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Abstract—Structured codes have been utilized in deriving the
best known achievable rate regions in certain network scenarios.
In this paper we demonstrate that structure can be also beneficial
in terms of error exponents even in cases where there is
no capacity gain. We use distributed structure, i.e., different
users use codes which satisfy a nesting condition. Specifically,
for the scalar Gaussian multiple-access channel we obtain an
improvement over the best known achievable exponent, given by
Gallager, for certain rate pairs.

I. INTRODUCTION

Structured codes have been known to achieve better rates

than random ones in some distributed scenarios. This was first

discovered by Körner and Marton [1], and was extended in

recent works, see e.g. [2], [3]. This work sheds new light on

the role of structure: even in the case of a Gaussian multiple-

access (MAC) channel, where structure is not required in

order to achieve the capacity region, the analysis suggests

that it is needed in order to improve the error probability,

asymptotically measured by the error exponent.

The error exponent of the additive white Gaussian noise

(AWGN) channel was introduced by Shannon, who showed

that above the critical rate the exponent is given by the

random-coding exponent, i.e., it is achieved by random codes

uniformly distributed over the surface of a sphere. Gallager [4]

extended this result to general input-constrained channels.

Below the critical rate, the random-coding error exponent

lower-bounds the error exponent. In an even lower rate region,

the error exponent can be improved by using expurgation.

In order to find codes with good error exponent for the

Gaussian MAC channel, Gallager [5] derived the error expo-

nent of the ensemble of codes where the codebook of each user

is uniformly distributed over a spherical shell, similar to the

single-user case. Clearly, the sum of such two codebooks does

not result in a spherical-shell one. Thus, Gallager’s exponent

reflects a loss with respect to the single-user case.

In this work we improve the exponent by considering

codebooks that are jointly structured (nested) in a way that

their sum, seen as a single-user codebook, has good properties.

Specifically, without structure, standard expurgation, i.e., sim-

ply eliminating pairs of codewords, is not possible since the

codebooks must be independent. In the distributed structure

∗ This work was supported in part by the U.S. - Israel Binational Science
Foundation under grant 2008/455.

approach introduced in this work, the sum-codebook inher-

ently gains the expurgation since it uses lattices. We compare

the error exponent of this approach with the spherical-shells

code [5], and show that in a certain rate-pair region, it results

in a strictly larger error exponent.

It is worth noting that in a related recent work, Nazari et

al. [6] give lower bounds on the error exponents of discrete

memoryless MAC channels. In particular, they use expurgation

in only one of the codebooks, and show that it is strictly larger

than previous known bounds.

II. CHANNEL MODEL AND EXPONENTS

A. Single-User Channel

Let us first recall some results for a single-user AWGN

channel. Consider the following single-user AWGN channel:

Y = X + Z, (1)

whereX is the input to the channel and is subject to the power

constraint:

1

n

n
∑

j=1

x2
j ≤ P, (2)

where n is the codeword length. Z ∼ N (0, N) is additive

noise, statistically independent of X . The capacity of this

channel is given by C(A)
△
= 1/2 log(1 + A), where A

△
= P/N

is the signal to noise ratio (SNR). The error-exponent of this

channel is defined as

E(SU)(R,A) = lim sup
n→∞

− 1

n
logPn(E), (3)

where Pn(E) is the minimal possible error-probability of codes

with length n, and R is the rate.

The best known achievable error exponent of this channel,

denoted by E(SU)(R,A), is given as follows: the expurgated

error exponent E(SU)
ex (R,A) at the expurgation region, and the

random-coding error exponent E(SU)
r (R,A) at the rest of the

region (see [4, Section 7]). The expurgated exponent is larger

than the random-coding exponent below some rate Rex(A)
(the expurgation region). Above the critical rate Rcr(A), the
random-coding exponent is known to be optimal.

In the high SNR limit A ≫ 1, E(SU)(R,A) approaches the
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Poltyrev exponent [7]:

EP (ρ)
△
=















0, ρ2 ≤ 1
1
2

[

(ρ2 − 1)− log ρ2
]

, 1 < ρ2 ≤ 2
1
2 log

eρ2

4 , 2 ≤ ρ2 ≤ 4
ρ2

8 , ρ2 ≥ 4

, (4)

where ρ2 = (1 + A) exp{−2R}. The boundaries ρ2 = 1,
ρ2 = 2 and ρ2 = 4 correspond to C(A), Rcr(A) and Rex(A),
respectively.

B. MAC Channel

Consider a two-user memoryless Gaussian MAC channel:

Y = X1 +X2 + Z, (5)

where X1, X2 are the inputs to the channel, and are subject to

power constraints as in (2) with powers P1 and P2 respectively.

The additive noise Z ∼ N (0, N) is independent of the pair

(X1, X2). Without loss of generality, let P1 ≥ P2.

We denote the SNRs by Ai
△
= Pi/N (i = 1, 2). Denote the

codebook of user i by Ci, and its rate by Ri = 1/n log|Ci|.
The error event E is defined as the event that at least one of

the messages from the message pair is decoded in error. The

error exponent of the MAC channel is defined as

E(MAC)(R1, R2, A1, A2) = lim sup
n→∞

− 1

n
logPn(E), (6)

where Pn(E) is the minimal possible error probability for

codes of length n, when the rate-pair is (R1, R2).
The best known achievable error-exponent of this channel

is given by Gallager [5], using spherical shell codebooks.

We denote this error exponent by E(G)
r (R1, R2, A1, A2). It

is given by the minimum between three exponents: two

of the exponents, E(G)
r1 (R1, A1) and E(G)

r2 (R2, A2) are the

single-user random-coding error exponents. The third one,

E(G)
r3 (R1+R2, A1, A2) reflects the exponent of the probability

that both codewords are decoded in error. Obviously, the

exponent is upper-bounded by any of these three. In the sequel,

we upper bound the exponent by E(G)
r , given by [5]:

E(G)
r (R,A1, A2)

△
= E(G)

r3 (R,A1, A2)

= (1 + ρ) log
e
√
θ1θ2

1 + ρ
− θ1 + θ2

2

+
ρ

2
log

(

1 +
A1

θ1
+

A2

θ2

)

− ρR, (7)

where R
△
= R1 + R2, and the right-hand expression of (7) is

optimized over ρ ∈ [0, 1] and over ri for:

θi
△
= (1 + ρ)(1 − 2riPi), θi ∈ [0, 1 + ρ]. (8)

C. Single-User Bounds on MAC Error Exponents

Definition 1 (Associated single user channel): For a given

MAC channel (5), we denote its associated single-user channel

by the single-user channel (1)-(2) with P
△
= P1 + P2.

Any codebook pair (C1, C2) for the MAC channel can be

used to construct a corresponding codebook for its associated

Fig. 1. One-dimensional example: the circles are points of the codebook
of the first user. The dots are the superposition of the the two codebooks
(|C1| = 2L1 = 6, |C2| = 2L2 + 1 = 5).

single-user channel, by the Minkowski sum codebook C =
C1 + C2. However, not every single-user codebook C can be

decoupled in such a manner.

Therefore, for any given ensemble of codebook-pairs for

the MAC channel, a corresponding codebook ensemble can be

constructed for its associated single-user channel, both having

the same error exponent.

Thus, the error-exponent of the associated single-user chan-

nel upper-bounds the error exponent of the MAC channel:

E(MAC)(R1, R2, A1, A2) ≤ E(SU)(R1 +R2, A1 +A2). (9)

The exponent E(G)
r (R1, R2, A1, A2) is strictly smaller than

the single-user exponent. Moreover, it is strictly smaller than

the random coding error exponent.

In this work, we construct an ensemble of codebook pairs

for the MAC channel, such that the corresponding ensemble

for the associated single-user channel has a “good” error expo-

nent. For a certain range of rate-pairs and SNRs, the ensemble

achieves a better error exponent than the error exponent of the

spherical-shells ensemble E(G)
r (R1, R2, A1, A2). The exponent

E(SU)(R1+R2, A1+A2) is used as a benchmark for the error

exponent which we obtain. Above the critical rate it is an

upper-bound.

III. ONE-DIMENSIONAL MOTIVATION

In this section we present the basic idea of distributed

structure by a one-dimensional example, and demonstrate

how it can result in improved error probability. Suppose that

the users transmit using pulse-amplitude modulation (PAM)

constellations, where the constellation of the second user has

support that is smaller than the distance between any two

points of the first. Moreover, their Minkowski sum should have

a constant distance between every two adjacent points. Specif-

ically, C1 = {±1,±3, . . . ,±(2L1 − 1)} (where L1 ∈ N), and

C2 = {0,±2/(2L2+1),±4/(2L2+1), . . . ,±2L2)/(2L2+1)},
where L2 ∈ N. The transformation c = c1 + c2 where

c1 ∈ C1, c2 ∈ C2 is bijective, i.e., the codeword pair can be

resolved from their sum without ambiguity (see Figure 1).

Thus, from the point of view of the receiver, the sum-

constellation may have resulted from the transmission of a

single user. Indeed, it is a PAM constellation with |C1| · |C2|
points, where the distance between its points is equal to that

of C2. The error probability can be calculated directly from

here.

Note that if the constellations were designed independently,

e.g. by using PAM constellations with distances that do

not result in a PAM constellation, some points would have

been closer, resulting in higher error probability. In the high-

dimensional case we strive to preserve this distance uniformity

behavior. We will thus require that the decoding (Voronoi)

region of the corresponding single-user codebook, as seen by

the receiver, remains the same as the Voronoi region of C2.
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Extending this example to higher dimensions will preserve this

distance property, but will result in a shaping loss. Therefore,

in addition to the distance properties between the codebook

points, we want the corresponding codebook of the associated

single-channel to have “good” shaping.

IV. PRELIMINARIES: LATTICES

This section presents mathematical background which is

required for the code construction and its error-probability

analysis. For a more thorough treatment of lattices, the reader

may refer to [8] and the references therein.

A lattice Λ is a discrete subgroup of the Euclidean space

R
n with the ordinary vector addition operation. A coset of Λ

is any translate of it, i.e., x+ Λ, where x ∈ R
n.

The fundamental Voronoi region of Λ, denoted by V , is a

set of minimum Euclidean norm coset-representatives of Λ.
Every x ∈ R

n can be uniquely expressed as x = λ+ r, where

λ ∈ Λ, r ∈ V . The nearest-neighbor quantizer of a point x ∈
R

n is defined by:

Q(x) = λ, if x ∈ λ+ V and λ ∈ Λ. (10)

A. Good Lattices

We define two notions of “good” lattices. Let rcovΛ denote

the covering radius of Λ, i.e., the radius of the smallest

ball containing the Voronoi region V . Let reffecΛ denote the

effective radius of the Voronoi region, i.e., the radius of a

sphere having the same volume as V . We say that a sequence

of lattices Λ(n) ∈ R
n, n = 1, 2, . . . , is good for covering

if lim infn→∞ rcov
Λ(n)/r

effec
Λ(n) = 1, for example Rogers-good

lattices. Choosing a sequence of Rogers-good lattices with

rcov
Λ(n) =

√
nP results in reffec

Λ(n) =
√

n(P − εn), where εn −→
n→∞

0+. This implies that V ⊂ Bn

(√
nP

)

, where Bn(r) is an n-

dimensional sphere with radius r. Thus 1/n
∑n

i=1 x
2
i ≤ P for

any point in x ∈ V .
A sequence of lattices Λ(n) ∈ R

n , n = 1, 2, . . . , is said to

be Poltyrev-good if for an n-dimensional vector Z with i.i.d.

Gaussian entries with zero mean and power N :

Pr
(

Z /∈ V(n)
)

< e−n[EP (ρΛ(n))−on(1)], (11)

where V(n) is the Voronoi region of Λ(n), and ρΛ(n) is the

Voronoi-to-noise ratio:

ρΛ(n)

△
=

reffec
Λ(n)√
nN

=
[Vol

(

V(n)
)

]1/n√
2πeN

+ on(1). (12)

The Poltyrev exponentEP (ρ) was defined in (4), and on(1) →
0 as n → ∞.

B. Nested Lattice Codes

Here we recall nested-lattice codes for a single-user AWGN

channel. The construction of codes for the MAC channel is

described in Section V.

We say that a coarse lattice Λ0 is nested in a fine lattice

Λ1 if Λ0 ⊆ Λ1, i.e., Λ0 is a sublattice of Λ1. We denote their

fundamental Voronoi regions by V0 and V1 respectively, and

the volumes of the Voronoi regions by V0 and V1 respectively.

A shift of Λ0 by a point of Λ1 is called a coset of

Λ0 relative to Λ1. For every such coset, there is a single

point with minimal norm, which is called the coset leader.

A nested-lattice code is the intersection of a fine lattice Λ1

with the fundamental Voronoi region of a sublattice Λ0, i.e.,

C = {Λ1 ∩ V0}. This is equal to the coset leaders of Λ0

relative to Λ1. Thus, the number of codewords is equal to

V0/V1. We call (V0/V1)
1/n the nesting ratio of the lattices.

The code rate is thus equal to the logarithm of the nesting

ratio: R = 1/n log(V0/V1).

V. DISTRIBUTED-STRUCTURE CODING

In this section we describe a code construction for the MAC

channel, which is based on distributed structure. It consists of

two codebooks, where each is a subset of a lattice, and their

Minkowski sum forms a subset of the fine lattice. It has the

property that every pair of codewords results in a different

point of the fine lattice. In addition, the fine lattice is a good

lattice for associated single-user channel. Hence, inherently

from the code, the decoding is done jointly for the two users.

While the code presented here is sub-optimal in terms of

the capacity region, for certain rate-pairs it improves on the

best known error exponent in [5].

A. Codebooks Construction

Recall that P1 ≥ P2. For clarity of derivation, we also

assume that P2 ≥ N . We ignore other case, i.e. P2 < N ,

since this results in R2 = 0 for the proposed construction.

That is, this is a degenerate case (under the code presented

here), since it forms a single-user channel, as only the first

user transmits.

The codebook generation uses a triplet of nested lattices:

Λ
(n)
0 ⊆ Λ

(n)
1 ⊆ Λ

(n)
2 , where the covering radii are given by:

rcov
V

(n)
0

=
√

nP1, rcov
V

(n)
1

=
√

nP2, rcov
V

(n)
2

=
√

nÑ,

where Ñ ∈ [N,P2], and V(n)
i is the fundamental Voronoi

region of Λ
(n)
i . Each lattice is both Rogers-good and Poltyrev-

good.1 The existence of such good nested lattices for any

choice of nesting ratios is shown in [9]. Denote the volume of

V(n)
i by V

(n)
i . Since the lattices are Rogers-good, we have:

V
(n)
0 = [2πe(P1 − ε1,n)]

n/2, V
(n)
1 = [2πe(P2 − ε2,n)]

n/2,

where εi,n → 0+ as n → ∞. See Figure 2 for an illustration

of the nested lattices.

The codebook of the second user is given by the coset-

leaders of Λ
(n)
2 relative to Λ

(n)
1 : C(n)

2 = {Λ(n)
2 ∩ V(n)

1 }. The
rate of the second user is given by the nesting ratio:

R
(n)
2 =

1

n
log

V1

V2
−→
n→∞

α · 1
2
log

P2

N

△
= R2, (13)

where α
△
= (log Ã2)/(logA2) ∈ [0, 1], and Ã2

△
= P2/Ñ . The

codebook of the first user is constructed by the coset-leaders

1Less restrictive constraints on the goodness of the lattices may suffice.
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Fig. 2. Nested lattice with ratio 3,3: The thick-dashed line is the Voronoi
partition of Λ0, where the region in the center is V0, which is the shaping
region of the first user. The thick points are the points of Λ1, and the thick-
solid line is its Voronoi partition. The thick-solid line region in the center is
V1, which is the shaping region of the second user. The thin dots (together
with the thick ones) are the points of Λ2, and the thin-solid line is its Voronoi
partition.

of Λ1 relative to Λ0: C(n)
1 = {Λ(n)

1 ∩ V(n)
0 }. The rate of the

first user results from the nesting ratio:

R
(n)
1 =

1

n
log

V0

V1
−→
n→∞

1

2
log

P1

P2

△
= R1. (14)

Since Λ
(n)
1 and Λ

(n)
2 are Rogers-good lattices, as explained in

Section IV-A, it follows that C(n)
1 and C(n)

2 satisfy the power

constraints P1 and P2 respectively. Notice that the Minkowski

sum of the two codebooks is a subset of the fine lattice Λ
(n)
2 .

The maximal sum rate achieved by this construction is
1/2 logA1. This reflects a loss in compare with the maximal

sum rate of the channel, which is 1/2 log(1 +A1 +A2).

B. Error Probability Analysis

In the following analysis we make some rather restrictive

choices in the encoding-decoding process we consider. Some

choices are necessary, while others simplify the derivation.

Even with these choices, we improve the best known achiev-

able exponent. In Section VII we present an assumption under

which the best known achievable single-user exponent may be

achieved (and above the critical rate it is optimal).

We analyze the error probability of the code by averaging

over an ensemble of codes, which is described in [9]. This

ensemble builds on Construction A [10].

The Minkowski sum of the codebook pair, which is a subset

of the fine lattice Λ
(n)
2 , can be interpreted as the corresponding

codebook of the associated single-user channel. Thus, we can

use a lattice decoder for joint decoding of the message pair.

A lattice decoder is simply a lattice quantizer (10). The error-

exponent of this ensemble when using lattice decoder is given

by the Poltyrev exponent (4) with ρ given by (12) (see [11]):

ρ2Λ(n) =

(

V
(n)
1

)2/n

e2R
(n)
2 · 2πeN

−→
n→∞

2πeP2

e2R2 · 2πeN = e(1−α) logA2 .

We conclude that the error exponent of the code is lower-

bounded by:

E(struct)
r (R1, R2, A1, A2)

△
= EP

(

e
1
2 (1−α) logA2

)

. (15)

Note that the exponent is positive whenever A2 > 1 (as we

assumed).

VI. PERFORMANCE COMPARISON

In this section we show that the sub-optimal encoding-

decoding scheme above outperforms the spherical-shells ex-

ponent for some rate pairs.

For given A1, A2 and R1, Figure 3 compares the spherical-

shells error-exponent E(G)
r3 (7) with the distributed-structure

error exponent (15). We can see that below a certain rate R2,

distributed structure has a strictly larger error exponent than

the spherical-shells one. These exponents are also compared

with E(SU)(R1 + R2, A1 + A2), which is used here as a

benchmark. Figure 3(a) shows a high SNR case, where the

second user has half of the power of the first user. The error

exponent of the distributed structure code is strictly larger than

the one of the spherical-shells codebooks in part of the rate

region. Figure 3(b) shows a high SNR case, where the second

user is much weaker than the first one; therefore it is almost

a single user case. Figure 3(c) shows a low SNR case, where

the second user looses since it is not equal to the single-

user capacity C(Ã2). Figure 3(d) shows a case, where the

second user is much weaker than the first one, and therefore

the first user looses rate since it is not equal to the single-

user capacity C(A1). In the last two cases, the error exponent

of the distributed structure code is lower than the one of the

spherical-shells code.

If one is not satisfied with the numerical optimization of

E(G)
r3 (7), an analytical comparison can be carried out by using

the following symmetric-powers upper-bound:

E(G)
r3 (R1 +R2, A1, A2) ≤ E(G)

r3 (R1 +R2, A1, A1).

This bound has an explicit expression given in [5, Section II-

C, Equation (2.48)-(2.55)]. The distributed structure exponent

is even higher than this bound, for some rate pairs.

While for general (i.e., non-structured) infinite constella-

tions, Poltyrev’s exponent (4) in the range of squared Voronoi-

to-noise ratio larger than 4 is achieved by expurgation, for (in-

finite) lattices it is inherently achieved by the ensemble, since

all codewords have the same error probability [7]. We note

that the distributed structure code is superior to the spherical-

shells in (part of) the expurgation region of Poltyrev’s exponent

(ρ2 ≥ 4). This may imply that the “inherent expurgation” of

lattices contributes to some of the gain of this code over the

spherical-shells one.

VII. DISCUSSION: TOWARDS OPTIMAL DISTRIBUTED

STRUCTURE

In this section we outline a direction that may allow to

establish that a distributed structure approach can be optimal;

More specifically, in order to achieve the single-user error

exponent, provided (an assumption that we do not know to
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(a) Balanced, high SNRs: A1 = 30 dB, A2 = 27 dB.
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(b) Unbalanced, high SNRs: A1 = 50 dB, A2 = 25 dB.
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(c) Balanced, low SNRs: A1 = 6 dB, A2 = 3 dB.
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(d) Unbalanced, SNRs: A1 = 10 dB, A2 = 1 dB.

Fig. 3. Comparing the error exponent of the spherical-shells code E(G)
r (R1 + R2, A1, A2) (dashed line) to the error-exponent of the distributed structure

E(struct)
r (R1, R2, A1, A2) (solid line). E(SU)(R1 +R2, A1 +A2) of the associated single user channel is shown by the dash-dot line of the associated single

user channel. The two dots indicate the expurgation rate Rex(A1 +A2) and the critical rate Rcr(A1 +A2). The horizontal axis is α = R2/ (1/2 logA2),
while R1 is fixed according to Equation (14).

be true) that a nested-lattice construction with perfect tiling

exists. To establish optimality, the following lemma may be

of use. We omit the proof in this version.

Lemma 1: For a single-user AWGN channel, a uniformly

random codebook over the fundamental Voronoi region of a

Rogers-good lattice achieves the random coding error expo-

nent.

This ensemble is different than Gallager’s one [4, Chapter 7],

since here the codewords are distributed uniformly over the

entire sphere, and not only over a shell of the sphere.

It can further be shown that by replacing the uniformly

random code with a good ensemble of lattices, E(SU) is

achieved. Thus, a nested-lattice codebook can achieve E(SU).

In order to achieve a good single-user nested-lattice in a

distributive manner, we require a Rogers-good and Poltyrev-

good nested triple, such that it satisfies perfect tiling: the

Voronoi region of each lattice tiles the Voronoi region of

the coarser lattice, similar to the one-dimensional example in

Section III. If this may be achieved, one obtains a an optimal

lattice code, achieving the single-user error exponent E(SU).

Even if perfect tiling is not possible, we expect that the results

can be significantly improved. Furthermore, in conjunction

with rate splitting one can generalize the scheme to achieve

any rate-pair in the capacity region.
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