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Abstract—An achievable excess distortion exponent for
compression of a white Gaussian source by dithered lattice
quantization is derived. We show that for a required
distortion level close enough to the rate-distortion function,
and in the high-rate limit, the exponent equals the optimal
quadratic-Gaussian excess distortion exponent. Using this
approach, no further loss is incurred by the presence of
any source interference known at the decoder (“Wyner-
Ziv side-information”). The derivation of this achievable
exponent involves finding the exponent of the probability
that a combination of a spherically-bounded vector and a
Gaussian vector leaves the Voronoi cell of a good lattice.

I. INTRODUCTION

The excess distortion exponent specifies the expo-
nential decay rate of the probability that the distortion
exceed a prescribed threshold, as a function of the
block length. It was defined and evaluated for discrete
memoryless sources by Marton [7]. The extension of the
exponent to quadratic-Gaussian (QG) case was carried
out much later by Ihara and Kubo [3].

It is well known [10] that there is no rate loss in
the QG Wyner-Ziv (WZ) problem, i.e., if part of the
source is given as side-information (SI) at the decoder,
and the unknown part is Gaussian, then the rate needed
for conveying the source with some mean-squared error
(MSE) is equal to the rate required for compressing the
unknown source part with the same MSE (or, equiva-
lently, the rate needed if the encoder also had access to
the SI). However, the excess distortion exponent for this
problem is as yet unknown, and in particular it is not
clear whether there is a loss with respect to the excess-
distortion exponent of the unknown part of the source.
Recently, Kelly et al. [4] derived an achievable exponent
for the problem, which indeed reflects a loss.
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The rate-distortion function (RDF) can be achieved
via a forward-channel materialization, where a dithered
quantizer is seen as an additive noise component (see
[13] and references therein). This forward-channel struc-
ture was used by Zamir et al. [14], in conjunction with a
modulo-coarse-lattice operation, to present a solution to
the QG WZ problem. This scheme has a practical advan-
tage even in the no-interference case: if a nested-lattice
structure is used for the quantization code and coarse
lattice, then lattice quantization may be performed, i.e.,
the nearest-codeword search is done with respect to a
periodic structure, yielding reduced complexity.

This encoding structure is presented in [14] as a dual
to a capacity-achieving nested-lattice solution for the
additive white Gaussian noise (AWGN) channel and
dirty-paper problems. Later ([6], see also [9]) it was
shown that by judiciously changing some multiplicative
factors appearing in the scheme, the lattice approach
also achieves (for high enough rate) the AWGN channel
error exponent. It is tempting to believe that a similar
variation on the nested-lattice source scheme will yield
the QG excess distortion exponent, thus also proving that
there is no loss in the exponent of the corresponding
WZ problem. Unfortunately, as we show in this paper
by straightforward optimization, such a variation of the
nested-lattice source scheme does not achieve the QG
excess-distortion exponent.

Our analysis provides an achievable excess distortion
exponent using lattice quantization. The same exponent
is achievable in the QG WZ problem with respect to the
unknown source part, for an arbitrary known source part.
Since in the high-rate limit, when the required distortion
is close enough to the distortion-rate limit, this exponent
reduces to the optimal exponent of [3] - this proves that
at least in this limit there is no loss in the exponent of
the QG WZ problem.

The derivation of the achievable exponent hinges on



finding the exponents of the probability that a combi-
nation of a vector bounded inside a sphere and an i.i.d.
Gaussian vector leave either a sphere or the Voronoi cell
of a good lattice. We find these exponents, based on the
AWGN channel exponent analysis in [6], [9].

The rest of the paper is organized as follows. In
Section II we formally state the problem and present the
main result. In Section III we prove the result using a
nested-lattice scheme, in terms of the spherical-Gaussian
combination error exponent derived in Section IV. Fi-
nally, in Section V we discuss the gap between the lattice
exponent and the QG excess distortion exponent.

II. PROBLEM STATEMENT AND MAIN RESULT

We consider compression of ann-dimensional Gau-
usian vectorX, where the samples are i.i.d. Gaussian
with zero mean and varianceσ2

X . The decoder produces
a reconstruction̂X based on an index from a code of rate
R. When considering the QG WZ problem, the encoder
does not have access toX directly, but it rather observes
X + I, whereI is an arbitrary signal (“interference”),
available as non-causal SI at the decoder.1

The reconstruction quality is measured by the signal-
to-distortion ratio (SDR) with respect to the mean-
squared error, i.e.

SDR(X, X̂) =
nσ2

X

‖X̂− X‖2
. (1)

The average SDR,SDR, is given by the same, replacing
the norm in the denominator by its expectation; using
this, the RDF is given by:

R(SDR) =
1

2
log(SDR) , (2)

where here and elsewhere in this work the natural base
is used for logarithms and exponents.

For any required SDRS and codeCn of block length
n and rateR > R(S), define the error probability as:

pe(Cn, S) = Pr{SDR(X, X̂) < S} . (3)

The excess distortion exponent is defined with respect to
a sequence of codes indexed by the block lengthn:

E(R,S) = sup
{Cn}

lim
n→∞

− 1

n
log pe(Cn, S) . (4)

It is more convenient to express the exponent using an
alternative pair of parameters:β, which is the SDR at

1A more common definition sees the sumX + I as the source,
and the SI as some vector jointly-Gaussian with the source. The
interference point of view sees only the estimation error from the SI
as the source. We choose to follow it, since it allows to to directly
evaluate the loss in quantizingX due to the presence ofI.

the RDF, and the distortion factorµ, measuring the gap
from the RDF (much like SNRnorm in channel coding):

β = exp(2R)

µ =
β

S
> 1 . (5)

Without interference, the result of [3] states that:2

E(µ, β) = F (µ) ,
µ − log(µ) − 1

2
. (6)

Note that this is the exponent of the probability that a
Gaussian i.i.d. vector leaves a sphere, when the ratio
between the second moment of the sphere and the
variance of the vector (per dimension) isµ.

We now define two spherical-Gaussian exponents. Let
U be on the surface of a sphere of radiusn/µU , and
let N be n-dimensional i.i.d. zero-mean Gaussian with
variance 1/µG. Furthermore, letB and V be an n-
dimensional sphere and and Voronoi region, respectively,
both of volume1. Then:

F (µG, µU ) = − lim
n→∞

1

n
log Pr{N + U /∈ B}

F ′(µG, µU ) = − lim
n→∞

1

n
log Pr{N + U /∈ V} . (7)

We now state our main result in terms of these exponents.
Theorem 1: The exponentE(µ, β) given by

max
α1,α2

min
[

F ′
(

µ

α2
1

, β

)

, F

(

µ

(1 − α1α2)2β
,

1

α2
2

)

]

(8)

is achievable with any WZ interferenceI. Furthermore,
it is achievable using lattice quantization.

In Section IV we lower-bound the exponentsF and
F ′, for an appropriate choice of lattice sequences. For
now we give a simple bound which is less tight, but
still suffices for deriving the high-rate performance. By
choosingα1 = α2 = 1 in (8), we have that

E(µ, β) ≥ F ′(µ, β) . (9)

Now the effect of a combination noise can not be worse
(in the exponential sense) than that of a Gaussian i.i.d.
vector with the same total variance [2], i.e.,

F ′(µG, µU ) ≥ Ep

(

µGµU

µG + µU

)

(10)

where the Poltyrev exponentEp [8] is given by:

Ep(µ) =







F (µ), µ ≤ 2
1

2

(

1 + log µ
4

)

, 2 < µ ≤ 4
µ
8
, 4 < µ ,

(11)

2Interestingly, this expression is not dual to channel coding, in the
sense that there is no critical rate.



Q(·)

D

α1√
µ
I

−

−
Σ

D

mod Λ

ENCODER DECODER

mod ΛΣ
X

I

Σ α1√
µ

SOURCE

X̂

α2

√
µ

Fig. 1: Nested-lattice coding scheme.

whereF is given by (6). Combining (9),(10) and taking
the limit of high β, we have the following.

Corollary 1: For anyµ,

lim
β→∞

E(µ, β) ≥ Ep(µ) .

Thus, in this limit and whenµ ≤ 2, the achievable expo-
nent for any interferenceI and using lattice quantization,
approaches the QG excess distortion exponentF (µ).

III. PROOF USING A NESTED-LATTICE SCHEME

In this section we provide a constructive proof of
Theorem 1, using the scheme depicted in Figure 1. We
use ann-dimensional nested lattice structureΛQ ⊃ Λ
with nesting ratioR. Quantization is carried out with
respect to the fine latticeΛQ and the result is then
reduced modulo the coarse latticeΛ. Let the basic cells
of the two lattices beVQ and V, respectively. The
dither D, known at both the encoder and decoder, is
uniformly distributed overVQ. If one substitutesµ = 1
and α1 = α2 = (β − 1)/β (5), the scheme reduces to
that of [14, Fig. 11], which achieves the RDF in the QG
WZ problem (with a zero exponent).

By construction, the nesting ratioR is indeed the rate
needed to describe the quantization point. We normalize
the second moment ofΛ to 1; it follows that the second
moment of ΛQ is 1/β. By the properties of dithered
quantization (see e.g. [12]),

Q(Y + D) − D = Y + Z , (12)

whereZ is independent of the inputY and uniform over
the mirror image ofVQ.

Define the combination vectors:

C1 =
α1√
µ
X + Z

C2 = −(1 − α1α2)X + α2

√
µZ . (13)

In term of these, let the error events be:

E1 = {C1 /∈ V}

E2 =

{

‖C2‖2 >
µ

β

}

. (14)

Following [14], if E1 did not occur then

X̂ = X + C2 .

Consequently we can bound the excess distortion prob-
ability as follows:

Pr

{

‖X̂− X‖2 >
1

µβ

}

≤ Pr{E1} + Pr{E2|E1}

≤ Pr{E1} + Pr{E2} , (15)

where the last inequality stems from the fact that the
probability thatC2 lies inside a sphere can only increase
given thatC1 lies within the convex regionV. Recalling
the definition of the exponents (7) we observe that these
two probabilities have exponential decay according to
the two terms inE (8), if only the basic cellVQ were
bounded in a sphere of radiusn/β, i.e. a sphere of the
same second moment as the cell. This is asymptotically
true for Rogers-good lattices (see e.g. [2]), and it can
be shown that the exponential decay of the probabilities
is just as if this was true for anyn. For completing the
proof, we are now only left with the task of specifying
the exponentsF (·, ·) and F ′(·, ·), for an appropriate
choice of lattices.

IV. EXPONENTS FORCOMBINATION VECTORS

In this section we address the exponents (7) for the
combination of a spherical-bounded vector and a Gaus-
sian vector, to leave either a sphere or a Voronoi cell.
We start by presenting the spherical-region exponent.

Lemma 1: For any1/µG + 1/µU < 1, the exponent
F (7) is given by:

2F (µG, µU ) =
µG

µU
(µU−2h

√
µU +1)−log(h

√
µU )−1 ,

(16)
where

h ,

√

µU + 4µ2
G −√

µU

2µG
.

The proof, not included in this version, is based upon
decomposing the Gaussian noiseN into a component
aligned with the direction of the bounded vector and an
orthogonal component; see e.g. [1], [9, Sec. III-A].
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Fig. 2: Regions of the combination-vector exponents.

For the Voronoi-region exponentF ′, we express our
result also in terms of the straight-line exponent of the
AWGN channel:

Esl(R,S) =RC − R + 1 − exp(2RC)

+
1

2
log

(

exp(2RC) − S

2

)

+
S

2
, (17)

whereR is the rate,S is the signal-to-noise ratio and

RC = log

(

1 +
S

2
+

√

1 +
S2

4

)

. (18)

Lemma 2: There exists a sequence of latticesΛ, with
Voronoi cells V, such that for any1/µG + 1/µU <
1 the exponentF ′ (7) associated withV satisfies:
F ′(µG, µU ) ≥ Esl(R,S) for

S =
(γ + 1)2 − (γ − 1)

√

γ2 + 6γ + 1

2γ
(19)

(whereγ = µG/µU ), and

R = − log

[

√
µU

(
√

1 +
S2

4
− S

2

)]

. (20)

If R > RC (18) thenF ′(µG, µU ) = F (µG, µU ) (16).
This lemma can be proven using a geometrical deriva-

tion, similar to what was done in [6], [9] for the AWGN
exponents; in order to avoid repeating the rather com-
plicated exposition, we use the following equivalence,
following directly from the exposition in [6].

Proposition 1: An exponent EΛ(R,S) for the
modulo-lattice additive noise channel is achievable by
the scheme of [6, Sec. 3.1] if and only if there exist
some0 < α < 1 , 0 < R < C and S > 0 such that
F ′(µU , µG) is achievable for:

1

νG

= α2 exp(2R)

S
1

νU
= (1 − α)2 exp(2R) (21)

Now we can use the following procedure in order to
prove Lemma 2. GivenµG andµU , if (21) has a valid
solution(R,S) to for someα, it gives us a lower bound
on F ′(µG, µU ). Specifically, we know thatEΛ(R,S) =
Esl(R,S) using [6]:

α = 1 +
S

2
−
√

1 +
S2

4
.

Substituting this in (21), one indeed gets the valid
solution given by (19),(20). If the resulting rate is greater
thanRC (18), EΛ can be made higher. Indeed, one can
verify that substitutingα according to [6, (78)] still gives
a valid solution(R,S); however, in that case we can
give the result directly in terms of(µG, µU ), since the
probability to leave the Voronoi cell exactly equals that
of leaving a sphere of the same volume, given byF (16)
(see [9]).

The sequence of latticesΛ required in Lemma 2 is
good for channel coding. Earlier we have assumed that
the sequence of latticesΛQ is Rogers-good. These se-
quences satisfy the nesting relationΛ ⊂ ΛQ. In proving
the exponent of the modulo-lattice additive noise channel
[6] the same conditions on the lattice sequences were
used, but with the opposite nesting relation. The reversal
we perform is feasible, since there exists sequences of
nested lattices in which both lattices are good both in
the channel-coding sense and in the Rogers sense [5].

Figure 2 depicts the different regions suggested by
Lemma 2. If1/µG+1/µU > 1, then typically the vector
falls outside both the sphere and Voronoi cell, and the
exponents are zero. Reducing the variances we are in the
“sphere-packing region”, and the probabilities to leave
the sphere and the cell are exponentially equal. Reducing
the variances further, the lattice error probability is larger
than that of the sphere, since the setting corresponds to
a channel code far from capacity. Since it is known that
the straight-line exponent is not tight, it is possible to im-
prove the combination-vector lattice exponent for some
parameters, finding the corresponding lattice expurgated
bound [9]. However, this is a tedious task, thus we can
resort in this region to the simple bound (10).

V. D ISCUSSION: THE LOSS IN THEEXPONENT

Substituting the achievable exponentsF (·) andF ′(·)
(according to Lemma 1 and to the maximum between
Lemma 2 and (10)) in (8), the lattice exponent is plotted
in Figure 3, along with the optimal QG excess distortion
exponent and Poltyrev exponent for comparison. It can
be seen thatE(µ, β) converges toEp(µ) in the high-rate
limit, thus also toF (µ) for low enoughµ. Under other
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conditions, the scheme does not achieve the idealF (µ).
The loss is explained by the following two phenomena.

Granular loss. This is the gap betweenEp(µ) and
E(µ, β). In source coding without SI, the quantizer can
be made to cover the whole typical region of the source,
and the exponent only reflects non-typical behavior. In
our scheme, in contrast, whenα1α2 6= 1 the recon-
struction error contains an unbounded Gaussian element,
contributing to the excess distortion events. This happens
since the dithered quantizer has an additive noise model,
corresponding to a forward channel realization, and then
a post-factor adds bias in order to lower the distortion
level. Interestingly, in [11] Zamir makes a connection be-
tween the loss in the QG WZ rate-distortion function (in
a non-Gaussian setting) and additive forward channels.
Indeed, this effect seems to be fundamental, and not tied
to the lattice approach. A similar effect where distortion
may be too high even when there is no binning error, is
reported in [4] as well. In this work we show, that this
loss vanishes in the limit of high rate. If the distortion
were forced to be unbiased, then the forward channel
realization would fit without pre/post factors, and this
loss would vanish for all rates.

Shaping loss.This is the gap betweenF (µ) and
Ep(µ). In source coding without SI, the shaping region
of the quantizer may be taken to be a sphere. With SI (or
when lattice quantization is desired), the shaping region
must be the Voronoi cell of a lattice good for channel

coding. When the distortion constraint is far from the
distortion promised by the RDF (largeµ), the channel
code also works at a regime far from capacity, where the
probability of leaving the Voronoi cell is greater than
that of leaving a sphere. Again, this does not seem to
be limited to the lattice approach, as the sphere-packing
bound on the AWGN error exponent is not known to be
tight below the critical rate.

In light of the above, we conclude by conjecturing
that for low rates and when working far from the RDF,
the QG WZ excess distortion exponent is strictly smaller
than the QG excess distortion exponent.
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