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Abstract—This work considers communication networks where
individual links can be described as MIMO channels. Unlike
orthogonal modulation methods (such as the singular-valuede-
composition), we allow interference between subchannels,which
can be removed by the receivers via successive cancellation.
The degrees of freedom earned by this relaxation are used for
obtaining a basis which is simultaneously good for more thanone
link. Specifically, we derive necessary and sufficient conditions for
shaping the ratio vector of subchannel gains of two broadcast-
channel receivers. We then apply this to two scenarios: First,
in digital multicasting we present a practical capacity-achieving
scheme which only uses scalar codes and linear processing. Then,
we consider the joint source–channel problem of transmitting a
Gaussian source over a two-user MIMO channel, where we show
the existence of non-trivial cases, where the optimal distortion
pair (which for high signal-to-noise ratios equals the optimal
point-to-point distortions of the individual users) may beachieved
by employing a hybrid digital–analog scheme over the induced
equivalent channel. These scenarios demonstrate the advantage
of choosing a modulation basis based upon multiple links in the
network, thus we coin the approach “network modulation”.

Index Terms—Broadcast channel, MIMO, multicasting, gener-
alized triangular decomposition, geometric mean decomposition,
GSVD, GDFE, multiplicative majorization, joint source–channel
coding.

I. I NTRODUCTION

The choice of modulation domain plays a major role in
communication, both in deriving performance limits and in
the design of practical schemes which decouple the signal
processing task of channel equalization from coding. Thus,
choosing the “right” basis is of central importance. For ex-
ample, the capacity of the Gaussian inter-symbol interference
(ISI) channel is given by the water-filling solution, applied in
the frequency domain; the same transformation also allows to
use popular schemes such as Orthogonal Frequency-Division
Multiplexing (OFDM) which employs the discrete Fourier
transform. The singular value decomposition (SVD) plays a
similar role for multiple-input multiple-output (MIMO) chan-
nels. Common to both cases isdiagonalization: They yield
parallel independent equivalent channels. But do we really
need such orthogonality? Capacity can be achieved for both
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the ISI and MIMO channels usingnon-orthogonalequivalent
channels, by a receiver which performstriangularization of
the channel1 (rather than diagonalization) and then decision-
feedback equalization or successive interference cancellation
(SIC), see e.g. [1]. This is done without performing any
transformation at the transmitter. It is therefore naturalto
ask, what can be achieved by allowingboth a transmitter
transformation (in addition to the receiver one) and SIC.

One such direction, pursued by Jiang, Hager and Li [2], is
the generalized triangular decomposition(GTD): A matrix A
is decomposed as

A = UTV † ,

whereU andV are unitary matrices,V † denotes the conjugate
transpose ofV and T is upper-triangular with a prescribed
diagonal. It is shown in [3], [4] that the transforming matrices
U andV exist if and only if the (desired) diagonal elements
of T obey Weyl’s multiplicative majorization relation with the
singular values ofA (see also [5]). Since the product of these
diagonal elements equals the product of the singular valuesof
A, the decomposition performsdiagonal shaping: It distributes
the total gain between the diagonal elements in a desired way.
An important special case is where balanced gains are sought,
i.e., the diagonal elements ofT should all be equal. In that
case, named thegeometric mean decomposition(GMD) [6],
the majorization condition holds for anyA. When applied to
MIMO communication, GMD has an advantage over SVD,
that all subchannels enjoy the same gain, and thus may support
codebooks of the same rate, avoiding the need for a bit-loading
mechanism. This comes at the price of performing SIC at the
receiver. The GMD has received considerable attention; see,
e.g., [7], [8] for some of its applications.

We take a different path, in which we wish to jointly
shape the diagonals of two matrices, for the purpose of multi-
terminal communication. Since with this approach the choice
of basis depends upon more than one communication link,
we call it network modulation. We jointly triangularize two
matricesA1 andA2 as

Ai = UiTiV
† , i = 1, 2 , (1)

whereU1, U2 and V are unitary andT1 and T2 are upper-
triangular. Having the same matrixV on one of the sides of
the decomposition corresponds to applying the same trans-
formation, and is thus suitable to two links originating (or
terminating) at the same node. It turns out that, in different
network applications, it is important to shape the vector of
ratios between the diagonals. We show that the sufficient
and necessary condition for achievability of a ratio vector
is a multiplicative majorization relation with the generalized
singular values [9] of the pair(A1, A2).

1Outside the high signal-to-noise ratio regime, “near triangularization” is
performed as an optimal balance between residual interference and noise.
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We start by deriving the necessary and sufficient condi-
tions for joint unitary triangularization of two matrices,in
Section II-B. In the rest of the paper we apply this result in
two different scenarios, where in one we present an optimal
practical scheme for a problem for which the capacity is
known, and in the second we derive the (hitherto unknown)
optimal performance. In Section III we combine the joint
triangularization with the concept of SIC, to present an optimal
scheme for two-user digital multicasting that employs linear
processing of scalar codebooks. In Section IV, we address the
problem of transmission of ananalogsource over two MIMO
links, where we show that a ratios vector of all-ones except
for one element creates an equivalent channel over which a
hybrid digital–analog (HDA) scheme can achieve the optimal
tradeoff between user distortions; thus we derive the optimal
performance whenever the channels are such that this ratios
vector is feasible. We conclude the paper in Section V.

We note that the decomposition may equally be applied
to cases where two transmitters communicate with a joint
receiver via MIMO links (a MIMO MAC channel). In this case
the roles of theU andV matrices in (1) are interchanged. An
application of the decomposition in such a setting is a MIMO
extension of the “physical network coding” approach to bi-
directional relays and appears in [10].

II. JOINT UNITARY TRIANGULARIZATION

In this section we present the joint unitary triangularization
of two matrices. We start by introducing a few notations and
recalling known decompositions for a single matrix.

A. Unitary Triangularization of a Single Matrix

Throughout the work, we will only need to decompose
matrices which belong to the following class.

Definition 1 (Proper dimensions):An m × n matrix A is
said to have proper dimensions if it is full-rank andm ≥ n.

The singular-value decomposition (SVD, see [11]) of a
matrix A of proper dimensionsm× n, is given by:

A = UTV † , (2)

whereU and V are unitary matrices, andT is an m × n
(generalized) diagonal matrix, viz.Ti,j = 0 for i 6= j.

Remark 1:Throughout the paper, we will assume in all
decompositions that all the diagonal elementsTi,i are real
and non-negative. This is without loss of generality, sinceany
phase can be absorbed inU andV .

The diagonal entries ofT are called the singular values (SV)
of A; they equal the square-roots of the eigenvalues ofA†A.
Since we assumedA to be full-rank, all its SVs are strictly
positive. We define the SV vectorµ(A) as then-length vector
composed of all SVs (including their algebraic multiplicity),
ordered non-increasingly.µ(A) is unique, i.e., there is no other
diagonalization, up to ordering and phases of the diagonal.

Unitary triangularization coined generalized triangularde-
composition (GTD) [2] generalizes the SVD to triangular
matrices. The class of matrices is formally defined as follows.

Definition 2 (Square part):Let A be a matrix of dimen-
sionsm × n wherem ≥ n. The square part ofA, denoted
[A], consists of the firstn rows ofA.

Definition 3 (Generalized triangular matrix):Let T be a
matrix of proper dimensions. We callT a generalized triangu-
lar matrix, if Ti,j = 0 for i > j, i.e., it has the block structure

T =

(

[T ]
0

)

where the square part[T ] is upper-triangular.
As for the SVD, we assume non-negative diagonal elements

(see Remark 1), and they are all positive under the full-rank
assumption. Note that for any unitary triangularization,

det
(

A†A
)

= det
(

T †T
)

= (det[T ])2 =
n
∏

j=1

(Tj,j)
2 . (3)

It turns out, that the singular values are an extremal case
for the diagonal of all possible unitary triangularizations. For
stating this, we need the following.

Definition 4 (Multiplicative majorization (see [5])):Let x

and y be two n-dimensional vectors of positive elements.
Denote byx̃ and ỹ the vectors composed of the entries of
x andy, respectively, ordered non-increasingly. We say that
x majorizesy (x � y) if they have equal products:

n
∏

j=1

xj =
n
∏

j=1

yj ,

and their (ordered) elements satisfy for any1 ≤ k < n,
k
∏

j=1

x̃j ≥
k
∏

j=1

ỹj .

In these terms, we can give the condition of the GTD
[2] for the existence of a unitary triangularization: LetA
be a matrix of proper dimensionsm × n and t be ann-
dimensional vector of positive elements. Then, there exists a
unitary triangularization ofA with diagonalt, i.e., A can be
decomposed as in (2) withT being some generalized upper-
triangular matrix with the prescribed diagonalt, if and only
if the latter is majorized by the singular-values vector ofA:

µ(A) � t .

B. Joint Triangularization with Shaped Diagonal Ratio

The SVD presented in Section II-A is essentially unique.
Thus, in general, two matrices cannot be jointly diagonalized
by unitary matrices. Nevertheless, jointtriangularization (1)
is possible. In this section we prove the necessary and suffi-
cient conditions for such triangularization, formally defined as
follows.

Definition 5 (Joint Unitary Triangularization):Let A1 and
A2 be matrices of proper dimensions with the same number
of columns. A joint decomposition:

A1 = U1T1V
†

A2 = U2T2V
† ,

(4)

is called a joint unitary triangularization ifU1, U2 and V
are unitary, andT1 and T2 are generalized upper-triangular
matrices of the same dimensions asA1 andA2, respectively.
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The existence condition for this joint decomposition turns
out to be similar to that of the GTD (see Section II-A), where
the SVs are replaced by generalized singular values, and the
diagonal ofT is replaced by the ratio of the diagonals of
(T1, T2). These quantities are defined below.

Definition 6 (Generalized singular values [9]):For any
(ordered) matrix pair(A1, A2), the generalized singular
values (GSVs) are the positive solutionsa of the equation

det
{

A†
1A1 − a2A†

2A2

}

= 0 .

Let the GSV vectorµ(A1, A2) be composed of all GSVs (in-
cluding their algebraic multiplicity), ordered non-increasingly.

Remark 2:For matrices of proper dimensions we haven
GSVs, all positive (recall Remark 1) and finite. For non full-
rank matrices we still haven GSVs, even if the number of
finite solutions is smaller. We define a GSV to be infinite, if
the corresponding GSV of the matrices in reversed order is
zero. If the number of finite and infinite solutions is smaller
than n, this suggests that the column rank can be reduced
without changing the problem; we shall assume the problem
is in its reduced form.

Remark 3:WhenA1 andA2 are square and non-singular,
µ(A1, A2) consists of the singular values ofA1A

−1
2 [9], [11].

Definition 7 (Diagonal ratios vector):Let T1 and T2 be
generalized upper-triangular matrices of proper dimensions
m1×n andm2×n, respectively, with positive diagonal entries.
The diagonal ratios vectorr(T1, T2) = r([T1], [T2]) is then-
length vector whosej-th entry is equal to the diagonal ratio
T1;jj/T2;jj , whereTi;jk is the(j, k) entry of Ti (i = 1, 2).

We are now ready to prove the main result of this section,
giving the condition for existence of joint unitary triangular-
ization in terms of majorization (recall Definition 4). Since the
existence proof is constructive, it results with a decomposition
procedure; this is summarized in Algorithm 1 for the case of
square matrices, and in Algorithm 2 — for the general case.

Theorem 1:Let A1 andA2 be matrices of proper dimen-
sions m1 × n and m2 × n, respectively, andr be an n-
dimensional vector with positive elements. Then, there exists a
joint unitary triangularization of(A1, A2) with diagonal ratio
vectorr, i.e., the matrices can be decomposed as:

A1 = U1T1V
†

A2 = U2T2V
† ,

(5)

whereU1, U2 and V are unitary, andT1 and T2 are some
generalized upper-triangular matrices with the prescribed di-
agonal ratio (thei-th element ofr(T1, T2) equalsri), if and
only if the latter is majorized by the GSV vector of(A1, A2):

µ(A1, A2) � r . (6)

Proof: Achievability part. We present here a proof for
the case when the matrices are square (m1 =m2 = n). The
extension to the general proper-dimension case is relegated to
Appendix A.

In the square case,A1 andA2 must be invertible, being full-
rank. Define the matrixB = A1A

−1
2 . The SV vector ofB,

µ(B), coincides with the GSV vector of(A1, A2), µ(A1, A2)
(recall Remark 3). Thus, it majorizesr, by assumption. Hence,

Algorithm 1 : Joint Triangularization of Square Matrices

• ComputeB , A1A
−1
2 .

• Apply the GTD toB (for details regarding the im-
plementation, including Matlab code, see [2]):

B = U1RU †
2 ,

with R having a diagonal equal to (the desired diag-
onal ratio)r(T1, T2).

• DecomposeU †
i Ai according to the RQ decomposi-

tion:

U †
1A1 = T1V

†

U †
2A2 = T2V

† .

Algorithm 2 : Joint Triangularization

• Apply (individual) QR decompositions toA1 andA2:

Ai = QiRi i = 1, 2 .

• Extract [Ri], the upper squaren× n part ofRi.

• Apply Algorithm 1 to [R1] and[R2] to obtain a joint
decomposition

[R1] = Ũ1T̃1V
†

[R2] = Ũ2T̃2V
† ,

where the diagonal ratio vector of(T̃1, T̃2) is equal to
the desired diagonal ratio, i.e.,r(T̃1, T̃2) = r(T1, T2).

• Construct the matrices:

Ti =

(

T̃i

0

)

,

where the lower zero block is of dimensions
(mi − n)× n, and

Ui = Qi

(

Ũi 0
0 Imi−n

)

.

according to the GTD (see Section II-A), the matrixB can be
decomposed as

B = U1RU †
2 , (7)

whereU1 andU2 are unitary andR is upper-triangular with
a diagonal vector which equalsr. Now, apply RQ decompo-
sitions toU †

i Ai (i = 1, 2) to achieve

U †
i Ai = TiV

†
i , (8)

whereTi are upper-triangular with positive diagonal entries
andVi are unitary. By substituting (8) into (7) we have

U1T1V
†
1 V2T

−1
2 U †

2 = U1RU †
2 ,

which is equivalent to

V †
1 V2 = T−1

1 RT2 . (9)

We note that the l.h.s. of (9) is unitary, whereas its r.h.s. is
an upper-triangular matrix with positive diagonal entries. An
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equality between such matrices can hold only if both matrices
are equal to the identity matrix of the appropriate dimensions
(n× n). Thus, we have

V , V1 = V2 ,

T1;i,i = Ri,iT2;i,i , i = 1, ..., n .

Since the diagonal ofR is equal tor, this establishes the
desired decomposition (5).

Converse part. Assume, in contradiction, thatA1 andA2

can be decomposed as in (5) such thatµ(A1, A2) � r(T1, T2).
Note thatµ(T1, T2) = µ(A1, A2). Moreover,[T1] and[T2] are
non-singular squaren × n matrices with GSV and diagonal-
ratios vectors which are equal to those of(T1, T2), i.e.,

µ([T1], [T2]) = µ(T1, T2) = µ(A1, A2) ,

r([T1], [T2]) = r(T1, T2) .

Thusµ([T1], [T2]) � r([T1], [T2]), which in turn implies that
the upper-triangular matrixB , [T1][T2]

−1 has a diagonal
r([T1], [T2]) and an SV vectorµ([T1], [T2]). But according
to Weyl’s condition [3]:

µ(A1, A2) = µ([T1], [T2]) � r([T1], [T2]) = r(T1, T2) ,

in contradiction to the assumption.
Remark 4:Note that we did not require the matricesT1

andT2 to satisfy Weyl’s condition individually, as we did not
strive to design specific diagonal values but rather prescribed
ratios between the diagonals ofT1 andT2. Indeed, one may
verify that the resulting matrices in Theorem 1 satisfy Weyl’s
condition individually.

Remark 5:By the unitarity ofU1, U2 andV , the products
of µ andr are equal. Thus, the majorization relations mean
that the diagonal ratios are always “less spread” than the gen-
eralized singular values. This is also true for the (individual)
diagonal values ofTi (i = 1, 2) being “less spread” than the
singular values ofAi.

Remark 6 (Relation to GSVD):The GSVD [9] can be
stated in a triangular form (5), with diagonals ratio
r(T1, T2) = µ(A1, A2). Thus, the GSVD is a limiting case
with maximal ratios spread.

Remark 7 (Relation to GTD):Taking in the joint decom-
positionA2 = I yields the GTD ofA1 [2]; further, the GSV
vector becomes the SV vector ofA1. The existence condition,
in turn, reduces to the Weyl condition (see e.g. [2]). In this
sense, the condition in Theorem 1 may be seen as a generalized
Weyl condition for joint triangularization.

Remark 8 (Relation to the generalized Schur decomposition):
This decomposition, also called the QZ decomposition [11],is
a special case of the joint triangularization (5) withU1 = U2.
It can be shown that the diagonal ratio vector induced by
this decomposition is unique, i.e., requiring that the unitary
matrices are the same on both sides prohibits shaping of the
diagonal ratios.

Remark 9 (Fixed diagonal ratio):Any vectorµ majorizes
the vector all of whose entries equal its geometric mean.
Hence, for any two matrices there exists a joint decomposition
with fixed diagonal ratio. We use this fact in Section III-B.

The joint unitary triangularization (and, as a special case,
the GTD) can also be relaxed to a block form:

Ti =















Ti;1,1 Ti;1,2 · · · Ti;1,K

0 Ti;2,2 · · · Ti;2,K

...
.. .

...
0 · · · 0 Ti;K,K

0 · · · 0 0















, (10)

where Ti;k,l is a block of dimensionsnk × nl, such that
∑K

k=1 nk = n (thus the last row of blocks consists ofn−m
all-zero rows). Note that we require corresponding blocks in
both matrices to be of the same dimensions, except for the
last row of zero blocks.

The existence condition can be stated as the following exten-
sion of Theorem 1. Denote by{kl}

K
l=1 the indices satisfying:

rk1
≥ rk2

≥ · · · ≥ rkK
,

where rk , n
k

√

|det (T1;k,k) / det (T2;k,k)|. Denote byρ
the K-length vector composed of{rnk

k } (i.e., {ρk}
K
k=1 the

absolute values of the ratios between determinants of corre-
sponding blocks), ordered in non-increasing order of{rk}.
Further denote byµ the K-length vector composed of the
products of sizes{kl}Kl=1 of the GSVs of(A1, A2) ordered
non-increasingly, i.e., the first entry ofµ is the product of
the largestk1 GSVs, its second entry is the product of the
next k2 GSVs, etc. Then, the desired block triangularization
is possible if and only if the products of the entries ofρ and
of the GSV vector are equal, and for any1 ≤ k < K:2

k
∏

l=1

ρl ≤

k
∏

l=1

µl .

III. T RANSMISSION SCHEME FORMULTICASTING

In this section we derive an optimalpractical communica-
tion scheme for two-user multicasting over Gaussian MIMO
BC channels. We start by recalling how the single-user
Gaussian MIMO capacity may be achieved using multiple
codebooks (each designed for a scalar AWGN channel) with
SIC over an equivalent channel, obtained by unitary triangu-
larization (as in Section II-A).

A. SIC for MIMO Channels

The exposition below follows that of the universal matrix
decomposition [12], which is in turn based upon the derivation
of the MMSE version of Vertical Bell-Laboratories Space-
Time coding (V-BLAST), see, e.g., [13]. Later in the paper we
take the triangularization to be one which is simultaneously
good for two users. This is suppressed for now. We assume
throughout the paper perfect channel knowledge everywhere.

We consider a point-to-point (complex) MIMO channel:

y = Hx+ z, (11)

wherex is the channel input of dimensionsNt × 1 subject to
an average power constraintP ;3 y is the channel output vector

2These conditions are similar to the majorization conditions of Definition 4
up to the ordering which is done w.r.t.rk and not those of the entries ofρ.

3Alternatively, one can consider an input covariance constraint E
[

xx
†
]

�
C, where byC1 � C2 we mean that(C2 − C1) is positive semi-definite.
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Codebook 1

CodebookNt

C
1/2
x V

b1

bNt

x̃1

x̃Nt

x1

xNt

Info.
bits

Splitter

Fig. 1. Multiple-codebook transmitter with linear precoding.

of dimensionsNr × 1; H is the channel matrix of dimensions
Nr ×Nt andz is an additive circularly-symmetric Gaussian
noise vector of dimensionsNr×1. Without loss of generality,
we assume that the noise elements are mutually independent,
identically distributed with unit variance.

The capacity of this channel is given by

C(H,P ) = max
Cx

I(H,Cx), (12)

where the maximization is over all channel input covari-
ance matricesCx ≥ 0, subject to the power constraint
trace (Cx) ≤ P , and4

I(H,Cx) , log det
(

I +HCxH
†
)

. (13)

We may interpretI(H,Cx) as the maximal mutual informa-
tion (MI) that can be attained using an input covariance matrix
Cx, which is achievable by a Gaussian inputx.

In order to achieve a rate approaching this mutual informa-
tion, optimal codes of long block length are needed. However,
as pointed out in the introduction, we take an approach
which decouples the signal-processing aspects from these of
coding. We thus omit the time index throughout the paper; for
example, when referring to an input vectorx, we mean the
input at any time instant within the coding block. In a practical
setting using encoder/decoder pairs of some given quality,one
may easily bound the error probability of the scheme using the
parameters of the codes.

When coding over a domain different than the input domain
(e.g., time or space), one may start with a virtual input vector
x̃, related to the physical input by the linear transformation: 5

x = C
1/2
x V x̃ . (14)

We form the vector̃x, in turn, by taking one symbol from each
of Nt parallel codebooks, of equal power1/Nt. The matrix
V is a unitary linear precoder. See Figure 1.

Recalling the GTD (see Section II-A), one may suggest to
chooseV by applying a unitary triangularization to

F , HC
1/2
x . (15)

After the receiver appliesU †, it is left with an equivalent
triangular channelT , over which it may decode the codebooks
using SIC. Unfortunately, while this “conserves” the determi-
nant ofHCxH

†, it fails to do so when the identity matrix is
added as in the MII(H,Cx) (13). Thus, this is optimal in
the high SNR limit only, and an MMSE variation is needed
in general, as next described.

4All logarithms are taken to the base 2 and all rates are measured in bits.
5C

1/2
x is the principal square root of the Hermitian positive-definite matrix

Cx, which may be found via diagonalization. However,C1/2
x may be

replaced, w.l.o.g., by any matrixB satisfying:BB† = Cx.

ˆ̃xNt

ˆ̃xNt−1

ˆ̃x2

ˆ̃x1

yNr

yNr−1

y1

ỹNt

ỹNt−1

ỹ1

y′Nt

y′Nt−1

y′1

W †

−

−−

−

Dec.Nt

Dec.Nt − 1

Dec. 1

T̃Nt−1,Nt

T̃1,Nt

T̃1,Nt−1

T̃1,2

Fig. 2. SIC-based receiver.

We start by applying a unitary triangularization (as in
Section II-A) to an augmented matrix:

(

F
INt

)

, G = UTV †, (16)

where INt
is the identity matrix of dimensionsNt. Note

that, by construction,G is of proper dimensions, regardless
of the dimensions and rank of the channel matrixH . That
is, it has dimensions(Nt + Nr) × Nt and is full-rank. The
square matricesU andV have dimensionsNt +Nr andNt,
respectively. This allows to decompose the total rate into terms
associated with the diagonal values of the matrixT , as follows:

I(H,Cx) = log det
(

INr
+ FF †

)

(17)

= log det
(

INt
+ F †F

)

(18)

= log det
(

G†G
)

(19)

=

Nt
∑

j=1

log(Tj,j)
2 =

Nt
∑

j=1

Rj , (20)

where (17) follows by the definitions (13) and (15), (18) is
justified by Sylvester’s determinant Theorem (see e.g. [14]),
(19) is a direct application of the definition (16), and in (20)
we defineRj , log (Tj,j)

2. Using the matrices obtained by
this decomposition, the following scheme communicates scalar
codebooks of rates{Rj}.

The transmitted signal is formed using (14). At the receiver,
we use a matrixW , consisting of the upper-leftNr×Nt block
of U : ỹ = W †y. This results in an equivalent channel:

ỹ = W †(FV x̃+ z) = W †FV x̃+W †z , T̃ x̃+ z̃. (21)

Note that sinceW is not unitary, the statistics of̃z , W †z

differ from those ofz. We denote the covariance matrix of the
equivalent noise byCz̃ = WW †. Finally, SIC is performed,
i.e., the codebooks are decoded from last (j = Nt) to first
(j = 1), where each codebook is recovered from:

y′j = ỹj −

Nt
∑

l=j+1

T̃j,l
ˆ̃xl , (22)
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where ˆ̃xl is the decoded symbol from thel-th codebook; see
Figure 2. Assuming correct decoding of “past” symbols, i.e.
ˆ̃xl = x̃l for all l > j, the scalar channel for decoding of the
j-th codebook is given by:

y′j = T̃j,j x̃j +

j−1
∑

l=1

T̃j,lx̃l + z̃j . (23)

SinceT̃ is not triangular, the second term in this scalar channel
(resulting from elements below the diagonal ofT̃ ) acts as
interference. The signal-to-interference-and-noise ratio (SINR)
is given by:

Sj =
(T̃j,j)

2

Cz̃;j,j +
∑j−1

l=1 (T̃j,l)2
, (24)

whereCz̃;i,j denotes the(i, j) entry ofCz̃ .
The following, which is equivalent to Lemma III.3 in [12],

shows optimality of the scheme.
Proposition 1: For any channelH and input covariance

matrix Cx, the SINRsSj (24) of the transmission scheme
above satisfy:

log(1 + Sj) = Rj , ∀j = 1, . . . , Nt , (25)

where the ratesRj are given by (20).
This completes the recipe for a digital transmission scheme

which achievesI(H,Cx): For a given input covariance matrix
Cx, choose the individual codebook rates to approach{Rj},
the sum of which equals the MI afforded by the MIMO
channel (13). By Proposition 1, the successive decoding pro-
cedure will succeed with arbitrarily low probability of error
for these rates (asymptotically for high-dimensional optimal
scalar AWGN codes). TakingCx be the covariance matrix
maximizing (12), capacity can be achieved.

The above exposition proves the optimality of the “scalar
coding” approach — the combination of scalar AWGN code-
books, linear processing, and SIC. This approach offers re-
duced complexity and easy-to-analyze performance when the
channel is known at both ends (“closed loop”). Indeed, special
cases of this approach have been suggested and used. In partic-
ular, using the SVD results in adiagonalequivalent channel
matrix T , establishing parallel virtual AWGN channels (no
SIC is needed), see [14]. Other schemes, such as generalized
decision feedback equalization (GDFE) and V-BLAST, see [1],
[15], are based on the QR decomposition. These do not require
linear precoding, i.e.,V = I. The UCD [12] uses both a
linear precoder and SIC, in order to achieveT with diagonal
elements that are all equal.

Remark 10 (Number of codebooks):If desired, one may
work with any number of codebooks aboveNt, as stated in
[12]. To see that, add “virtual transmit antennas” with corre-
sponding zero channel gains. The capacity remains unchanged,
and the optimal channel input covariance matrix will not
allocate power to these “antennas”. The number of codebooks
is equal to the number of antennas, including the additional
virtual ones.

All of these schemes have significant advantages over direct
capacity-achieving implementation for MIMO channels. Such
high-complexity schemes, e.g., using bit-interleaved coded
modulation (BICM) in conjunction with sphere detection,

essentially require the same resources as if working in an
“open loop” mode. Thus, the complexity involved is similar to
that required for approaching the isotropic mutual information
of the channel, when only the receiver knows the channel. We
note that this advantage comes at the price of suffering from
error propagationbetween the codebooks. This effect has been
analyzed and simulated in many works, see e.g., [16].

We conclude this section by pointing out a simple extension
to a unitary transformation which induces ablock-triangular
matrix rather than a strictly triangular one. That is, if thematrix
R in (16) is of the block generalized upper-triangular form
(10), where the blockTi;k,l is of dimensionsNk × Nl, such
that

∑K
k=1 Nk = Nt. In that case, we employK ≤ Nt codes

in parallel, each over an equivalentNk ×Nk MIMO channel,
achieved by “block-SIC”:

y′
j =

j
∑

l=1

T̃j,lx̃l + z̃j , j = 1, . . . ,K , (26)

where T̃j,l is of dimensionsNj × Nl. Seen as Gaussian
MIMO channels (i.e., seeing residual interference as noise)
we achieve, as an extension to Proposition 1, a rate

Rj = log det
(

Tj,j(Tj,j)
†
)

(27)

over each such block channel.

B. Optimal Two-User Scheme

We now derive an optimal practical communication scheme
for two-user multicasting.

The two-user Gaussian MIMO broadcast (BC) channel has
one transmit and two receive nodes, where each received signal
is related to the transmitted signal through:

yi = Hix+ zi , i = 1, 2 , (28)

wherex is the channel input of dimensionsNt × 1 subject
to an average power constraintP ;6 yi is the channel output
vector of decoderi (i = 1, 2) of dimensionsN (i)

r × 1; Hi is
the channel matrix to useri of dimensionsN (i)

r ×Nt andzi

is an additive circularly-symmetric Gaussian noise vectorof
dimensionsN (i)

r × 1, where again, without loss of generality,
we assume that the noise elements are mutually independent,
identically distributed with unit variance.

This channel has received much attention over the past
decade. Unlike the single-input single-output (SISO) case, the
Gaussian MIMO BC channel is not degraded. Nevertheless,
capacity regions were established for some scenarios, such
as private-messages only, and for a common message with a
single private message, and bounds were derived for others,
see [17]–[19] and references therein.

We focus our attention on the multicast (common-message)
problem, the capacity of which is long known to equal the
(worst-case) capacity of the compound channel ( see e.g. [20]),
with the compound parameter being the channel matrix index:

C(H1, H2, P ) = max
Cx

min
i=1,2

I(Hi, Cx) , (29)

6Again, alternatively, one can consider an input covarianceconstraintCx ,

E
[

xx
†
]

� C.
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where maximization is over all channel input covariance matri-
cesCx ≥ 0, subject to the power constrainttrace (Cx) ≤ P
and the MIMO MI, I(H,Cx), was defined in (13).

We wish to use a scalar-coding approach, as applied to
the point-to-point setting in Section III-A. Indeed, the private-
message MIMO BC capacity can be achieved by scalar coding
(in this case dirty-paper coding) techniques; see, e.g., [21]. In
the presence of a common message, however, to our knowl-
edge, no scalar capacity-approaching coding solutions are
known. QR-based schemes fail, since requiring the individual
streams to be simultaneously decodable at all the receivers
implies that the rateper streamis governed by the smallest
of the corresponding diagonal elements (in the resulting two
matrices), (potentially) inflicting an unbounded rate penalty.
Adapting SVD to this scenario has an additional problem: The
decomposition requires multiplying by a channel-dependent
(unitary) matrix at the transmitter, which prevents from using
this decomposition for more than one channel simultaneously.7

As a result of these difficulties, other techniques were pro-
posed, which are suboptimal in general, see, e.g., [22], [23].

In this section, we present an optimal successive-decoding
(low-complexity) scheme for a two-user common-message
Gaussian MIMO BC channel. Specifically, the proposed
scheme is based upon SIC and goodscalar AWGN codes,
in conjunction with the following special case of the decom-
position in Theorem 1.

Corollary 1: Let A1 and A2 be two matrices of proper
dimensionsm1 × n andm2 × n, respectively, satisfying

det
(

A1A
†
1

)

≥ det
(

A2A
†
2

)

. (30)

Then there exists a joint triangularization (5) where

T1;j,j ≥ T2;j,j , ∀j = 1, . . . , n .

Proof: An equivalent condition to (30) is that the product
of the entries ofµ = µ(A1, A2) is at least one. Let̄µ ≥ 1 be
the geometrical mean ofµ, and let the vectorr be the same
size asµ, with all the elements equal tōµ. By construction,
µ � r, thus by Theorem 1 there exists a joint triangularization
with this ratio. Consequently, there exists a decomposition
such that for all elementsT1;j,j = µ̄T2;j,j ≥ T2;j,j.

Remark 11 (Admissible diagonal ratios):The proof sug-
gests that the diagonal ratios vector be made uniform.
This is always possible, but is not the only choice (unless
I(H1, Cx) = I(H2, Cx)).

The results above defines a communication scheme in the
following way. For the channelsH1 and H2, let Cx be a
capacity-achieving input covariance matrix, and assume with-
out loss of generality thatI(H1, Cx) ≥ I(H2, Cx). Define the
augmented matricesG1 andG2 as in (16). By Corollary 1,
there exists a joint triangularization (5) such that each diagonal
element of[T1] is at least equal to the corresponding element

7Indeed, the GSVD allows to use a single transformation for two different
channels at one of the ends, but for each virtual parallel channel it yields a
different gain for each user, thus not solving the inefficiency mentioned above.
In fact, using GSVD may result inworseperformance than using a QR-based
receiver without any transformation at the transmitter since the spread of the
diagonal ratio is maximal, see Remark 6 in Section II-B.

of [T2]. On account of (17)-(20) we have that:

I(H2, Cx) =

Nt
∑

j=1

log(T2;j,j)
2 ,

Nt
∑

j=1

Rj .

This rate can be approached using SIC at each receiver as
in the point-to-point case of Section III-A. Specifically,x̃ is
formed fromNt codebooks of rates{Rj} and power1/Nt

each. The transmitted vector is given by the linear precoding
(14) and receiveri performs the linear transformation (21) and
SIC (22) (substitutingUi andTi for U andT , respectively).
Now Proposition 1 guarantees correct decoding of all code-
books for receiver 2. Since in receiver 1 each SINR can only
be greater, it will be able to decode as well.

Remark 12 (Private messages):If, in addition to the com-
mon message intended to both users, there are private mes-
sages (messages intended for individual users), superposition
may be used. That is, part of the transmit power is dedicated
to the private messages and is considered as noise for the
purpose of the common message. This approach was shown
in [19] to be capacity-achieving in the presence of a single
private message, and under some conditions on the rate and
power — also in the presence of two private messages (even
when these conditions do not hold, superposition gives the best
known performance). The scheme presented in this section
may be used for the common-message layer of these super-
position schemes as well. Interestingly, in that case we would
have interference cancellation both at the encoder (dirty-paper
coding of the private messages) and at the decoders (SIC of
the common message).

IV. HDA T RANSMISSION FORSOURCE MULTICASTING

In this section we turn from the purely digital setting to a
joint source–channel coding (JSCC) problem, where we wish
to multicast an analog source to two destinations, where each
destination should enjoy reconstruction quality according to
the capacity offered by its channel.

The transmission of a source over a BC channel is one of
the main applications of JSCC. In this setting, JSCC may be
greatly superior to transmission based upon source–channel
separation. In a classical example, a white Gaussian source
needs to be transmitted over a two-user AWGN BC channel,
with one channel use per source sample, under mean-squared
error (MSE) distortion. Analog transmission achieves the opti-
mal performance for each user as if the other user did not exist
[24]. In contrast, the separation-based scheme (concatenation
of successive-refinement quantization and broadcast channel
coding) yields a tradeoff, where if we wish to be optimal
for the user with worse signal-to-noise ratio (SNR), then both
users have the same distortion, while optimality for the user
with better SNR means that the distortion for the other user
is trivial (equals the source variance). See, e.g., [25, App. A].

We focus on transmitting an i.i.d. circularly-symmetric
Gaussian sourceS to two destinations over a MIMO BC
channel (28), with one channel use per source sample. We
measure the quality of the reproductionsŜi using the MSE
distortion measure. Thus, we wish to maximize the tradeoff
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between the signal-to-distortion ratios (SDRs), defined as

SDRi ,
Var (S)

Var
(

Ŝi − S
) , i = 1, 2 . (31)

The achievable SDR regionS(H1, H2) is defined as the
closure of all pairs which can be achieved by some encoding–
decoding scheme.

This general problem of describingS(H1, H2) has not
received much attention. Nevertheless, in the special cases
of diagonal or Toeplitz channel matrices, it reduces to the
better known problem of transmission over a colored and/or
bandwidth-mismatched Gaussian BC channel, for which dif-
ferent schemes which outperform the separation approach have
been presented, see e.g. [25]–[28]. However, even for these
cases optimality claims are not abundant. In [27], Kochman
and Zamir show asymptotic optimality for high SNR, where
the channels have the same bandwidth as the source, and one
user enjoys a better channel than the other at all frequencies.
Taherzadeh and Khandani [28] show that optimality in the
slope sense (weaker than high-SNR asymptotic optimality) is
possible for white channels where their bandwidths (BW) are
integer multiples of the source BW. A similar slope argument
applies to the general MIMO case as well.

A simple outer bound on the achievable SDR region is given
by the following.

Proposition 2: S(H1, H2) ⊆ S̄(H1, H2), where the bound-
ing regionS̄(H1, H2) is given by:

⋃

Cx

{

(SDR1,SDR2) : log(SDRi) ≤ I(Hi, Cx)
}

,

where the union is over all matricesCx ≥ 0 such that
trace (Cx) ≤ P , and where the MIMO mutual information
I(H,Cx) was defined in (13).

The proof follows that of the classical source–channel
converse [29], taking into account that both users share the
same channel input.

In Section IV-A we find sufficient conditions for achieving
points on the boundary of this region. Then, in Section IV-B
we present, for the case of two transmit antennas, a simple
sufficient condition such that all of the region̄S(H1, H2)
can be achieved. Unlike previous work, this proves strict
optimality, non-asymptotic in the channel SNR; it applies to
some cases of color and bandwidth mismatch, although not to
the white BW-expansion case.

A. Optimality by HDA Transmission

We give a constructive achievability proof, which combines
a hybrid digital–analog (HDA) scheme by Mittal and Phamdo
[26] with the joint triangularization approach; the optimum is
achievable whenever the diagonal ratio vector can be shaped
according to the needs of the HDA scheme. In order to under-
stand the function of the HDA scheme, we need to consider the
following related scenario. In a JSCC multicasting problemas
above, the BC channel is SISO, i.e.,Nt = Nr = 1, in which
case the channel matrices reduce to scalarshi. However, in
addition, the transmitter node may send some data to the users
(identical for both) over a digital channel of rateRdigital bits per

use of the BC channel. According to the aforementioned HDA
approach, the source is first quantized according to the rateof
the digital channel and the quantization error is then sent in an
analog manner over the analog channel. Thus, the distortion
is equal to that of the (analog) quantization error, and hence
optimality (optimum distortion over each channel) is achieved
simultaneously, as implied by the following proposition.

Proposition 3: In the setting above, the optimal perfor-
mance is given by SDRi = (1 + h2

iP ) 2Rdigital.
Proof: We use a vector quantizer which decomposes each

sample of the Gaussian sourceS as S = S̃ + Q. The first
term, S̃, is the quantized source, while the second,Q, is
the quantization error. By quadratic-Gaussian rate–distortion
theory, in the limit of high quantizer dimension, a quantizer
of rateRdigital may achieve:

Rdigital = log

(

Var (S)

Var (Q)

)

, (32)

which is equivalent to

SDRdigital ,
Var (S)

Var (Q)
= 2Rdigital .

Now the quantizer output representingS̃ is sent over the digital
channel, thusS̃ can be reconstructed exactly. GiveñS, the
reconstruction error ofS becomes that ofQ. That is,

SDRi =
Var (S)

Var
(

Q̂i −Q
) =

Var (Q)

Var
(

Q̂i −Q
) · SDRdigital

, SDRanalog,i SDRdigital ,

where Q̂i is the reconstruction ofQ at receiveri using the
SISO BC channel. Finally by [24], analog transmission ofQ
achieves SDRanalog,i = 1 + h2

iP , yielding the desired SDRs.
No scheme can achieve better performance, by considerations
similar to those leading to Proposition 2.

We use this HDA approach to prove the following.
Theorem 2:Denote byµ the GSV vector of the augmented

matrices (16) of the channels with some input covariance
matrix Cx. If

Nt
∏

j=1

µj ≤ 1 ≤

Nt−1
∏

j=1

µj , (33)

then any pair (SDR1,SDR2), such that logSDRi ≤
I(Hi, Cx), is achievable.

Proof: By Theorem 1, the condition (33) implies that
there exists a joint unitary triangularization of the augmented
channel matrices (16) with diagonal ratios vector which is all
one except for one element. The diagonal ofTi can thus be
made to satisfy

T1;j,j = T2;j,j , tj , ∀j = 2, . . . , Nt .

If we were to send digital data over the MIMO BC channel
using this particular triangularization, then by (20) we could
send over theseNt − 1 channels a rate of:

Rdigital ,

Nt
∑

j=2

Rj =

Nt
∑

j=2

log t2j .
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This does not change if we replace, in the transmission
scheme,̃x1 by a different signal of the same varianceP/Nt

(since in the SIC process, the decoding of each codebook
only depends on decoding of codebooks withhigher index).
Furthermore, regardless of the signalx̃1, if the codebooks of
subchannels2, . . . , Nt are correctly decoded then receiveri
can obtain the equivalent channel (recall (23)):

y′i;1 = T̃1;1,1x̃1 + z̃i;1 ,

which has, by Proposition 1, a signal-to-noise ratio of

SNRanalog,i = (Ti;1,1)
2 − 1 .

At this stage we have turned the MIMO BC channel into the
combination of a digital channel of rateRdigital and a SISO
BC channel of signal-to-noise ratios SNRanalog,i (i = 1, 2). On
account of Proposition 3, one can achieve

logSDRi = log(1 + SNRanalog) +Rdigital

=

Nt
∑

j=1

log(Ti;j,j)
2

= I(Hi, Cx) , i = 1, 2 ,

where the last equality is on behalf of (17)–(20).
Remark 13:In fact, full triangularization is not needed.

It would have been sufficient to achieve a block-triangular
structure, where the interference between the lastNt − 1
channels is arbitrary (conserving the determinant of the block
in Ti). However, as indicated at the end of Section II-B,
this does not allow to relax the condition (33): a block
corresponding to the lastNt − 1 channels may always be
replaced by a triangular block with a constant diagonal (see
Remark 9). Moreover, the triangular form is advantageous
from the point of view of complexity (see Section II-B).

Theorem 2 does not imply that̄S(H1, H2) is fully achiev-
able, since the conditions on the GSVs should be verified
separately for each input covariance matrixCx. However, in
the sequel we show that forNt ≤ 2, the condition can be
verified directly on the channel matricesH1 andH2. Similarly,
if the channel matrices are of (any) proper dimensions, then
at the limit of high SNR (as the choiceCx = I becomes
optimal), the GSVs of the augmented matrices approach those
of (H1, H2), thus the condition may be applied to the channel
matrices directly, verifying achievability of the whole region
at once.

B. Two Transmit Antennas

In this section we consider the case whereNt = 2. In that
case, the GSV vectorµ(H1, H2) has two elements. We say
that the GSV vector ismixed, if one of the elements is at least
one, and the other is at most one. The following is proven in
Appendix B.

Lemma 1:Let H1 and H2 be two matrices of proper
dimensions, with two columns, and define the augmented
matrices (as in (16)):

Gi =

(

HiC
1/2

I2

)

,

whereC is some Hermitian positive semi-definite matrix. Then
if µ(H1, H2) is mixed,µ(G1, G2) is mixed as well.

We use this lemma and Theorem 2 to prove the following.
Corollary 2: Let H1, H2 be channel matrices withNt = 2.

If µ(H1, H2) is mixed, then the bounding region̄S(H1, H2)
of Proposition 2 is achievable.

Proof: For any point on the boundary of̄S(H1, H2), let
µ be the GSV vector of the augmented matrices with the
correspondingCx. By Lemma 1,µ is mixed as well. Now if
the product ofµ is at most one, we can apply Theorem 2. If
it is greater than one, we switch the indices betweenH1 and
H2, and then apply Theorem 2.

Unfortunately, this result cannot be generalized to the case
Nt > 2: Although at any dimension it remains true that the
number of GSVs smaller or greater than one is not changed
by the augmentation, this property does not hold forproducts
of GSVs as required for applying Theorem 2.

In order to demonstrate this result, consider the simplest
example of the diagonal two-input two-output case:8

Hi =

(

αi 0
0 βi

)

, i = 1, 2 . (34)

The bounding SDR region̄S(H1, H2) now becomes:
⋃

0≤γ≤1

{

(SDR1,SDR2) : (35)

SDRi ≤
(

1 + |αi|
2γP

)(

1 + |βi|
2(1− γ)P

)

}

.

In this expression,γ is the portion of the transmit power sent
over the first band.

We point out a few special cases where points on the surface
of this region are achievable by known strategies.

1) No BW expansion: Analog transmission.If one of the
bands has zero capacity, e.g.,β1 = β2 = 0, (35) reduces
to: SDRi ≤ 1 + |αi|

2P , which is achievable via analog
transmission [24]. If for each user a different band is
usable, e.g.,α1 = β2 = 0, any transmission (digital or
analog) which is orthogonal between users is optimal.

2) Equal SDRs: Digital transmission. A point on the
boundary which satisfies SDR1 = SDR2 may be
achieved by quantizing the source and then using a digital
common-message (multicasting) code for the BC channel
(as described in Section III-B.

3) One equal band: HDA transmission.If for one of the
bands the gains are equal, e.g.,|β1| = |β2| = β, we can
use that band for digital transmission with rateRdigital =
log(1+β2P ) and then apply Proposition 3 to achieve the
bound (35).

Using network modulation, we can extend the HDA trans-
mission (case 3 above), by transforming a diagonal channel
where none of the gains is equal between users, to an equiv-
alent triangular channel where for one of the bands the gain
is equal. This can be done under the condition (33), which
specializes to (allowing to swap roles between matrices):

|α1|
2 ≥ |α2|

2 and |β1|
2 ≤ |β2|

2 (36)

8Being diagonal, this channel may be obtained from a single-input single-
output Gaussian inter-symbol interference channel which has a two-step
frequency response, by applying the discrete Fourier transform.
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Fig. 3. Performance comparison forα1 = 1, β1 = 10, α2 = β2 = 2,
P = 1.
or vice versa. This is an “anti-degradedness” condition: No
user can have better SNR on both bands. This condition
subsumes all the cases mentioned above. It is not known
whether it is a necessary condition, but at least for the case
where both channels are white (αi = βi), it was shown in [30]
that simultaneous optimality isnot possible.

Figure 3 shows a numerical evaluation of performance for
some gain values. It can be appreciated that the optimal
performance imposes almost no tradeoff between users. Indeed
the only tradeoff comes from the need to choose the sameCx.
Thus, in the limit of high SNR, both users attain their optimal
single-user performance. For comparison, we show the per-
formance of a separation-based scheme, where a successive-
refinement source code is transmitted over a digital broadcast
channel code, as well as that of a “naive” HDA scheme, where
transmission is digital over one band and analog over the other.

V. CONCLUSIONS

This work considered the problem of transmitting analog
(source) and digital information over MIMO communication
networks. To this end, we proposed a new decomposition that
triangularizes two matrices simultaneously, using the same
unitary transformation on one side, and different ones — on
the other. This in turn allowed to accommodate a modulation
to the network and the desired application. We then showed
how using one version of this decomposition it is possible to
construct a practical capacity-achieving scheme for two-user
multicasting (which may also be useful in different relaying
problems), whereas a different version of this decomposition
becomes useful when transmitting the same (analog) source
over two different MIMO channels. In the latter case, this
technique allowed deriving new achievable regions, which
proved optimal for a class of channels.

APPENDIX A
JOINT DECOMPOSITION FORNON-QUARE MATRICES

We now complete the proof of the direct part of Theorem 1,
by considering the general proper-dimension case.

We start by decomposingAi using the QR decomposition:

Ai = QiRi , i = 1, 2 ,

whereQi is unitary andRi is generalized upper-triangular
with non-negative diagonal entries. Moreover, the GSV vectors

of (A1, A2) and(R1, R2) are equal,µ(A1, A2) = µ(R1, R2),
sinceAi andRi are equal up to a unitary transformation on
the left.

SinceAi is full-rank andmi ≥ n, the diagonal elements
of Ri are all (strictly) positive and the entries on its lower
(mi − n) rows are all zeros. Note that the square parts[R1]
and[R2] are non-singular, withµ([R1], [R2]) = µ(R1, R2) =
µ(A1, A2). Thus µ([R1], [R2]) � r(T1, T2). Invoking the
proof for the square case in Section II-B, we may decompose
[R1] and [R2] simultaneously as:

[R1] = Ũ1T̃1V
†

[R2] = Ũ2T̃2V
† ,

where r(T̃1, T̃2) = r(T1, T2). Now, construct the unitary
matricesPi, and generalized triangularmi × n matricesTi:

Pi ,

(

Ũi 0
0 Imi−n

)

, Ti ,

(

T̃i

0

)

.

Thus, we arrive at the desired decomposition ofA1 andA2

(5), with Ui , QiPi andV . �

APPENDIX B
PROOF OFLEMMA 1

First note that ifC is singular, then at least one of the
elements ofµ(G1, G2) equals one, suggesting the latter is
mixed. Thus, we are left with the case of a non-singular matrix
C. LetFi , HiC

1/2. We claim thatµ(F1, F2) must be mixed.
This is true, since for a non-singular matrixC: µ(F1, F2) =
µ(H1, H2). It is left to show that ifµ(F1, F2) is mixed, then
so isµ(G1, G2). To that end, define the quadratic functions:

p(x) , det
(

F †
1F1 − xF †

2F2

)

,

q(x) , det
(

G†
1G1 − xG†

2G2

)

.

By Definition 6, the roots ofp(x) andq(x) equal the square of
the elements ofµ(F1, F2) andµ(G1, G2), respectively. Thus
it suffices to prove that if the roots ofp(x) are not on the same
side ofx = 1, then so are the roots ofq(x). By the positive
semi-definitiveness ofFi andGi, both functions are convex-

⋃

with p(0), q(0), p(∞), q(∞) ≥ 0. By the assumption on the
roots ofp(x), it must be thatp(1) ≤ 0. But since

G†
1G1 −G†

2G2 = F †
1F1 − F †

2F2 ,

we have thatq(1) = p(1), and thusq(1) ≤ 0. Finally, a
convex-

⋃

continuous function which is non-negative atx = 0
and for x → ∞, and is non-positive atx = 1 cannot have
both roots on the same side of1. �
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