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Abstract

We propose a linear predictive quantization system for causally transmitting par-

allel sources with temporal memory (colored frames) over an erasure channel. By

optimizing within this structure, we derive an achievability result in the high-rate limit

and compare it to an upper bound on performance. The proposed system subsumes the

well-known PCM and DPCM systems as special cases. While typically DPCM per-

forms well without erasures and PCM suffers less with many erasures, we show that

the proposed solution improves performance over both under all severities of erasures,

with unbounded improvement in some cases.

1 Introduction

The coding and transmission of colored sources under a variety of constraints is a problem

of practical interest. The linear predictive structure as exemplified by DPCM has long

been favored in solutions to this problem as an intuitive and low-complexity way to exploit

source memory.

Classically, scalar DPCM was used for audio and scanline image and video coding,

due to its lower bit rate relative to, e.g., PCM while still allowing sequential processing. In

recent years, inspired by the structure of interframe motion prediction in video coders, there

has been renewed interest in the vector DPCM structure for which optimality as measured

against fundamental bounds was proved in several settings. In [1], it is shown that for

stationary Gaussian sources, the Gaussian rate-distortion bound is achievable at all rates by

vector-quantized DPCM if non-causal pre- and post-filtering is allowed. Furthermore, an

analysis contained in [2], if carried to the stationary setting, shows that for Gauss-Markov

sources, DPCM with causal MMSE estimation is optimal among all causal systems.

In this paper, we take a line of inquiry similar to [2], but also consider channel erasures.

In applications such as real-time internet video conferencing, it is more realistic to assume
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that both a causality constraint on coding and errors during transmission are present. The

combination is particularly interesting because causality severely limits what can be done

about the errors, e.g., channel coding is impossible. Although in this paper we do not find

what the generally optimal coding system is for this set of constraints, we do determine

what is optimal among linear predictive structures under a few assumptions. The linear

predictive structure is chosen as a productive starting template for several reasons: (1) it

was recognized very early that adverse effects of channel errors were reducible by altering

predictors in DPCM [3, 4]; and (2) engineering practice in, e.g., video coding shows that

good prediction (interframe coding) can be traded for robustness against errors (intraframe

coding) within an overall predictive coding framework. However, let us note that while the

work is motivated by practical applications, the solution is a mathematical demonstration

of concept, albeit one that can still be a suggestive guide for designers.

After we formulate the problem more precisely in Section 2, we consider as a solution

the linear predictive quantization system that generalizes both DPCM and PCM in Section

3, where we also show its behavior on simple sources. We optimize performance for gen-

eral stationary Gaussian sources in the high-rate limit in Section 4, and give closed-form

solutions for performance comparisons.

2 Problem formulation

The practical scenario we model is the following. Frames of data indexed by time are

given to the encoder to be immediately encoded (e.g., quantized) at some fixed rate and

then transmitted as packets across a link that erases packets at certain times. A decoder

receives either the correct packet or knows the packet is erased, and immediately decodes

and renders a reproduction frame, possibly aided by intelligent concealment making up for

any missing data. We look for the encoder and decoder pair that optimizes the source-to-

reproduction MSE distortion in the system. Our model for the problem follows.

2.1 Source model

Let {s[t]}t = {(s1[t], ..., sN [t])}t be a vector of N parallel source sequences, which can be

viewed as a sequence of frames. In our notation, motivated by the video coding application,

the bracketed index t is the temporal dimension and the N vector components make up the

(typically very large) spatial dimension. We assume the source is:

1. Spatially i.i.d.: For all t, {si[t]}t is independent of {sj[t]}t whenever i 6= j, and
they have the same distribution. We omit the spatial index i when referring to a

representative scalar sequence {si[t]}t should there be no ambiguity.

2. Temporally autoregressive: Each scalar stream {s[t]}t is stationary AR(P ), char-

acterized by s[t] = z[t] +
∑P

p=1 αps[t − p], with white innovation process z[t] ∼
N (0, Σz), and α1, ..., αP such that all roots of 1 − ∑P

p=1 αpz
−p satisfy |z| < 1.

Denote by Φs(f) = Σz/ |1 − A(f)|2 the power spectral density of s[t], where A(f) =
∑P

p=1 αpe
−j2πfp. The source variance is Σs =

´

1

2

−
1

2

Φs(f)df . The distortion-rate function



Ds(R) of the scalar process {s[t]}t at sufficiently high rates (R ≥ 1
2
log supf |1 − A(f)|2,

where the Shannon Lower Bound is tight) is,

Ds(R) = Σz2
−2R, (1)

which equals the distortion-rate of the innovation process {z[t]}t (cf. [5], p. 233).

In the rest of this paper we always normalizeΣz = 1, so that the P parameters α1, ..., αP

(equivalently, A(f)) entirely characterize the source.

2.2 Channel model

At each time t, the channel C(·) is capable of transmitting a packet of ⌈NR⌉ bits. The chan-
nel has two states. The channel state is an i.i.d. process described by an erasure probability

ǫ. In the no-erasure state occuring with probability 1 − ǫ, the input is reproduced exactly

at the output. In the erasure state occuring with probability ǫ, the output is a special lost

packet symbol ∅ immediately recognizable by the decoder, but there is no feedback to the

encoder.

2.3 Encoder and decoder models

At time t, the causal encoder takes current and past source vectors s[t], s[t − 1], ... as input
and produces a packet Et = ENC(s[t], s[t − 1], ...) of ⌈NR⌉ bits. The causal decoder takes
current and past receptions C(E t), C(Et−1), ... and produces ŝ[t] = DEC(C(Et), C(Et−1), ...),
a reproduction of the newest source vector s[t].

2.4 Performance and objective

The average distortion per scalar sample between source s[t] and its reproduction ŝ[t] at
time t is theMSE distortion averaged over the spatial dimension: d(s[t], ŝ[t]) = 1

N

∑N

i=1(si[t]−
ŝi[t])

2. Define the time-averaged expected distortion to be:

D(R; ǫ) , lim
T→∞

1

T

T
∑

t=1

E {d(s[t], ŝ[t])} ,

where expectation is taken over all source and channel realizations. The objective of the

problem is to minimize the excess distortion ratio

L(R; ǫ) , D(R; ǫ)/Ds(R),

for the supplied R and ǫ and Ds(R) as in (1) , by designing the encoder and decoder. We

see later that when looking at the high-rate limit, it is more insightful to let R grow and ǫ
shrink such that λ , ǫ/2−2R is a fixed constant. In that case, the figure of merit becomes

L∞(λ) , lim
R→∞

L(R; λ2−2R) = lim
R→∞

D(R; λ2−2R)/2−2R, (0 < λ < ∞). (2)

3 Preliminary insights

As discussed in Section 1, we consider the problem within the class of linear predictive

quantization systems for reasons of tractability and the importance that such systems play

in engineering practice.
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Figure 1: A causal, linear predictive quantization system model. Q is a quantizer coding the N -vector x[t].

3.1 Linear predictive quantization system

While more general structures are possible, Fig. 1 shows the linear predictive encoder and

decoder structure we consider in this paper.

Since erasures occur at the packet level, we suppress details relating to bitstream en-

coding and decoding for the channel. With that abridgement, x̂′[t] and x̂[t] are respectively
the channel input and output of the system, with x̂[t] = x̂′[t] when there is no erasure and

x̂[t] = ∅ otherwise.

The quantizer Q takes the differential signal x[t] = s[t] − ∑K

k=1 βkŝ
′[t − k] as input

and produces as output x̂′[t] ∈ X̂t ⊆ RN at rate R per scalar sample (H(x̂′[t])/N =
R). We model Q as a “forward” AWGN channel x̂′[t] = x[t] + q[t], where q[t] is the
quantization error, independent of x[t]. This is a common abstraction and is realized via

entropy-constrained dithered quantization (ECDQ). 1

As required by the problem formulation, the encoder and decoder incur no delay, but

both are allowed to access their entire causal history and adapt to inputs. The encoder’s

source-tracking signal ŝ′[t] is produced by the encoder’s K-th order causal linear predictor

operating on the encoder’s past reconstructions: ŝ′[t] = x̂′[t] +
∑K

k=1 βkŝ
′[t − k]. The

decoder uses an L-th order causal linear predictor to reconstruct the current sample ŝ[t]:
ŝ[t] = x̂[t] +

∑L

l=1 γlŝ[t − l]. Note that a “standard” (fully predictive) DPCM system for

the AR(P ) source uses the P -th order filter, with tap weights α1, ..., αP equal to the source

parameters, in both the encoder and decoder predictors. Alternatively, placing all-zero

filters in the encoder and decoder predictors makes the system equivalent to standard PCM

with no prediction. Therefore, the system here subsumes both DPCM and PCM and admits

a type of continuous hybridization between full-prediction and no-prediction systems.

The following standard “DPCM identity” [3] holds:

ŝ′[t] − s[t] = x̂′[t] − x[t] = q[t]. (3)

In the following sections, we are interested in the regime of the combination of the

following limits:

1. Large spatial dimension: N → ∞. This allows the notational convenience of ana-

lyzing the scalar version of the problem, while still letting the quantizer Q achieve

1Additional gain factors make Q an optimal quantizer for general rates, but they are not needed in high-

rate results. See [1] for examples and further references.



vector quantization performance if it codes a large number of independent samples.

If x[t] is zero-mean Gaussian with variance Σx, the quantization error has variance

Σq = Σx/(2
2R − 1) (4)

in the limit. In practice, at finiteN , we can replaceΣx by a slightly larger term, where

the maximal loss even for scalar transmission is the equivalent of 1
2
log(2πe

12
) ≈ 0.25

bits per scalar sample.

2. Sparse erasures: ŝ′[tǫ − 1] = ŝ[tǫ − 1] before an erasure at tǫ. This allows analyzing
each erasure separately as their distortion effects interact additively. This happens

when erasures occur far apart compared to system memory.

3. High rate: R → ∞. Consequently, Σq ≪ Σz ≤ Σs, and Q as described becomes an

optimal quantizer.

3.2 One-tap prediction for AR(1) Gaussian sources

We defer the main results on general sources to Section 4. In this section, we show how

one-tap DPCM and PCM perform without and with erasures for an AR(1) Gaussian source

s[t]. We then propose to achieve better performance by using one-tap “leaky prediction,”

introduced here not as a novel scheme but to give intuition for the main results.

3.2.1 One-tap DPCM and PCM

Under standard DPCM, the predictors “match” the source and only use one tap of weight,

γ1 = β1 = α1. Under standard PCM, γ1 = β1 = 0. Without erasures, the distortion is

from the quantization error q[t], and is governed by the input variance Σx, as in (4). The

zero-erasure distortions are:

DDPCM(R; 0) =
Σz + α2

1Σq

22R − 1
=

1

22R − 1 − α2
1

DPCM(R; 0) =
Σs

22R − 1
=

1

(1 − α2
1)(2

2R − 1)

If erasures occur, the choice of decoder for a given encoder is less obvious. We can let

x̂[tǫ] = 0whenever the packet at tǫ is erased, in which case the encoder-decoder asynchrony
replaces the quantization error q[tǫ] by an error equal to −x[tǫ], which filters through the

decoder predictor loop as error propagation for t ≥ tǫ.
Under DPCM (still with γ1 = β1 = α1), the distortion is

DDPCM(R; ǫ) = DDPCM(R; 0) + ǫ

[

1

1 − α2
1

− 1 − 3α2
1

1 − α2
1

DDPCM(R; 0)

]

. (5)

Under PCM, for the sample at tǫ, the decoder can do significantly better by switching from
the standard decoder (γ1 = β1 = 0) to the DPCM decoder (γ1 = α1). When we refer to

PCM throughout the remainder of the paper where erasures occur, we will always mean

PCM with this decoder modification during erasures. Therefore,

DPCM(R; ǫ) = DPCM(R; 0) + ǫ
[

1 − (1 − α2
1)DPCM(R; 0)

]

. (6)



In the high-rate limit, the performances in terms of excess distortion ratio [cf. (2)]

corresponding to (5) and (6) respectively become:

L∞

DPCM(λ) = 1 + λΣs = 1 +
λ

1 − α2
1

(7)

L∞

PCM(λ) = Σs + λ =
1

1 − α2
1

+ λ (8)

As anticipated, there is a critical error threshold, λ = 1, such that L∞

DPCM(λ) <
L∞

PCM(λ) if λ < 1 but L∞

DPCM(λ) > L∞

PCM(λ) if λ > 1.

3.2.2 One-tap leaky prediction

The fact that neither PCM nor DPCM dominates over all error severities suggests that an

intermediate encoder predictor, coupled with a suitable decoder predictor, can improve

performance over both schemes. A reasonable possibility we consider in this section is

to optimize over all one-tap predictors β1 between the extremes of DPCM (β1 = α1) and

PCM (β1 = 0). The resulting system is sometimes termed “leaky prediction” [6]. As in

the previous section, we use a decoder matched to the encoder predictor (γ1 = β1) when

there are no erasures, and a DPCM predictor (γ1 = α1) with x̂[tǫ] = 0 whenever there is an

erasure at time tǫ.
2

Without erasures, the distortion is again governed by Σx through (4). With x[t] =
(α1 − β1)s[t − 1] − β1q[t − 1] + z[t], and the summands being mutually independent, the

distortion amounts to:

Dleaky(R; 0) =

[

1 +
(α1 − β1)

2

1 − α2
1

]

(22R − 1 − β2
1)

−1.

When there is an erasure at time tǫ, the encoder-decoder asynchrony propagates error

for t ≥ tǫ, and replaces the erasure-free identity ŝ[t] − s[t] = q[t] by ŝ[t] − s[t] = q[t] −
β(t−tǫ)(z[tǫ] − α1q[tǫ − 1] + q[tǫ]). Taking these errors into account, the distortion is

Dleaky(R; ǫ) = Dleaky(R; 0) + ǫ

[

1

1 − β2
1

− 1 − α2
1 − 2β2

1

1 − β2
Dleaky(R; 0)

]

. (9)

Fig. 2 shows that the optimal amount of prediction “leakage,” as captured by β1 = β∗,

shifts from better prediction (DPCM, β∗ → α1) to better error resilience (PCM, β∗ → 0)
as the error severity ǫ increases.

In the high-rate limit, the excess distortion ratio [cf. (2)] corresponding to (9) is

L∞

leaky(λ) =

[

1 +
(α1 − β1)

2

1 − α2
1

]

+
λ

1 − β2
1

. (10)

The three expressions (7), (8), and (10) all show distortion composed of two terms, the

first being distortion caused by quantization, and the second, distortion caused by channel

erasures. In DPCM, the first term is smaller than in PCM, at the expense of the second being

larger, while in leaky prediction, the encoder predictor β1 optimally adjusts the relative

weights of the two terms for a given λ. Fig. 3 shows leaky prediction outperforming both

DPCM and PCM.

2Or, as an alternative interpretation, we use the erasure-free decoder at an erased sample, but “simulate”

the missing decoder input as x̂[tǫ] = (α1 − β1)ŝ[tǫ − 1].
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Figure 2: Encoder predictor β1 = β∗ that minimizes

Dleaky(R; ǫ) for R = 3 bits/sample and various values

of α1 = {0, 0.1, 0.2, ..., 0.9} (bottom to top).
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Figure 3: DPCM, PCM, and one-tap leaky prediction

performance compared for an AR(1) source with α1 =
0.7, R = 3. The critical error threshold is at λ = 1.

4 Main results

The previous section shows that for AR(1) sources, one-tap leaky prediction performs bet-

ter than DPCM and PCM. As we will see shortly, one-tap predictors are not optimal for

AR(1) sources when there are erasures, even in the high-rate limit. In this section, we de-

rive optimized predictors for the linear predictive quantization system for colored Gaussian

sources in the high-rate limit.

In order to be able to evaluate the systems we develop more meaningfully, we first

develop a simple lower bound on the distortion achievable by any causal system.

4.1 Performance bound

As before, Ds(R) is the distortion-rate function of the source s[t]. D∆(R) is the expected
additional distortion caused by each erasure under some particular scheme, and Dǫ is the

expected distortion on just the erased sample. The distortion can be lower-bounded as:

D(R; ǫ) = (1 − ǫ)D(R; 0) + ǫD(R; 0) + ǫD∆(R)

≥ (1 − ǫ)Ds(R) + ǫDǫ

≥ (1 − ǫ)2−2R + ǫ

D(R; 0) ≥ Ds(R) by the definition of the distortion-rate function. D(R; 0)+D∆(R) is the
total distortion on an erasure at some time tǫ, plus additional distortion thereafter. This is

greater than the distortion at tǫ only, which is in turn lower-bounded by the error variance

of optimal prediction of s[tǫ] from its entire causal past s[tǫ−1], s[tǫ−2], .... This is simply

the variance of the innovation process (Σz = 1).
Consequently, in the high-rate limit, the excess distortion ratio [cf. (2)] satisfies

L∞(λ) ≥ 1 + λ. (11)
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Figure 4: Performance comparison (λ = 2) between three systems and the bound of (11) as a function of the

spectral variation parameter u, for the source with discontinuous spectrum of Example 3. The performance

gaps from either DPCM or PCM to the system with optimized parameters are unbounded when u is taken

arbitrarily large.

4.2 Achievable performance for colored sources at high rate

We have the next result on the performance achievable by schemes of the form of Fig. 1.

Theorem 1. Let s[t] be a stationary Gaussian source with power spectral density Φs(f)

and unit entropy power, i.e., Ns = exp
´

1

2

−
1

2

log Φs(f)df = 1. The excess distortion ra-

tio [cf. (2)]

L∞(λ) = min
Φv(f):Nv=1

{

ˆ 1

2

−
1

2

Φs(f)

Φv(f)
df + λ

ˆ 1

2

−
1

2

Φv(f)df

}

(12)

is achievable, where Φv(f) is any valid power spectrum and Nv is its entropy power.

We call the minimizing Φ∗

v(f) the spectrum of a virtual source. The optimal encoder

predictor to achieve thisL∞(λ) is the DPCM predictor for this virtual source, rather than for

the actual source s[t]. We will also see that this encoder predictor is a spectral compromise

between the DPCM predictor and PCM predictor for s[t].
It is easily verified that L∞(λ = 1) is achieved by Φ∗

v(f) =
√

Φs(f).

Example 2. Applying the λ = 1 case to an AR(1) Gaussian source, the virtual source

spectrum
√

Φs(f) = 1/
∣

∣1 − α1e
−j2πf

∣

∣ is clearly not AR(1). Thus, the possibility of a

one-tap optimal encoder predictor for s[t] is precluded.

Example 3. Applying the result beyond finite-order AR(P ) sources, let s[t] be a colored

Gaussian source with a two-level spectrum: Φs(f) = u > 0 for |f | ≤ 1/4 andΦs(f) = u−1

for 1/4 < |f | ≤ 1/2. (Note that with this parameterization, Ns = 1 for all u > 0.)
The optimal virtual source spectrum will also be two-level, i.e., Φ∗

v(f) = v∗ for |f | ≤
1/4 and Φ∗

v(f) = v∗−1 for 1/4 < |f | ≤ 1/2. The minimization (12) then amounts to

minv>0 u/v + v/u + λv + λ/v. Solving gives v∗ =
√

(λ + u)/(λ + u−1) and L∞(λ) =
√

(λ + u)(λ + u−1).
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Figure 5: The equivalent system at the decoder. When a sample is not erased, the entire decoder implements

1/(1 − B(f)). When a sample is erased, the first two filters are effectively bypassed as the decoder sets ẑ[t]
to 0.

Compare with L∞

DPCM(λ) = 1 + λ (u + u−1) /2 and L∞

PCM(λ) = (u + u−1)/2 + λ for

this source. For u ≫ 1, L∞(λ) grows as
√

u, while L∞

DPCM(λ) and L∞

PCM(λ) both grow as

u, so the performance gap, as measured by excess distortion incurred by DPCM or PCM

over the proposed system, can be arbitrarily large. Fig. 4 compares these systems and the

performance bound.

4.3 Analysis: Constructive derivation of Theorem 1

Let B(f) =
∑K

k=1 βke
−j2πfk, Γ(f) =

∑L

l=1 γle
−j2πfl be respectively the frequency re-

sponses of the encoder and decoder predictors. Let {·}∗ denote the causal minimum-phase

filter with spectrum in the argument. We show next that a linear predictive quantization sys-

tem, with encoder predictor B∗(f) = 1 − {1/Φ∗

v(f)}
∗
, decoder predictor Γ∗(f) = B∗(f)

on a non-erased sample, and decoder predictor Γ∗(f) = 1 − {1/Φs(f)}
∗
on an erased

sample, achieves L∞(λ) in Theorem 1.

Without erasures,

Σs−ŝ =

∣

∣

∣

∣

1 − 1 − B(f)

1 − Γ(f)

∣

∣

∣

∣

2

Σs +

∣

∣

∣

∣

1 − B(f)

1 − Γ(f)

∣

∣

∣

∣

2
Σx

22R − 1
,

so in the high-rate limit, Σs−ŝ is minimized by choosing a matched decoder predictor

Γ(f) = B(f), leaving the erasure-free distortion as

D∗(R; 0) = Σx2
−2R, (13)

where Σx =
´

1

2

−
1

2

Φx(f)df =
´

1

2

−
1

2

|1 − B(f)|2 Φs(f)df . The minimal D∗(R; 0) can be

achieved by choosing the unique stable, strictly causal predictor B(f) that minimizes Σx.

This occurs when Φx(f) is white, hence |1 − B(f)|2 = Ns/Φs(f) and the optimal erasure-

free encoder predictor is B(f) = 1−{Ns/Φs(f)}
∗
. For example, an AR(P ) source {s[t]}t

with innovation variance Σz = 1 has power spectral density Φs(f) = 1/ |1 − A(f)|2 from
Section 2.1. The optimal erasure-free encoder predictor B(f) is then the standard source-

matching DPCM predictor B(f) = A(f), as expected.
When erasures are possible, the encoder predictor B(f) is time-invariant as the encoder

receives no feedback. However, the decoder can adapt. Referring to Fig. 5, suppose the

decoder internally derives an estimated innovation sequence {ẑ[t]}t by filtering {x̂[t]}t

through 1/(1 − B(f)) followed by 1 − A(f). The decoder is to produce the best estimate

of s[t] by applying a third filter, which we claim to be 1/(1−A(f)). In the high-rate limit,

ẑ[t] → z[t]. An erased sample of x̂[t] corresponds to a missing sample of ẑ[t], which the

decoder “patches” with its best causal estimate E {ẑ[t|t − 1, t − 2, ...]} = E {z[t]} = 0. It



is clear that the patched innovation sequence ẑ[t] contains all the information the decoder

has about s[t] and applying the reconstruction filter 1/(1 − A(f)) to ẑ[t] reconstructs the
best estimate of s[t]. This means that, for unerased samples, the decoder’s effective decoder

predictor is Γ(f) = B(f), while for erased samples, it is Γ(f) = A(f). Furthermore, this

adds an error propagation process that is ẑ[tǫ]δ[t − tǫ] filtered by 1/(1 − B(f)), whenever
x̂[tǫ] is an erased sample. In the high-rate limit, this results in an additional distortion of

D∆ =
´

1

2

−
1

2

1/ |1 − B(f)|2 df for each erasure. Thus, the average distortion with erasures

for this setup at high rate is

D∗(R; ǫ) = D∗(R; 0) + ǫD∆

= 2−2R

ˆ 1

2

−
1

2

|1 − B(f)|2 Φs(f)df + ǫ

ˆ 1

2

−
1

2

1

|1 − B(f)|2
df. (14)

Substituting in λ = ǫ/2−2R [cf. (2)] gives immediately

min
Φv(f):Nv=1

L∞

∗
(λ) = min

Φv(f):Nv=1

{

ˆ 1

2

−
1

2

Φs(f)

Φv(f)
df + λ

ˆ 1

2

−
1

2

Φv(f)df

}

,

thereby proving Theorem 1.

As in Section 3.2, there are two terms in (12) of Theorem 1, in which the first is caused

by quantization and the second by channel erasures. The choice of encoder predictor B(f)
again weights the two terms. We can interpret Φv(f) = 1/ |1 − B(f)|2 as the power spec-
tral density of the virtual source v[t] against which B(f) is trying to predict. Depending

on λ, the optimizing virtual source is either spectrally more like s[t] (smaller λ) or more

white (larger λ). If the virtual source spectrum matches Φs(f) of the real source, then B(f)
implements DPCM and L∞

∗
(λ) = 1 + λΣv. If the virtual source spectrum is white, then

B(f) implements PCM and L∞

∗
(λ) = Σv +λ. The minimizing virtual source has spectrum

between these, corresponding to B(f) implementing a hybrid between DPCM and PCM.
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