be some sequence such that

lim
K→∞

N(K) = ∞ ,

but at the same time

lim
K→∞

N(K)pe(K) = 0 ,

wherepe(K) was defined in Lemma 2. LetDcorrect andDincorrect be the expected distortion given that

the scheme remains correctly initialized at the end of transmission or does not, respectively. By the union

bound we have that:

D(N(K),K) ≤ Dcorrect(N(K),K) + N(K)pe(K)Dincorrect(N(K),K) .

Since we assumed thatN(K)pe(K) vanishes in the limit of infiniteK, so does the second term; see

[15, Appendix II-B]. We thus have that

lim
K→∞

D(N(K),K) = lim
K→∞

Dcorrect(N(K),K)

and we can assume that (39) holds throughout the block. This results in the forward channel of Figure

3a, up to two issues. First, the channel is stationary while transmission has finite duration, and second

the additive noise variance is larger thanθS sinceβ > β0. The first may be solved by forcingUn and

Vn to be zero outside the transmission block, resulting in an excess distortion term; however this finite

term vanishes when averaging over largeN(K). The second implies thatDopt + ǫ may still be achieved

for any ǫ > 0, and the result follows by a standard arguments, replacingǫ by a sequenceǫ(K) → 0

D. From the Idealized Scheme to Implementation

We now discuss how the scheme can be implemented with finite filters, how the correct initialization

assumption may be dropped, and how the scheme may be used for asingle source/channel pair.

1. Filter length. If we constrain the filters to have finite length, we may not be able to implement the

optimum filters. However, it is possible to show, that the effect on both the correct decoding condition

and the final distortion can be made as small as desired, sincethe additional signal errors due to the

filters truncation can be all made to have arbitrarily small variance by taking long enough filters. In the

sequel we assume the filters all have lengthL.

2. Initialization. After taking finite-length filters, we note that correct initialization now only involves a

finite history of the scheme. Consequently, we can create this state by adding a finite number of channel
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uses. Now we may create a valid state for the channel predictor PC(ej2πf ) by transmittingL values

X̃n = 0; see [12]. For the source predictor the situation is more involved, since in absence of past values

of Vn, the decoder cannot reduce the source power to the innovations power, and correct decoding may

not hold. This can be solved by de-activating the predictor for the firstL values ofUn, and transmitting

them with lowerβ such that (A2) holds without subtractingJn. Now in order to achieve the desired

estimation error for these first values ofVn, one simply repeats the same values ofUn a number of times

according to the (finite) ratio ofβ’s. If the block lengthN is long enough relative toL, the number of

excess channel uses becomes insignificant.

3. Single source/channel pair. A pair of interleaver/de-interleaver can serve to emulateK parallel

sources, as done in [12] for an FFE-DFE receiver, and extended to lattice operations in [36]. Interestingly,

while a separation-based scheme which employs time-domainprocessing for both source and channel

parts requires two separate interleavers, one suffices for the AM scheme. Together with the initialization

process, we have the following algorithm.

encoder:

1. Write Un row-wise into an interleaving table.

2. Before each row, add source initialization samples.

3. Build a table forX̃n, starting by zero columns for channel initialization. Thenadd more columns

using column-wise modulo-lattice operations on the table of Un, using row-wise past values of̃Xn as

inputs to the channel predictor.

4. Feed theX̃n table to the channel pre-filter row-wise.

decoder:

1. Write Y ′
n row-wise.

2. Discard the first columns, corresponding to channel initialization.

3. Build a table forVn, starting by using the source initialization data. Then addmore columns using

column-wise modulo-lattice operations on the table ofY ′
n, using row-wise past values ofVn as inputs to

the source predictor.

4. Feed theVn table to the source post-filter row-wise.

IV. U NKNOWN SNR

So far we have assumed in our analysis that both the encoder and decoder know the source and channel

statistics. In many practical communications scenarios, however, the encoder does not know the channel,

or equivalently, it needs to send the same message to different users having different channels. Sometimes

22



it is assumed that the channel filterH0(e
j2πf ) is given, but the noise levelN is only known to satisfy

N ≤ N0 for some givenN0. For this special case, and specifically the broadcast bandwidth expansion

and compression problems, see [25], [18], [24], [22].

Throughout this section, we demonstrate that the key factorin asymptotic behavior for high SNR is

the bandwidth ratioρ (18). We start in Section IV-A by proving a basic lemma regarding achievable

performance when the encoder is not optimal for the actual channel. In the rest of the section we utilize

this result: in Section IV-B we show asymptotic optimality for unknown SNR in the caseρ = 1, then

in Section IV-C we show achievable performance for the special cases of (white) BW expansion and

compression, and finally in Section IV-D we discuss general spectra in the high-SNR limit.

A. Basic Lemma for Unknown SNR

We prove a result which is valid for the transmission of a colored source over a degraded colored

Gaussian broadcast channel: We assume that the channel is given by (2), whereBC is known but the noise

spectrumSZ(ej2πf ) is unknown, except that it is bounded from above by some spectrum SZ0(e
j2πf )

everywhere. We then use an Analog Matching encoder optimal for SZ0(e
j2πf ), as in Theorem 1, but

optimize the decoder for the actual noise spectrum. Correctdecoding underSZ0(e
j2πf ) ensures correct

decoding underSZ(ej2πf ), thus the problem reduces to alinear estimation problem, as will be evident

in the proof.

For this worst channelSZ0(e
j2πf ) and for optimal distortion (17), we find the water-filling solutions

(11),(14), resulting in the source and channel water levelsθS andθC respectively, and in asource-channel

passbandF0, which is the intersection of the inband frequencies of the source and channel water-filling

solutions:

FS = {f : SS(ej2πf ) ≥ θS} ,

FC = {f : SZ0
(ej2πf ) ≤ θC} ,

F0 = FS ∩ FC . (43)

Under this notation we have the following lemma, proven in the appendix. It shows that the resulting

distortion spectrum is that of a linear scheme which transmits the source into a channel with noise

spectrumP/Φ(ej2πf ), where

Φ(ej2πf ) =
SZ0

(ej2πf )

SZ(ej2πf )

[

1 −
SZ0

(ej2πf ) − SZ(ej2πf )

θC

]

SS(ej2πf ) − θS

θS

depends on both the design noise spectrum and the actual one.
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Lemma 3:For any noise spectrumSZ0(e
j2πf ), there exists an encoder, such that for any equivalent

noise spectrum

SZ(ej2πf ) ≤ SZ0(e
j2πf ) ∀ f ∈ FC , (44)

a suitable decoder can arbitrarily approach:

D =

∫ 1

2

− 1

2

D(ej2πf )df ,

where the distortion spectrumD(ej2πf ) satisfies:

D(ej2πf ) =







SS(ej2πf )
1+Φ(ej2πf ) , if f ∈ F0

min
(

SS(ej2πf ), θS

)

, otherwise







. (45)

Remarks:

1. Outside the source-channel passbandF0, there is no gain when the noise spectrum density is lower

than expected. InsideF0, the distortion spectrum is strictly monotonously decreasing in SZ(ej2πf ), but

the dependence is never stronger than inversely proportional. It follows, that the overall SDR is at most

linear with the SNR. This is to be expected, since all the gaincomes from linear estimation.

2. In the unmatched case modulation may change performance.That is, swapping source frequency

bands before the analog matching encoder will changeF0 andΦ(ej2πf ), resulting in different performance

asSZ(ej2πf ) varies. It can be shown that the best robustness is achieved whenSS(ej2πf ) is monotonously

decreasing inSZ(ej2πf ).

3. The degraded channel condition (44) is not necessary. A tighter condition for correct decoding to

hold can be stated in terms ofSS(ej2πf ), SZ0(e
j2πf ) andSZ(ej2πf ): the integral overSeq(e

j2πf ), defined

in the appendix (A3), must be at most as it is for the spectrumS0(e
j2πf ).

B. Asymptotic Optimality for equal BW

We prove asymptotic optimality in the sense that, if in an ISIchannel (recall (35)), the ISI filter is

known but the SNR is only known to be above some SNR0, then a single encoder can simultaneously

approach optimality for any such SNR, in the limit of highSNR0.

Theorem 2:(High-SNR robustness) Let the source and channel have BWBS = BC = 1, and let

the equivalent ISI model of the channel (35) have fixed filter coefficients (but unknown innovations
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powerVar{Wn}). Then, there exists anSNR-independentsequence of encoders indexed by their lattice

dimensionK, each achieving SDRK(SNR), such that for anyδ > 0:

lim
K→∞

SDRK(SNR) ≥ (1 − δ)SDRopt(SNR)

for sufficiently large (but finite) SNR, i.e., for all SNR≥ SNR0(δ).

Proof: The limit of a sequence of encoders is required, since any fixed finite-dimensional encoder

has a gap from SDRopt that would limit performance as SNR→ ∞. At the limit, however, we may

assume an ideal scheme. In terms of the colored noise channel(2), the unknown noise variance in the

theorem conditions is equivalent to having noise spectrum

SZ(ej2πf ) =
SNR0

SNR
SZ0(e

j2πf )

where SNR≥ SNR0 = SNR0(δ). We apply Lemma 3, with an encoder designed forSZ0(e
j2πf ). If the

source spectrum is bounded away from zero and theSZ0(e
j2πf ) is bounded from above, we can always

take SNR0 high enough such that the source-channel passbandF0 includes all frequencies, and then we

have for all SNR≥ SNR0:

D(ej2πf ) ≤
1

1 − δ
·

SNR0

SNR
θS

resulting in

SDR≥ (1 − δ)
SNR
SNR0

SDR0 = (1 − δ)
SNR
SNR0

ΓSΓC(1 + SNR0) = (1 − δ)SDRopt

where the equalities are due to Proposition 1. If the spectraare not bounded, then we artificially set the

pre-filters to be1 outside their respective bands (and apply an additional gain in order to comply with

the power constraint). This inflicts an arbitrarily small SDR loss at SNR0, but retains SDR∝ SNR, thus

the gap from optimality can be kept arbitrarily small.

Alternatively, we could prove this result using a the zero-forcing scheme of Figure 7. In fact, using

such a scheme, an even stronger result can be proven: not onlycan the encoder be SNR-independent,

but so can the decoder.

C. BW Expansion and Compression

We go back now to the cases of bandwidth expansion and compression discussed at the end of Section

III. In these cases, we can no longer have a single Analog Matching encoder which is universal for
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different SNRs, even in the high SNR limit. For bandwidth expansion (ρ > 1), the reason is that the

source is perfectly predictable, thus at the limit of high SNR we have that

Var{Un|Vn−1, Vn−2, . . .} → Var{Un|Un−1, Un−2, . . .} = 0 ,

thus the optimumβ goes to infinity. Anyβ value chosen to ensure correct decoding at some finite SNR,

will impose unbounded loss as the SNR further grows. For bandwidth compression, the reason is that

using any channel predictor suitable for some finite SNR, we have in the equivalent noisẽZn = Ỹn− X̃n

some component which depends on the channel input (set by thedither). As the SNR further grows, this

component does not decrease, inflicting again unbounded loss.

By straightforward substitution in Lemma 3, we arrive at thefollowing.

Corollary 1: Assume white source and AWGN channel where we are allowedρ channel uses per

source sample. Then using an optimum Analog Matching encoder for signal to noise ratio SNR0 and a

suitable (SNR-dependent) decoder, it is possible to approach for any SNR≥ SNR0:

1

SDR
=

1 − min(1, ρ)
(

1 + SNR0

)ρ +
min(1, ρ)

1 + Φρ(SNR, SNR0)
, (46)

where
Φρ(SNR, SNR0)

∆
=

1 + SNR
1 + SNR0

[

(1 + SNR0)
ρ − 1

]

. (47)

Note that the choice of filters in the SNR-dependent decoder remains simple in this case: Forρ > 1

the channel post-filter is flat while the source post-filter isan ideal low-pass filter, while forρ < 1 it is

vice versa. The only parameters which change with SNR, are the scalar filter gains.

Comparison of performance: In comparison, the performance reported by different methods in [18],

[24] for these cases has, in terms of (46):

Φρ(SNR, SNR0) = (1 + SNR) · (1 + SNR0)
ρ−1 − 1 (48)

while [24] also proves an outer bound for BW expansion (ρ > 1) on any scheme which is optimal at

some SNR:

Φρ(SNR, SNR0) =
SNR
SNR0

[

(1 + SNR0)
ρ − 1

]

. (49)

In both BW expansion and compression, the Analog Matching scheme does not perform as good as

the previously reported schemes, although the difference vanishes for high SNR. The basic drawback of

analog matching compared to methods developed specificallyfor these special cases seems to be, that
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Figure 9: Unknown SNR performance: BW expansion and compression. The best known achievable

performance, brought for comparison, is due to [18], [24].

these methods apply different “zooming” to different source or channel frequency bands, analog matching

uses the same “zooming factor”β for all bands. Enhancements to the scheme, such as the combination

of analog matching with pure analog transmission, may improve these results. Figure IV-C demonstrates

these results, for systems which are optimal at different SNR levels.

At high SNR, the performance of all these methods and of the outer bound converge to:

1

SDR
=

1 − min(ρ, 1)

SNRρ
0

+
min(ρ, 1)

SNR· SNRρ−1
0

. (50)

Thus the Analog Matching scheme, as well as the schemes of [18], [24], are all asymptotically optimal

for high SNR among the schemes which achieve SDRopt at some SNR.

D. Asymptotic Behavior with BW Change

Finally we turn back to the general case of non-white spectrawith any ρ, and examine it in the high-

SNR regime. As in Section IV-B, we assume that the channel ISIfilter is known, corresponding with an

equivalent noise spectrumSZ(ej2πf ) known up to a scalar factor.

In the high-SNR limit, Lemma 3 implies:

1

SDR
=

[

1 − min(ρ, 1)

SNRρ
0

+
min(ρ, 1)

SNR· SNRρ−1
0

]

ΓCΓS . (51)
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Comparing with (50), we see that the color of the source and ofthe noise determines a constant factor

by which the SDR is multiplied, but the dependence upon the SNR remains similar to the white BW

expansion/compression case. The following definition formalizes this behavior (see [16]).

Definition 4: The distortion slopeof a continuum of SNR-dependent schemes is :

λ
∆
= lim

SNR→∞

log SDR
log SNR

(52)

where SDR is the signal to distortion attained at signal to noise ratio SNR, where the limit is taken for

a fixed channel filter with noise variance approaching0.

We use the notationλ = λ(ρ) in order to emphasize the dependance of the asymptotic slopeupon the

bandwidth expansion factor. The following follows directly from Proposition 1.

Proposition 3: For any source and channel spectra with BW ratioρ, and for a continuum of schemes

achieving the OPTA performance (17),

λ(ρ) = ρ .

As for an analog matching scheme which is optimal for a singleSNR, (51) implies:

Corollary 2: For any source and channel spectra and for a single analog-matching encoder,

λ(ρ) =







1, if ρ ≥ 1

0, otherwise







is achievable.

This asymptotic slope agrees with the outer bound of [24] forthe (white) bandwidth expansion problem.

For the bandwidth compression problem, no outer bound is known, but we are not aware of any proposed

scheme with a non-zero asymptotic slope. We believe this to be true for all spectra:

Conjucture 1: For any source and channel spectra of BW ratioρ, no single encoder which satisfies

(17) at some SNR0 can have a better slope than that of Corollary 2.

By this conjecture, the analog matching encoder is asymptotically optimal among all encoders ideally

matched to one SNR. It should be noted, that schemes which do not satisfy optimality at one SNRcan

in fact approach the ideal slopeλ(ρ) = ρ. See e.g. approaches for integerρ such as bit interleaving [26].
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V. CONCLUSION: IMPLEMENTATION AND APPLICATIONS

We presented the Analog Matching scheme, which optimally transmits a Gaussian source of any

spectrum over a Gaussian channel of any spectrum, without resorting to any data-bearing code. We

showed the advantage of such a scheme over a separation-based solution, in the sense of robustness for

unknown channel SNR.

The analysis we provided was asymptotic, in the sense that a high-dimensional lattice is needed.

However, unlike digital transmission (and hybrid digital-analog schemes) where reduction of the code

block length has a severe impact on performance, the semi-analog approach offers a potential advantage

in terms of block-length. An asymptotic figure of merit wherewe expect this advantage to be revealed, is

the excess-distortion exponent. Furthermore, the modulo-lattice framework allows in practice reduction

to low-dimensional, evenscalar lattices, with bounded loss.

One approach for scalar implementation of the Analog Matching scheme, usescompanding[17]. In

this approach, the scalar zooming factorβ is replaced by a non-linear function which compresses the

unbounded Gaussian source into a finite range, an operation which is reverted at the decoder. There is

a problem here, since the entity which needs to be compressedis actually the innovations process̃Qn,

unknown at the encoder since it depends on the channel noise.This can be solved by compressingQn,

the innovations of the source itself; The effect of this “companding encoder-decoder mismatch” vanishes

in the high-SNR limit. An altogether different approach, isto avoid instantaneous decoding of the lattice;

Instead, the decoder may at each instance calculate the source prediction using several hypothesis in

parallel. The ambiguity will be solved in future instances,possibly by a trellis-like algorithm.

In terms of delay, the AM scheme has an additional advantage over previously suggested HDA schemes.

It is well known that time-domain approaches have a delay advantage over frequency-domain one, in

both source and channel coding. A fully-causal DPCM, for example, can approach the RDF while only

using causal filters, on the high-resolution limit. A sub-band coding scheme, in contrast, would have to

use a delay-consuming DFT block; see e.g. [13].

Finally, we remark that the AM scheme has further applications. It possesses the basic property, that

it converts any colored channel to an equivalent additive white noise channel of the same capacity

as the original channel, but of the source bandwidth. In the limit of high-SNR, this equivalent noise

becomes Gaussian and independent of any encoder signal. This property is plausible in multi-user source,

channel and joint source/channel problems, in the presenceof bandwidth mismatch. Applications include

computation over MACs [21], multi-sensor detection [20] and transmission over the parallel relay network
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[14].

APPENDIX

A. Proof of Proposition 2

By [8, (200)], for each of the componentsZl:

1

n
log

fZl
(z)

fZ′

l(z)
≤ ǫ(ΛK) (A1)

wheref(·) denotes a probability density function (pdf),Z ′
l is AWGN with the same variance asZl, and

ǫ(ΛK) → 0 asK → ∞ for a sequence of lattices which is Rogers-good (i.e. lattices for which volume

of the covering sphere approaches that of the Voronoi cell).Now assume without loss of generality that

α2
l is a non-increasing forl > 0, and for some fixedδ let L′ be the minimal index such that

∞
∑

l=L′+1

α2
l ≤ δ .

Let Zδ =
∑L′

l=1 αlZl. Using (A1) and convolution of pdfs,

1

n
log

fZδ
(z)

fZ′

δ(z)
≤ ǫL′

(ΛK) ,

whereZ ′
δ is AWGN with the same variance asZδ. SinceǫL′

approaches zero as a function ofK,

lim
K→∞

Pr{Z0 + Zδ /∈ VK} = 0 ,

for lattices which are good for AWGN coding.

We are left with the “tail”Z̃ =
∑∞

l=L′+1 αlZl, which has varianceδ. By continuity arguments,

lim
δ→0+

Pr{Z0 + Zδ + Z̃ /∈ VK |Z0 + Zδ ∈ VK} = 0 .

The result follows now by standard arguments of takingǫ and δ to zero simultaneously. We have

assumed the use of a sequence of lattices that is simultaneously Rogers-good and AWGN-good. By [7],

such a sequence indeed exists.
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B. Proof of Lemma 1

By the properties of the modulo-lattice operation,X̃n is a white process. Now the channel from̃Xn

to Ỹn is identical to the channel of (25), thus we have that:

Y ′
n = (X̃n + Z̃n) ∗ (δn − pCn) = X̃n + In + Z ′′

n ,

whereZ̃n has spectrumSZ̃(ej2πf ) (33), and consequentlyZ ′′
n = Z̃n ∗ (δn − pCn) is its white prediction

error, with variance1−α
α θC according to (27). Now sincẽYn = Y ′

n−In is the optimum linear estimator for

X̃n from the channel output, the orthogonality principle dictates that the estimation error is uncorrelated

with the processY ′
n, resulting in an additive backward channel (see e.g. [35]):

X̃n = Y ′
n − In + Z ′′

n .

Switching back to a forward channel, we have

Y ′
n = α(X̃n + Z ′

n) + In ,

whereZ ′
n is white with the same variance asZ ′′

n. Furthermore, sinceZ ′
n is a function of the processes

{X̃n} and{Zn}, it is independent of allUn.

C. Proof of Lemma 2

By the properties of the modulo-lattice operation,

Tn = β(Un − Jn) + Zeqn ,

resulting in the equivalent channel of Figure 8b. By the correct initialization assumption, (39) holds for

all past instances, thusTn is a combination noise (see Definition 2). In light of Proposition 2, it is only

left to show that the variance ofTn is strictly less than the lattice second momentθC . To that end,

note that under the correct initialization assumption, thepast samples of the processVn indeed behave as

samples of a stationary process of spectrumSV (ej2πf ) (32), for whichPS(ej2πf ) is the optimal predictor.
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It follows that Un − Jn is white, with variance

Var{Un − Jn} = Var{Un|Vn−1, Vn−2, . . .}

(a)
= Pe

(

SU +
Var{Zeqn}

β2

)

−
Var{Zeqn}

β2

= Pe

(

SU +
β2

0

β2
θS

)

−
β2

0

β2
θS

<
β2

0

β2

[

Pe(SU + θS) − θS

]

(b)
=

β2
0

β2
·

α

1 − α
θS

=
αθC

β2
,

where(a) holds by (10), and(b) holds by applying the same in the opposite direction, combined with

(23). By the whiteness ofZeqn and its independence of allUn, we have thatUn − Jn is independent of

Zeqn, thus the variance ofTn is given by

Var{Tn} = β2 Var{Un − Jn} + Var{Zeqn} < θC . (A2)

The margin fromθC depends on the margin in the inequality in the chain above, which depends only on

SU (ej2πf ), θC andβ, and is strictly positive for allβ < β0.

D. Proof of Lemma 3

We work with the optimum Analog Matching encoder for the noise spectrumSZ0(e
j2πf ). At the

decoder, we note that for any choice of the channel post-filter G2(e
j2πf ), we have that the equivalent

noiseZeqn is the noiseZ̃n
∆
= Ỹn − X̃n passed through the filter1−PC(ej2πf ). Consequently, this noise

has spectrum:

Seq(e
j2πf ) = SZ̃(ej2πf )|1 − PC(ej2πf )|2 .

The filterG2(e
j2πf ) should, therefore, be the Wiener filter which minimizesSZ̃(ej2πf ) at each frequency.

This filter achieves a noise spectrum

SZ̃(ej2πf ) =
θC − SZ0(e

j2πf )

θC − SZ0(ej2πf ) + SZ(ej2πf )
SZ(ej2πf )

insideFC , andθC outside. Denoting the variance of the (white) equivalent noise in the caseSZ0(e
j2πf ) =

SZ(ej2πf ) asS0 = (1 − α)θC (41), we find that:

|1 − PC(ej2πf )|2 =
S0θC

(θC − SZ0(ej2πf ))SZ0(ej2πf )
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insideFC , andS0/θC outside. We conclude that we have equivalent channel noise with spectrum

Seq(e
j2πf ) =

SZ(ej2πf )

SZ0(ej2πf )
·

θC

θC − SZ0(ej2πf ) + SZ(ej2πf )
S0 =

SS(ej2πf ) − θS

Φ(ej2πf )θS
S0 (A3)

insideFC , andS0 outside. Now, since this spectrum is everywhere upper-bounded byS0, we need not

worry about correct decoding. The source post-filter input is the source, corrupted by an additive noise

Zeqn/β, with spectrum arbitrarily close to

Seq(e
j2πf )

β2
0

=
SS(ej2πf ) − θS

Φ(ej2πf )

insideFC , andθS outside. Now again we face optimal linear filtering, and we replace the source post-filter

F2(e
j2πf ) by the Wiener filter for the source, to arrive at the desired result.
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