
Explicit Construction of a Small Epsilon-Net for Linear
Threshold Functions

Yuval Rabani
Computer Science Department

Technion
Haifa 32000

Israel
rabani@cs.technion.ac.il

Amir Shpilka
Computer Science Department

Technion
Haifa 32000

Israel
shpilka@cs.technion.ac.il

ABSTRACT
We give explicit constructions of epsilon nets for linear thresh-
old functions on the binary cube and on the unit sphere. The
size of the constructed nets is polynomial in the dimension n
and in 1

ε
. To the best of our knowledge no such constructions

were previously known. Our results match, up to the exponent
of the polynomial, the bounds that are achieved by probabilistic
arguments.

As a corollary we also construct subsets of the binary cube
that have size polynomial in n and covering radius of n

2
−

c
√
n logn, for any constant c. This improves upon the well

known construction of dual BCH codes that only guarantee
covering radius of n

2
− c
√
n.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Geomet-
rical problems and computations; F.2.m [Analysis of Algo-
rithms and Problem Complexity]: Miscellaneous

General Terms
Theory

Keywords
Epsilon-Net, Explicit Construction, Linear Threshold Function

1. INTRODUCTION
Influenced by the discovery of unexpected connections link-

ing fundamental questions in geometric functional analysis to
problems in theoretical computer science, there has been a re-
cent interest in explicit or algorithmic construction of certain
geometric objects that are known to exist via probabilistic argu-
ments. For example, the celebrated dimension reduction lemma
of Johnson and Lindenstrauss [18] has been derandomized us-
ing the method of conditional expectations [12, 24]. Another

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09, May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

example that is still mostly open is the construction of high di-
mensional nearly-Euclidean linear subspaces of `n1 [17, 15, 16].
This problem is related to the question of constructing com-
pressed sensing schemes [11]; other probabilistic compressed
sensing schemes, using the restricted isometry property [8],
also exhibit a geometric flavor. All these geometric objects
have numerous applications in areas such as coding theory and
data compression, communication complexity, nearest neigh-
bor search, learning theory, and computational linear algebra
(see, e.g., the introduction of [15]), hence the desire to discover
explicit constructions.

In this paper we study what is perhaps the simplest such
question. We construct ε-nets for linear threshold functions on
the binary cube Bn = {−1,+1}n as well as on the unit sphere
Sn−1 ⊂ Rn. A function f : Rn → {−1, 1} is called a lin-
ear threshold function (LTF) iff for some v ∈ Rn and θ ∈ R
we have that f(x) = 1 iff 〈v, x〉 ≥ θ. Notice that when re-
stricted to Sn−1, a linear threshold function is simply the indi-
cator function of a closed spherical cap of Sn−1. Given a mea-
surable set Ω ⊂ Rn endowed with a measure µ and a family F
of measurable subsets of Ω, an ε-net for F is a set S ⊂ Ω such
that for every F ∈ F with µ(F) > ε, we have that |S∩F | > 0.
Constructing ε-nets for natural set systems (Ω, µ,F) has been
studied extensively in some cases. For example, the case where
Ω is the convex hull of a d-points set P and F is the family of
all convex hulls of subsets of P received a lot of attention (see,
e.g., [10, 5]). The case where Ω = [m]d and the set F is the
set of all combinatorial rectangles also received a lot of atten-
tion [13, 19]. To the best of our knowledge, the case of linear
threshold functions has not been previously considered in this
context.

We consider Ω which is either the binary cube or the unit
sphere (endowed with the uniform measure), and the family F
includes the subsets Af = {x ∈ Ω : f(x) = 1}, for all
linear threshold functions f . We construct S ⊂ Ω of cardinal-
ity poly(n, 1/ε) that includes a point from Af for every linear
threshold function f that satisfies µ(Af) ≥ ε, where µ is the
uniform measure on Ω. A random sample of O(n/ε) points is
an ε-net with high probability, and our goal is to construct such
a set explicitly. We prove the following theorem.

THEOREM 1.1. There exist two universal constants a, b >
0 such that for every ε > 0 there is an explicit construction
of an ε-net, Nε ⊂ Bn, for linear threshold functions of size
|Nε| = O(ε−b · na).

Note that when ε = 1/ poly(n) the construction above yields
a polynomial sized set. As a corollary of our construction, we

get a similar construction for the unit sphere.

THEOREM 1.2. There exist two universal constants a, b >
0 such that for every ε = exp(−O(

√
n)) there is an explicit

construction of an ε-net, Sε ⊂ Sn−1, for spherical caps of size
|Sε| = O(ε−b · na).

As another corollary of our construction we also construct
a poly(n) size subset of Bn with covering radius of n

2
−

Ω(
√
n logn). The covering radius r of a set of points S ⊂ Bn

is the smallest ρ such that for every x ∈ Bn there is some s ∈ S
with H(x, s) ≤ ρ, where H denotes Hamming distance. We
note that this construction improves upon the one guaranteed
by dual BCH codes. This result was independently obtained by
Alon [2].

COROLLARY 1.3. There exists a > 0 such that for every
c > 0 there is an explicit construction of a set C ⊂ Bn of size
|C| = n2 · (nc)a such that for every z ∈ Bn there is some
x ∈ C withH(z, x) ≤ n

2
−
√
cn logn.

We note that linear threshold functions play an important role
in both theory and practice. For example, bounded depth TC0

circuits, composed of a constant number of layers of threshold
functions, received considerable attention in complexity theory,
and support vector machines use threshold functions as hypoth-
esis in many learning scenarios. Aside from the intrinsic in-
terest in studying linear threshold functions, our work is moti-
vated by the desire to build methodically a theory of pseudoran-
dom generators for geometric functions. In the algebraic setting
(over GF[2]), ε-biased sample spaces fool linear functions [22];
they were recently composed to construct pseudorandom gener-
ators for low-degree polynomials [25]. Analogously, we hope
that dealing with linear threshold functions is a good starting
point for the gradual construction of more complicated pseudo-
random generators for non-linear geometric functions, which
are needed to resolve some of the questions mentioned earlier.

Our constructions use several ideas from derandomization
theory. The first one is the notion of a k-wise independent dis-
tribution. A set of m random variables on a sample space Ω
is k-wise independent iff every subset of the random variables
of cardinality at most k is independent. There are numerous
applications in computer science for k-wise independent distri-
butions with small support. In particular, poly(n) size k-wise
independent distributions on Bn give a construction of a cover
code with covering radius n

2
−Ω(

√
n). We improve the cover-

ing radius of a poly(n) size set to n
2
−Ω(

√
n logn). The idea

is to concatenate O(logn) samples from a 4-wise independent
distribution with m = n/O(logn) random variables. In order
to restrict the size of the constructed set, we need to consider
only a subset of all possible concatenations. We use a constant
degree expander graph on the sample space Ω (of the 4-wise
independent distribution of length m) and consider all the ran-
dom walks of length O(logn) on it. Then, for each random
walk we concatenate the relevant vectors of length m to get a
vector of length n. We then show that this set has the desired
covering radius. In order to show the more general goal of an
ε-net for LTFs, we note that the construction above works if all
the coefficients defining a LTF f are roughly of the same mag-
nitude. As this is not always the case, the idea is to partition
the set of coordinates into O(logn) “buckets" such that each
of them contains approximately the same weight of coefficients
as the other sets. To get a small set of partitions, we use cer-
tain explicit constructions of perfect hash functions. We then

apply the above construction to each candidate partition to get
the desired ε-net.

Organization.
In Section 2 we give some formal definitions and the neces-

sary background on k-wise independent distributions, expander
graphs and perfect hash functions. We also give some concen-
tration results for threshold functions. In section 3 we give the
construction of a cover code. In Section 4 we give our main
construction for linear threshold functions and in Section 5 we
give the construction for spherical caps.

2. PRELIMINARIES
We will use the following notation. The n-dimensional bi-

nary cube is Bn = {−1, 1}n. The (n − 1)-dimensional unit
sphere in Rn is Sn−1 = {x ∈ Rn : ‖x‖2 = 1}. The Ham-
ming distance on Rn is denoted by H, so H(x, y) is the num-
ber of coordinates i for which xi 6= yi. For x ∈ Rn and
J = {i1, . . . , i|J|} ⊆ [n] we denote xJ = (xi1 , . . . , xi|J|).
We will abuse notation and use (for A ⊂ Rn) H(x,A) to
denote miny∈AH(x, y). For A ⊆ Bn and ρ > 0, we put
Aρ = {x ∈ Bn : H(x,A) ≤ ρ}. The covering radius of a set
C ⊂ Bn is the minimum ρ such that Cρ = Bn. Namely, it is
the minimal ρ such that for every x ∈ Bn there is y ∈ A with
H(x, y) ≤ ρ.

In this paper we focus on linear threshold functions. A vector
v ∈ Rn and a real number θ ∈ R define a linear threshold
function Lv,θ : Bn → {−1, 1} by Lv,θ(x) = sign(〈v, x〉−θ).
In other words, Lv,θ(x) = 1 if 〈v, x〉 ≥ θ and Lv,θ(x) = −1
otherwise. For a linear function Lv,θ we define by Av,θ it set
of accepting inputs. Namely, Av,θ = L−1

v,θ(1) = {x ∈ Bn :

〈v, x〉 ≥ θ}. A spherical cap in Rn is a subset of Sn−1 that is
contained in a half-space. Namely, for every v ∈ Rn and θ > 0
the cap Cv,θ is defined as Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}.
Stated differently, Cv,θ = L−1

v,θ(1) ∩ Sn−1 (we now think of
Lv,θ as a function from Rn to {−1, 1}).

2.1 k-wise independent distributions
A multiset I ⊂ {−1, 1}n such that for every j ∈
{1, 2, . . . , k}, for every {i1, i2, . . . , ij} ⊂ {1, 2, . . . , n}, and
for every z1, z2, . . . , zj ∈ {−1, 1}, satisfy that˛̨˘

x ∈ I : (xi1 , xi2 , . . . , xij) = (z1, z2, . . . , zj)
¯˛̨

=
|I|
2j
,

is called a k-wise independent sample space. Many explicit
constructions of small k-wise independent sample spaces are
known. For example, extended binary BCH codes of length
n = 2m − 1 and designed distance 2t + 2 can be used to
construct a (2t + 1)-wise independent sample space of size
2mt+1 = 2(n+ 1)t (see [6, Chapter 16]).

FACT 2.1. For every integer k > 0 there exists an explicit
construction of a sample space of size O(nk/2) that is k-wise
independent.

Let a multiset S ⊆ {−1, 1}n be a k-wise independent sam-
ple spaces. The following is an easy observation.

OBSERVATION 2.2. For i ∈ [n] and α ∈ {−1, 1}, the mul-
tiset Si,α := {x ∈ S : xi = α} is a k − 1-wise independent
sample space.

The following result was proved by Berger in [7].

LEMMA 2.3 (LEMMA 3.1 IN [7]). Let S ⊂ {−1, 1}n be
a 4-wise independent sample space. Then for every x ∈ Sn−1

we have that E[〈s, x〉] = 0, E[〈s, x〉2] = 1 and E[〈s, x〉4] ≤ 3,
where all expectations are with respect to a uniform choice of
s ∈ S. Moreover, for every x ∈ Rn we have that

Pr
s∈S

»
| 〈s, x〉 | > ‖x‖2√

3

–
≥ 2

11
.

The following lemma is a special case of a lemma of Alon et
al [4].

LEMMA 2.4 (LEMMA 3.2 IN [4]). Let X be a real ran-
dom variable and suppose that its first, second and forth mo-
ments satisfy E[X] = 0, E[X2] = 1 and E[X4] ≤ 3. Then
Pr[X > 1/7] ≥ 1/20. Consequently, if S ⊂ {−1, 1}n is a
4-wise independent sample spaces then for every x ∈ Sn−1 we
have that Prs∈US [〈s, x〉 > 1/7] ≥ 1/20.

Next is an easy corollary of Observation 2.2 and Lemma 2.4.

LEMMA 2.5. Let k > 4 be an integer, S ⊆ {−1, 1}n a
k-wise independent sample space and v = (v1, . . . , vn) ∈ Rn
a unit vector. Let M ⊂ [n] be such that |M | = k − 4 and
the entries of v corresponding to the coordinates in M are the
k − 4 largest entries of v (namely, for every j 6∈ M and every
i ∈M we have that |vj | ≤ |vi|). Then

Pr
x∈S

»
〈x, v〉 ≥ ‖vM‖1 +

1

7
‖v[n]\M‖2

–
≥ 4

5
· 2−k.

PROOF. Let S′ ⊂ S be the set of all s ∈ S such that
sign si = sign vi for every i ∈ M . By definition we have that
|S′| = 2−|M| · |S| = |S|/2k−4. Moreover, by Observation 2.2
we get that S′ is 4-wise independent. Let v′ = (v′1, . . . , v

′
n)

be defined as v′i = 0 for i ∈ M and v′i = vi for i 6∈ M . By
Lemma 2.4 we have that

Pr
s∈S′

»˙
s, v′

¸
>

1

7
‖v′‖2

–
>

1

20
.

By definition of v′ we get that 〈s, v〉 =
P
i∈M si ·vi+〈s, v′〉 =

‖vM‖1 + 〈s, v′〉. Thus,

Pr
x∈S

»
〈x, v〉 ≥ ‖vM‖1 +

1

7
‖v[n]\M‖2

–
≥ 1

20 · 2k−4
=

4

5
·2−k.

2.2 Expander graphs
An undirected graph G = (V,E) is called an (n, d, λ)-

expander if |V | = n, the degree of each node is d, and the sec-
ond largest eigenvalue, in absolute value, of the adjacency ma-
trix of G is λ. For every d = p+ 1, where p is a prime congru-
ent to 1 modulo 4, there are explicit constructions for infinitely
many n of (n, d, λ)-expanders, where λ ≤ 2

√
d− 1 [20, 1].

A random walk of length ` on G is the following random
process. First pick a vertex of G uniformly at random. Denote
this vertex with v1. At the i’th step (for 1 < i ≤ ` we pick
a neighbor of vi−1 uniformly at random and label it with vi.
The walk is the ordered list (v1, v2, . . . , v`). We shall need the
following theorem of Alon et al. [3]

THEOREM 2.6. Let G be an [n, d, λ]-expander. Let
W1, . . . ,W` ⊂ V (G) be some subsets of G, each of size
at least µn ≥ 6λn/d. The probability that a random walk
of length ` stays inside W1,W2, . . . ,W` is at least µ(µ −
2λ/d)`−1.

2.3 Perfect hash functions
A set H of functions h : {1, 2, . . . , n} → {1, 2, . . . ,m}

such that for every S ⊂ {1, 2, . . . , n} with |S| = s there
exists h ∈ H such that |h(S)| = s is called an (n,m, s)-
perfect hash family. For all n, s ∈ N, s ≤ n, there are
explicit constructions of (n,O(s), s)-perfect hash families H
with |H| = 2O(s+log logn) [23]. We shall need the following
strengthening which is immediate corollary of the proofs of [14,
23].

LEMMA 2.7 (PERFECT HASH FUNCTIONS). For every
integer s, there is an explicit family H of hash functions
h : [n]→ [8s] of cardinality |H| = 2(4+o(1))·s+log 2s log logn 1

such that the following holds for every unit vector v ∈ Sn−1.
Let i1, i2, . . . , in be an enumeration of [n] such that
|vi1 | ≥ |vi2 | ≥ · · · ≥ |vin |, and let It denote the set
{i1, i2, . . . , it}. There exists some h ∈ H such that

1. The map h is an injection on Is.

2. Let t ∈ [s− 1]. If v2
it+1 ≤

1
64s
· ‖v[n]\It‖

2
2, thenX

r∈[8s]

min


‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

ff
≥

1

2
· ‖v[n]\It‖

2
2. (1)

For completeness we give the proof in the appendix. The
following is an easy corollary.

COROLLARY 2.8. Let 24 ≤ s ≤ n be integers and H the
hash family guaranteed by Lemma 2.7. There exists constants
c1 and c2 such that one of the following conditions holds (using
the same notation as in Lemma 2.7):

1. either
Ps−1
t=d2s/3e |vit+1 | ≥

√
s

32
‖v[n]\Is‖2 ;

2. or, there exists some h ∈ H such that h is an injec-
tion on Is and for at least c1 · 8s buckets it holds that
‖vh−1(r)\It‖

2
2 ≥ c2

s
· ‖v[n]\It‖

2
2.

PROOF. Let h ∈ H be the map guaranteed by Lemma 2.7
(we shall also use the notations of the lemma). We are guar-
anteed that h is an injection on Is. We now consider two
cases: Case 1: there is some t ∈ [s − 1] such that v2

it+1 ≤
1

64s
· ‖v[n]\It‖

2
2. Case 2: for every t ∈ [s − 1] we have that

v2
it+1 >

1
64s
· ‖v[n]\It‖

2
2.

Consider case 1. We will show that for some constants
c1, c2 at least c1 · 8s buckets satisfy that ‖vh−1(r)\It‖

2
2 ≥

c2
s
· ‖v[n]\It‖

2
2. Assume for a contradiction that less than c1 ·8s

buckets have high norm. By the lemma we know that as there
is some t ∈ [s− 1] such that v2

it+1 ≤
1

64s
· ‖v[n]\It‖

2
2 thenX

r∈[8s]

min


‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

ff
≥ 1

2
· ‖v[n]\It‖

2
2.

1The log 2s factor can be eliminated at the expense of a slight
complication of the construction (adding a preliminary phase
that maps [n] to [s2] and replacing the maps from [n] in the
two-phase construction by maps from [s2]). In our application,
this does not improve the exponent beyond a o(1) factor, as we
use s = Θ(logn).

Hence,

1

2
·‖v[n]\It‖

2
2 ≤

X
r∈[8s]

min


‖vh−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

ff
≤

c1 · 8s ·
2

s
· ‖v[n]\It‖

2
2 + 8s · c2

s
· ‖v[n]\It‖2 =

(16c1 + 8c2) · ‖v[n]\It‖
2
2.

Therefore, for c1 = 1
48

and c2 = 1
49

we get a contradiction,
unless ‖v[n]\It‖

2
2 = 0. However, the claim is trivial if this is

the case.
Let us now assume that we are in case 2. It follows that

s−1X
t=d2s/3e

|vit+1 | ≥
s−1X

t=d2s/3e

1

8
√
s
· ‖v[n]\It‖2 ≥

s−1X
t=d2s/3e

1

8
√
s
· ‖v[n]\Is‖2 ≥

√
s

32
‖v[n]\Is‖2,

where in the last inequality we used the assumption that s ≥
24.

2.4 Concentration of Threshold functions
In order to construct an ε-net for linear threshold functions

we need to understand, for every linear threshold function Lv,θ ,
for which values of θ it holds that Prx∈Bn [Lv,θ(x) = 1] > ε.

THEOREM 2.9. (Chernoff-Hoeffding) For v =
(v1, . . . , vn) ∈ Rn and θ ∈ (0,∞) we have that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

−1

2

„
θ

‖v‖2

«2
!
.

PROOF. Let x = (x1, . . . , xn). We get that for every t > 0

Pr
x∈Bn

[〈x, v〉 > θ] = Pr
x∈Bn

[exp(t · 〈x, v〉) > exp(t · θ)] ≤

E [exp(t · 〈x, v〉)]
exp(t · θ) =

E
ˆQn

i=1 exp(t · xi · vi)
˜

exp(t · θ) =

Qn
i=1 E [exp(t · xi · vi)]

exp(t · θ) =

Qn
i=1

1
2
(exp(t · vi) + exp(−t · vi))

exp(t · θ)

≤
Qn
i=1 exp((t · vi)2/2)

exp(t · θ) = exp(t2‖v‖22/2− t · θ).

By picking t = θ
‖v‖22

we get that

Pr
x∈Bn

[〈x, v〉 > θ] ≤ exp

−1

2

„
θ

‖v‖2

«2
!
.

The following result will be used to determine how large θ
can be, for a given v ∈ Rn so that Lv,θ accepts an ε fraction of
the inputs.

COROLLARY 2.10. Let v = (v1, . . . , vn) ∈ Rn and δ ∈
R+. Assume that |v1| ≥ |v2| ≥ . . . ≥ |vn|. Let 1 ≤ k ≤ n be
an integer. Assume further that |vk| > 0. Then

Pr
x∈Bn

ˆ
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

˜
≤

exp(−k/18) + exp(−δ2/2).

PROOF. We have that

Pr
x∈Bn

ˆ
〈x, v〉 ≥ ‖v[d2k/3e]‖1 + δ · ‖v[n]\[k]‖2

˜
≤

Pr
x[k]∈Zk

2

ˆ˙
x[k], v[k]

¸
≥ ‖v[d2k/3e]‖1

˜
+

Pr
x[n]\[k]∈Z[n]\[k]

2

ˆ˙
x[n]\[k], v[n]\[k]

¸
≥ δ · ‖v[n]\[k]‖2

˜
.

As |v1| ≥ |v2| ≥ . . . ≥ |vk| > 0 we see that in order for the
inequality ˙

x[k], v[k]
¸
≥ ‖v[d2k/3e]‖1

to hold we must have that sign(xi) = sign(vi) for at least 2k/3
of the indices. Using the Chernoff-Hoeffding bound we bound
this probability with

Pr
x[k]∈Zk

2

ˆ˙
x[k], v[k]

¸
≥ ‖v[d2k/3e]‖1

˜
≤ exp(−k/18).

The upper estimate

Pr
x[n]\[k]∈Z[n]\[k]

2

ˆ˙
x[n]\[k], v[n]\[k]

¸
≥ δ · ‖v[n]\[k]‖2

˜
≤

exp(−δ2/2)

also follows immediately from the Chernoff-Hoeffding
bound.

When considering caps and not linear threshold functions
the results are somewhat easier. Recall that Cv,θ is defined as
Cv,θ = {x ∈ Sn−1 : 〈v, x〉 ≥ θ}. For a proof of the next
lemma see e.g. [21].

LEMMA 2.11. Let v ∈ Sn−1 be a unit vector. Then

Pr
x∈Sn−1

[x ∈ Cv,θ] ≤ exp

„
−1

2
nθ2
«
,

where we consider the uniform probability measure on Sn−1.

3. CONSTRUCTION OF A COVERING
CODE

As a warm up for the proof of Theorem 1.1 we give an
explicit construction of a cover code of covering radius
n
2
− c
√
n logn for Bn. Later on we will build on the ideas of

the proof to get the more general result. For convenience we
repeat the claim of Corollary 1.3 here.

Corollary 1.3: There exists a > 0 such that for every c > 0
there is an explicit construction of a set C ⊂ Bn of size
|C| = n2 · (nc)a such that for every z ∈ Bn there is some
x ∈ C withH(z, x) ≤ n

2
−
√
cn logn.

PROOF. Fix c > 0, and let n ∈ N. Put t = dc1 logne, for a
sufficiently large constant c1 that will be later determined. For
simplicity we assume that t divides n. Let J1, J2, . . . , Jt be
the partition of [n] defined by Ji = {(i− 1) · n/t+ 1, . . . , i ·
n/t} (in fact, we can take the Ji-s to be any partition of the
coordinates into t disjoint sets, each of size n/t). Let S ⊂
{−1, 1}n/t be a 4-wise independent distribution. Let m = |S|
and recall that by Fact 2.1 we can assume thatm = O((n/t)2).

Denote S = {s0, . . . , sm−1}. The set C is defined as follows.
For every sequence of signs α = (α1, . . . , αt) ∈ {−1, 1}t
and every 0 ≤ j ≤ m − 1, let xα,j ∈ Bn be defined as the
concatenation (α1 · sj) ◦ . . . ◦ (αt · s(j+t−1 mod m)). That is,
xα,jJi

= αi · s(j+i−1 mod m). In other words, we concatenate
t consecutive elements of S for each of the 2t possible sign
flips. The set C is the collection of all the xα,j-s, i.e. C =
{xα,j : α ∈ {−1, 1}t, 0 ≤ j < m}. Hence, the size of C is
2t ·m = O((n

t
)2 · 2t) ≤ n2 · nc1 .

We now proceed with the analysis of this construction. As
S is 4-wise independent we get by Lemma 2.3 that for every
y ∈ {−1, 1}n/t

Pr
h
| 〈y, s〉 | >

p
n/3t

i
≥ 2

11
.

Fix z ∈ Bn. Denote the event that | 〈zJi , sj+i−1 mod m〉 | >p
n/3t with Xi (where 0 ≤ j ≤ m − 1 is picked uniformly

at random). Recall that E[Xi] ≥ 2/11 and so, by linearity of
expectation, we get that E

ˆPt
i=1Xi

˜
≥ 2t/11. Therefore, for

every z ∈ Bn there exists jz ∈ {0, . . . ,m− 1} such that˛̨̨n
i : | 〈zJi , sjz+i−1 mod m〉 | ≥

p
n/3t

o˛̨̨
≥ 2t

11
.

Set α ∈ {−1, 1}t as αi = sign(〈zJi , sjz+i−1 mod m〉). It
follows thatD

z, xα,j
E

=

tX
i=1

| 〈zJi , sjz+i−1 mod m〉 | ≥
2t

11

p
n/3t ≥

2
√
c1

11
√

3

p
n logn.

To complete the proof, set c1 = 400c to get
˙
z, xα,j

¸
>

2
√
cn logn. We thus obtain that,

H(z, xα,j) =
n

2
− 1

2

D
z, xα,j

E
≤ n

2
−
p
cn logn.

Moreover, |C| ≤ n2 · nc1 = n2 · (nc)400, as required.

4. THE MAIN CONSTRUCTION
We now give an explicit construction of an ε-net set

Nε ⊂ Bn for linear threshold functions. In particular we will
prove Theorem 1.1. For convenience we repeat it here.

Theorem 1.1 There exists two universal constants a, b > 0
such that for every ε > 0 there is an explicit construction of an
ε-net, Nε ⊂ Bn, for linear threshold functions of size |Nε| =
O(ε−b · na).

PROOF. Before giving the construction we explain what
changes are needed from the earlier construction of the cov-
ering code. Consider a unit vector v′ ∈ {−1, 1}n/ logn and let
v be the unit vector in Rn having v′/‖v′‖2 in its first n/ logn
coordinates and zeros elsewhere. Consider the linear function
Lv,
√

logn : Bn → {−1, 1}. It is not hard to see that with
probability 1/ poly(n) over the choice of x ∈ Bn we have that
Lv,
√

logn(x) = 1, for every such v. On the other hand, there
exists a v′ (and actually a random v′ will have the required
property) such that for every y ∈ C, where C is the cover code
constructed in Section 3, we will have that | 〈y, v〉 | = O(1).
Thus, for every y ∈ C we have that Lv,√logn(y) = 0. There-
fore C is not a 1/ poly(n)-net. The reason for the failure of

C is that all the large coordinates of v were concentrated on
a set of size n/ logn that was one of the sets in the partition
of the coordinates with respect to which we constructed C. To
overcome this difficulty we construct sets in analogous way to
the construction of C but with respect to different partitions of
the n coordinates. These partitions will come from the fam-
ily of perfect hash functions discussed in Section 2.3. Another
change that we will have to make is in the way that we con-
catenate short strings (of length O(n/ logn) in order to get
length n strings. Previously we simply concatenated consecu-
tive strings. Now we will have to concatenate them according to
an expander walk. The reason being that there will beO(logn)
sets in the partitions from which we will have to make sure that
we get the “correct” contribution. We now turn to the actual
construction (also replacing 1/poly(n) with ε).

Let ε > 0 be given. We assume that ε > 2−n/100 as oth-
erwise we can pick N = Bn. Let t = dc log 2/εe, for some
absolute constant c that will be later determined. We assume
w.l.o.g. that t ≥ 24. We will later need this assumption (with-
out explicitly referring to it) for applying the result of Corol-
lary 2.8. Set k = 5 and d = 218. Similarly to the case
of cover codes, let S ⊂ {−1, 1}n be a k-wise independent
sample space. Let m = |S|. By Fact 2.1 we can assume
that m = |S| = O(nk/2). Denote S = {si}mi=1. As men-
tioned above we will need to consider many different partitions
of the coordinates, so let H be the (n, 8t, t)-perfect hash fam-
ily guaranteed by Lemma 2.7. We think of every h ∈ H as
partitioning the coordinates to 8t sets {Jh,1, . . . , Jh,8t} with
Jh,i = h−1(i). Let Jh = {Jh,1, . . . , Jh,8t} be the collection
of the sets in the partition. Note that the sets in Jh are not nec-
essarily of the same size. In order to concatenate elements of
S to create a word in Bn we need to consider random walks
on an expander graph. Let G be an (m, d, d/100)-expander
with node set S. In other words, we identify the i-th node of
G with si. In particular a random walk (w1, . . . , w`) on G is a
sequence of ` elements from S. We now explain how to mix all
these ingredients together to get the final construction.

The set Nε contains all the points xh,w (that will be soon
defined), where h ∈ H and w is a walk of length 8t in G. We
now explain how to construct xh,w. Let h ∈ H be an hash
function and w = (w1, . . . , w8t) ∈ S8t be a random walk on
G. Let i ∈ {1, 2, . . . , 8t}. Let w′i be the first |Jh,i| bits of
wi. The reason for this is that it may be the case (and it is most
likely the case) that |Jh,i| < n and so we need to cut the last
bits ofwi to get a vector of length exactly |Jh,i|. We now define

xh,w|Jh,i = w′i = first |Jh,i| bits of wi.

As the collection {Jh,i}8ti=1 is a partition of [n] we get that in-
deed xh,w ∈ Bn.

A good way to understand the construction is the following.
We would like to define a point x = xh,w ∈ Nε. To do so
we first map the coordinates of x to 8t buckets according to
h. Assume that the set Jh,i was mapped to the i’th bucket.
Now, we would like to assign a value to xJh,i from the k-wise
independent set S, and we would like to do so for every i ∈ [8t].
As there are m8t possibilities for such assignments we have
to pick a small subset of all possible assignments. We do so
by taking an expander walk on an expander with m vertices.
Given a walk w = (w1, . . . , w8t) of length 8t we would like to
consider the assignment xJh,i = wi. The final thing to notice
is that |Jh,i|may be smaller than n and so we only consider the

first |Jh,i| bits of wi. Going over all i ∈ [8t] we get the vector
xh,w. An easy bound on the size of Nε is

|Nε| = d8t−1 ·m = O(d7 · (2/ε)8c log d · nk/2) =

O
“
na · (1/ε)b

”
,

where a = k/2 and b = 8c log d are absolute constants. We
now show that Nε is an ε-net for linear threshold functions. Let
Lv,θ be a linear threshold function, where ‖v‖2 = 1, such that

Pr
x∈Bn

[Lv,θ(x) = 1] ≥ ε.

Let i1, i2, . . . , in be an enumeration of [n] such that vi1 ≥
vi2 ≥ · · · ≥ vin , and let Ir denote the set {i1, i2, . . . , ir}. We
now show that there exists xh,w inNε for which Lv,θ(xh,w) =
1 which implies that Nε is an ε-net for linear threshold func-
tions.

We analyze three different cases. The first is when the
support of v is small. The second is when the support is not
too small, but most of the mass of v is concentrated on a
few coordinates (this case corresponds to the first bullet in
Corollary 2.8). The last case is when the mass of v is “nicely”
spread. We shall make use of the following notations. Given
the k-wise independent set S and an index i ∈ [8t], consider
the first Jh,i coordinates of every element in S. Denote this set
with Sh,i. Clearly Sh,i is k-wise independent. We also define,
for every i ∈ [8t], J ′h,i = h−1(i) \ It.

Case 1: Assume that the size of the support of v is at most t.
Clearly, for every x ∈ Bn we have that 〈x, v〉 ≤ ‖v‖1. We now
show that there is some xh,w ∈ Nε with 〈x, v〉 = ‖v‖1. This
clearly implies that Lv,θ(xh,w) = 1. Indeed, Lemma 2.7 guar-
antees that there is some h ∈ H that is injective on It. Namely,
it maps all the nonzero coordinates of v to different buckets. As
a bucket now contains at most one nonzero element, we see that
for each i ∈ [8t] we have that

Pr
s∈Sh,i

ˆ˙
s, vJh,i

¸
= ‖vIt∩Jh,i‖1

˜
≥ 1

2
, (2)

where we used the fact that each bucket contains at most one
nonzero element so we only need s to have the correct sign.
For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i
that belong to the “good” sets defined in Equation (2). Namely,
those elements from Sh,i that have a large inner product with
vJh,i . Clearly, for every i we have that |Ai|/|Sh,i| ≥ 1

2
. We

will now show that there exist a random walk on G such that
for every i, wi ∈ Ai. Indeed, G is an [n, d, λ]-expander and
so Theorem 2.6 guarantees that if 1

2
> 2λ/d then there exists a

random walk that hits all theAi’s. As we picked a graphGwith
λ ≤ d/100 we have the required property. Thus, there exists
a walk w = (w1, . . . , w8t) such that for every i, wi ∈ Ai.
Calculating we get thatD

xh,w, v
E

=
8tX
i=1

˙
wi, vJh,i

¸
=

X
i∈h(It)

˙
wi, vJh,i

¸
=

X
i∈h(It)

|vi| = ‖v‖1

as required. This completes the analysis of the first case.

Case 2: Assume that
Pt−1
r=d2t/3e |vit+1 | ≥

√
t

32
‖v[n]\It‖2 (this

is the first bullet of Corollary 2.8). Similarly to the first case
(or, using Lemma 2.5) we get that there is xh,w ∈ Nε such thatD

xh,w, v
E
≥ ‖vIt‖1 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2. (3)

By Corollary 2.10 we get that

Pr
x∈Bn

»
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

–
≤

exp(−t/18) + exp

−1

2

„√
t

32

«2
!

= exp(−γt),

for some absolute constant γ > 0. If we pick c large enough
(i.e. c ≥ 1/γ) then for t = dc log(2/ε)e we get that

Pr
x∈Bn

»
〈x, v〉 ≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2

–
≤ exp(−γt) < ε.

As we assumed that Prx∈Bn [Lv,θ(x) = 1] ≥ ε we have that

θ < ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2. (4)

By Equation (3) it now follows that there is xh,w ∈ Nε such
that D

xh,w, v
E
≥ ‖vId2t/3e‖1 +

√
t

32
‖v[n]\It‖2 > θ.

Hence, for this xh,w we get that Lv,θ(xh,w) = 1 as required.
This completes the analysis of the second case.

Case 3: We now assume that
Pt−1
r=d2t/3e |vit+1 | <

√
t

32
‖v[n]\It‖2. Hence, Corollary 2.8 implies that there exists

some h ∈ H such that h is an injection on It and for at
least c1 · 8t buckets r ∈ [8t] it holds that ‖vh−1(r)\It‖

2
2 ≥

c2
t
· ‖v[n]\It‖

2
2, for two universal constants c1 and c2. Denote

the set of ≥ c1 · 8t “good” buckets r with R ⊂ [8t]. It follows
that for every i ∈ R

‖vJ′
h,i
‖2 ≥

r
c2
t
· ‖v[n]\It‖2.

By Claim 2.5, specialized to k = 5, we get that for every i ∈
h(It)

Pr
s∈Sh,i

»˙
s, vJh,i

¸
≥ ‖vIt∩Jh,i‖1 +

1

7
‖vJ′

h,i
‖2
–
≥

4

5
· 2−5 =

1

40
, (5)

where we recall that by our assumption on h we have that |It ∩
Jh,i| = 1. In addition, Lemma 2.4 implies that for i 6∈ h(It)

Pr
s∈Sh,i

»˙
s, vJh,i

¸
≥
‖vJh,i‖2

7

–
≥ 1

20
. (6)

For every i ∈ [8t] denote with Ai ⊆ Sh,i the set of s ∈ Sh,i
that belong to the “good” sets defined in Equations (4), (6).
Namely, those elements from Sh,i that have large inner product
with vJh,i . Clearly, for every i we have that |Ai|/|Sh,i| ≥
min(1

40
, 1

20
) = 1

40
. We will now show that there exist a random

walk on G such that for every i, wi ∈ Ai. Indeed, G is an

[n, d, λ]-expander and so Theorem 2.6 guarantees that if 1
40
>

2λ/d then there exists a random walk that hits all the Ai’s. As
we picked a graph G with λ ≤ d/100 we have the required
property. Thus, there exists a walk w = (w1, . . . , w8t) such
that for every i, wi ∈ Ai. Calculating we get thatD

xh,w, v
E

=

8tX
i=1

˙
wi, aJh,i

¸
=

X
i∈h(It)

˙
wi, vJh,i

¸
+

X
i 6∈h(M)

˙
wi, vJh,i

¸
≥

X
i∈h(It)

(‖vIt∩Jh,i‖1 +
1

7
‖vJ′

h,i
‖2) +

X
i6∈h(It)

‖vJh,i‖2
7

=

‖vIt‖1 +
1

7

X
i∈[8t]

‖vJ′
h,i
‖2 ≥ ‖vIt‖1 +

1

7

X
i∈R

‖vJ′
h,i
‖2 ≥

‖vIt‖1 +
1

7

X
i∈R

r
c2
t
· ‖v[n]\It‖2 ≥

‡

‖vIt‖1 +
8c1
√
c2

7
·
√
t · ‖v[n]\It‖2 ≥

‖vIt‖1 +
8c1
√
c · c2

7
·
p

log(2/ε) · ‖v[n]\It‖2 ≥
∗

‖vIt‖1 +
p

2 log(2/ε) · ‖v[n]\It‖2 >
† θ,

where inequality (‡) follows from the fact that |R| ≥ c1 · 8t,
inequality (∗) holds for a large enough universal constant c and
inequality (†) holds by Equation (4) (the bound on θ from Case
2 also holds here of course). Thus, Lv,θ(xh,w) = 1 as required.
This concludes the proof of Theorem 1.1.

5. CONSTRUCTION OF ε-NETS FOR
SPHERICAL CAPS

In this section we show how to construct ε-nets for spherical
caps. In particular we prove Theorem 1.2.

Theorem 1.2 There exists two universal constants a, b > 0
such that for every ε > 0 there is an explicit construction of an
ε-net, Sε ⊂ Sn−1, for spherical caps of size |Sε| = O(ε−b·na).

A first natural attempt is to check whether the ε-net for
threshold functions is also an ε-net for spherical caps. As we
are looking for subsets of the sphere Sn−1 we consider the nat-
ural embedding of Bn in Sn−1 that shrinks every vector by a
factor of

√
n. Namely, set Bn = {−1/

√
n, 1/

√
n}n. In this

section whenever we discuss the boolean cube we will refer to
the set Bn. In particular we will view every subset of Bn as a
subset of Bn. To see that the boolean cube (as a subset of Sn−1)
is not an ε-net for a polynomially small ε consider the cap de-
fined by v = (1, 0, . . . , 0) and θ =

p
log(1/ε)/n. We see that

Lv,θ(Bn) = 0 whereas the cap Cv,θ = L−1
v,θ(1) ∩ Sn−1 has

measure poly(ε). However, it turns out that if an ε-net for LTFs
does not hit a large enough cap, then a “rotation” of it does hit
the cap. Therefore, the union of an ε′-net for linear threshold
functions and its rotation yields an ε-net for spherical caps. In-
deed, the reason that v = (1, 0, . . . , 0) and θ =

p
log(1/ε)/n

show that the boolean cube is not an ε-net is that all the mass
of v is concentrated on a few coordinates (actually only 1 co-
ordinate). On the other hand, if it was the case that no set of
O(log(1/ε)) coordinates contains more than, say, 3/4 of the
total mass of v then the set Nε guaranteed by Theorem 1.1,
will hit the cap C

v,
√

2 log(1/ε1/16)/n
which by Lemma 2.11 is

of weight at most ε1/16. Indeed, repeating the proof of The-
orem 1.1 we see that there is an element x ∈ Nε such that if
M ⊂ [n] is the set of O(log 1/ε) largest coordinates of v then

〈x, v〉 >
p

2 log(1/ε)/n · ‖v[n]\M‖2 ≥(∗)

(1/4) ·
p

2 log(1/ε)/n =
q

2 log(1/ε1/16)/n,

where inequality (∗) follows from the fact that at least 1/4 of
the mass of v is supported on the set of coordinates [n] \M .
Hence, all that we have to do is to find a way of spreading out
the coordinates of v so that the mass is “nicely” distributed on
many coordinates. Our approach to solving this problem is the
following: We show that for the Fourier matrix F , either Fv
has the property that its mass is “well spread” or v itself is well
spread. Then we simply let Sε = Nε′ ∪ F (Nε′) for some
ε′ = poly(ε) where Nε′ is an ε′-net for LTF’s. We now give
the formal proof.

PROOF OF THEOREM 1.2. As before we let i1, i2, . . . , in
be an enumeration of [n] such that vi1 ≥ vi2 ≥ · · · ≥ vin ,
and Ir denote the set {i1, i2, . . . , ir}. Assume that 2 n = 2k

for some integer k. Let F be the n × n Fourier matrix. In
other words, each coordinate of F is in {−1/

√
n, 1/

√
n} and

the rows of F are orthogonal. The following lemma shows that
Fv or v are “well spread”.

LEMMA 5.1. For every two subset M1,M2 ⊂ [n] of size
|M1|, |M2| ≤

√
n/20 and any unit vector v ∈ Rn we have

that ‖(Fv)M1‖2 ≤ 3/4 or ‖vM2‖2 ≤ 3/4.

PROOF. The proof follows the following lemma of [17]
(specialized for L = 2).

LEMMA 5.2 (LEMMA 4.2 OF [17]). Let T be a matrix
obtained by concatenating rows of two unitary n× n matrices
H1 and H2 with coherence3 δ. Then, for any set of coordinates
M ⊂ [2n] of size |M | = s, and any unit vector v ∈ Rn we
have that ‖(Tv)M‖22 ≤ 1

2
(1 + δs) · ‖Tv‖22.

Indeed, let T be the matrix whose first n rows are the iden-
tity matrix and the last n rows are F . Then, the coherence
of T is δ = 1/

√
n. Given two subsets M1,M2 ⊂ [n] of size

|M1|, |M2| ≤
√
n/20, letM ′2 be the subset of {n+1, . . . , 2n}

obtained by adding n to each element of M2. Let M =
M1 ∪M ′2. Then for any unit vector v ∈ Rn it holds that

‖(Tv)M‖2 ≤
r

1

2
(1 + δ|M |) · ‖Tv‖2 ≤

p
1.1/2 · ‖Tv‖2 < 3/4.

This completes the proof of Lemma 5.1.
2If it is not the case then we can work with n′ = 2k such that
n < n′ < 2n.
3The coherence of H1 and H2 is the largest inner product be-
tween a row of H1 and a row of H2.

Let Nε′ ⊂ {−1/
√
n, 1/

√
n}n be an ε′-net for linear thresh-

old functions, for some ε′ that will be later determined. Define
Sε = Nε′ ∪ F (Nε′). In other words, Sε is the union of Nε′
with the rotation of Nε′ by F . Note that as F is unitary we
have that indeed Sε ⊂ Sn−1. We now show that Sε is in-
deed an ε-net for spherical caps. Let Cv,θ be a spherical cap
of weight ε. By Lemma 2.11 we see that θ ≤

p
2 log(1/ε)/n.

Let u = Tv, where T is the matrix defined in the proof of
Lemma 5.1. By Lemma 5.1 we get that no set of

√
n/10 co-

ordinates of u contains more than 3/4 of the total mass of u.
As u = Tv = (v, Fv) (the concatenation of v and Fv) and
‖v‖ = ‖Fv‖ we get that either in v or in Fv, no set of

√
n/20

coordinates contains more than 3/4 of the total mass. Assume
w.l.o.g. that in Fv no set of

√
n/20 coordinates contains more

than 3/4 of the total mass (the analysis for v is similar). Let
It ⊂ [n] be the set of largest4 t = dc log(1/ε′)e ≤

√
n/20 co-

ordinates of Fv (note that c, t and It are chosen as in the proof
of Theorem 1.1). In particular, no coordinate in It is the zero
coordinate. Following the proof of Theorem 1.1, we note that
we are either in Case 2 or Case 3 there and hence, for a large
enough c, Nε′ contains an element x ∈ Nε′ such that5

〈x, Fv〉 ≥(†) 1√
n
·
p

2 log(1/ε′) · ‖(Fv)[n]\It‖2 ≥
(∗)

1√
n
·
p

2 log(1/ε′) · 1

4
=
q

2 log(1/ε′1/16)/n,

where inequality (†) is implied either by Equation (3) (in Case
2) or by the conclusion of Case 3. Inequality (∗) follows from
the fact that dc log(1/ε′)e <

√
n/20 and the assumption that

every subset of
√
n/20 coordinates of Fv contains at most 3/4

of the mass of Fv. Hence, Fx ∈ F (Nε′) ⊂ Sε and

〈Fx, v〉 = 〈x, Fv〉 ≥
q

2 log(1/ε′1/16)/n =

p
2 log(1/ε)/n ≥ θ,

for ε′ = ε16. This shows that Sε is indeed an ε-net for spherical
caps. Moreover, we have that

|Sε| ≤ 2|Nε′ | ≤ O(ε′−b · na) = O(ε−b
′
· na),

for absolute constants a and b′. This completes the proof of
Corollary 1.3.

Acknowledgement
We thank Noga Alon and Avi Wigderson for helpful discus-
sions and for bringing [23] to our attention. We also thank Noga
for sharing his proof of corollary 1.3 with us.

6. REFERENCES
[1] A. Lubotzky, R. Phillips, and P.Sarnak. Ramanujan

graphs. Combinatorica, 8(3):261–277, 1988.
[2] N. Alon. Private communication, 2008.
[3] N. Alon, U. Feige, A. Wigderson, and D. Zuckerman.

Derandomized graph products. Computational
Complexity, 5(1):60–75, 1995.

4Recall that we assume that ε > exp(−O(
√
n)).

5The factor of 1√
n

comes from viewing Bn as a subset of Sn−1.
In fact, we can get a much better inner product but we do not
try to optimize.

[4] N. Alon, G. Gutin, and M. Krivelevich. Algorithms with
large domination ratio. J. Algorithms, 50(1):118–131,
2004.

[5] N. Alon, H. Kaplan, G. Nivasch, M. Sharir, and
S. Smorodinsky. Weak ε-nets and interval chains. In
Proceedings of the nineteenth annual ACM-SIAM
symposium on Discrete algorithms (SODA), pages
1194–1203, 2008.

[6] N. Alon and J. Spencer. the probabilistic method. J.
Wiley, 3 edition, 2008.

[7] B. Berger. The fourth moment method. SIAM J. Comput.,
26(4):1188–1207, 1997.

[8] E. J. Candés and T. Tao. Near-optimal signal recovery
from random projections: universal encoding strategies.
IEEE Trans. Inform. Theory, 52(12):5406–5425, 2006.

[9] J. L. Carter and M. N. Wegman. Universal classes of
hash functions. J. Comput. Syst. Sci., 18:143–154, 1979.

[10] B. Chazelle. Computational geometry: a retrospective. In
Proceedings of the twenty-sixth annual ACM symposium
on Theory of computing (STOC), pages 75–94, 1994.

[11] D. L. Donoho. Compressed sensing. IEEE Transactions
on Information Theory, 52(4):1289–1306, 2006.

[12] L. Engebretsen, P. Indyk, and R. O’Donnell.
Derandomized dimensionality reduction with
applications. In Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 705–712, 2002.

[13] G. Even, O. Goldreich, M. Luby, N. Nisan, and
B. Velickovic. Approximations of general independent
distributions. In Proceedings of the 24th Annual ACM
Symposium on Theory of Computing, pages 10–16, 1992.

[14] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing a
sparse table with 0(1) worst case access time. J. ACM,
31(3):538–544, 1984.

[15] V. Guruswami, J. R. Lee, and A. A. Razborov. Almost
euclidean subspaces of ln1 via expander codes. In
Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
353–362, 2008.

[16] V. Guruswami, J. R. Lee, and A. Wigderson. Euclidean
sections of with sublinear randomness and
error-correction over the reals. In Approximation,
Randomization and Combinatorial Optimization.
Algorithms and Techniques, 11th International
Workshop, APPROX 2008, and 12th International
Workshop, RANDOM 2008, pages 444–454, 2008.

[17] P. Indyk. Uncertainty principles, extractors, and explicit
embeddings of l2 into l1. In Proceedings of the 39th
Annual ACM Symposium on Theory of Computing
(STOC), pages 615–620, 2007.

[18] W. B. Johnson and J. Lindenstrauss. Extensions of
lipschitz maps into a hilbert space. Contemporary
Mathematics, 26:189ÂŰ206, 1984.

[19] N. Linial, M. Luby, M. E. Saks, and D. Zuckerman.
Efficient construction of a small hitting set for
combinatorial rectangles in high dimension.
Combinatorica, 17(2):215–234, 1997.

[20] G. A. Margulis. Explicit group-theoretic constructions of
combinatorial schemes and their applications in the
construction of expanders and concentrators. Problems of

Information Transmission, 24(1):39–46, 1988.
[21] J. Matousek. Lectures on discrete Geometry. GTM.

springer, 2002.
[22] J. Naor and M. Naor. Small-bias probability spaces:

Efficient constructions and applications. SIAM J. on
Computing, 22(4):838–856, 1993.

[23] J. P. Schmidt and A. Siegel. The analysis of closed
hashing under limited randomness (extended abstract). In
Proceedings of the Twenty Second Annual ACM
Symposium on Theory of Computing (STOC), pages
224–234, 1990.

[24] D. Sivakumar. Algorithmic derandomization via
complexity theory. In Proceedings on 34th Annual ACM
Symposium on Theory of Computing (STOC), pages
619–626, 2002.

[25] E. Viola. The sum of d small-bias generators fools
polynomials of degree d. In Proceedings of the 23rd
Annual IEEE Conference on Computational Complexity
(CCC), pages 124–127, 2008.

APPENDIX
A. PERFECT HASHING

PROOF OF LEMMA 2.7. Our proof uses the construction of
perfect hash families due to Schmidt and Siegel [23]. The con-
struction is a clever oblivious implementation of the Fredman,
Komlós, and Szemerédi adaptive hashing scheme [14].

The FKS scheme proceeds in two phases. The first phase
of Schmidt and Siegel’s construction is identical to the first
phase of the FKS scheme. It applies a map f : [n] → [s],
taken from a pairwise independent family of hash functions
F . There are known explicit constructions of F with |F| =

2log s+log logn+O(1) [9]. A pairwise independent family of hash
functions F has the following property. If f is chosen uni-
formly at random from F , then for every x, y ∈ [n], x 6= y, it
holds that f(x) is distributed uniformly in [s], even when con-
ditioned on f(y). In particular, Pr[f(x) = f(y)] = 1

s
.

Let S ⊂ {1, 2, . . . , n} be an arbitrary set of size |S| ≤ s.
Consider the following event.

sX
j=1

|f−1(j) ∩ S|2 < 4s. (7)

We now show that the probability of this event, when f is cho-
sen uniformly at random from F , is more than 1

2
. Indeed, de-

noting by χp the indicator of an event p, we have that

E

"
sX
j=1

|f−1(j) ∩ S|2
#

= E

" X
x,y∈S

χf(x)=f(y)

#
=

X
x,y∈S

E
ˆ
χf(x)=f(y)

˜
≤ 2s− 1.

By applying Markov’s inequality we conclude that

Pr

"
sX
j=1

|f−1(j) ∩ S|2 ≥ 4s

#
<

1

2
. (8)

The second phase of the FKS hashing scheme is adaptive,
and depends on the hashed set S. The idea is the following.
If ci elements of S landed in bucket i ∈ [s], then by map-
ping this bucket to c2i buckets using a pairwise independent

family of hash functions, it is likely that no collision between
the elements of S occurs. As the first phase guarantees thatP
i∈[s] c

2
i = O(s), we end up with a hash table of size O(s).

The Schmidt and Siegel implementation proceeds as follows. It
uses a pairwise independent family of hash functions G. Here
it will be convenient to assume that g ∈ G maps [n] to bit vec-
tors. So every g ∈ G is a function g : [n]→ {0, 1}2+log s. We
can take |G| = 2log s+log logn+O(1). The second phase uses a
selection of s (not necessarily distinct) hash functions from G.
The hash functions are selected and used as follows. Take a
sequence of log s hash functions g1, g2, . . . , glog s ∈ G. Notice
that there are at most |G|log s = 2log2 s+log s log logn+O(log s)

such sequences. Also take a sequence of s non-negative inte-
gers c1, c2, . . . , cs that satisfy

Ps
j=1 cj = s and

Ps
j=1 c

2
j <

4s. There are at most 22s such sequences (easily bounded by
writing the sequence elements in unary notation, separated by
zeros). This sequence is our guess of the bucket loads due to S
after the first phase. Also use an assignment a : [s] → [log s]
such that 1 is assigned to s

2
elements of [s], 2 is assigned to s

4
elements of [s], and in general i is assigned to s

2i elements of
[s]. (Exceptionally log s is assigned to 2 elements of [s].) The

number of such assignments is at most 2s·(1+
Plog s

i=1 2−i) < 22s

(write the s assigned values in unary, separated by zeros). The
assignment a is our guess as to which of the log s selected hash
functions should be used for each bucket.

Each setting of f , g, c and a defines a hash function h ∈ H
as follows. For every x ∈ [n],

h(x) =
X
i<f(x)

2d2 log cie + ḡa(f(x))(x),

where ḡa(i)(x) is the first d2 log cie bits of ga(i)(x). Notice that
|H| ≤ 24s+log2 s+log 2s log logn+O(log s), implying the claim in
the lemma.6 Also notice that each h ∈ H maps [n] to

sX
i=1

2d2 log cie ≤ 2 ·
sX
i=1

c2i < 8s,

as required.
Consider a vector v ∈ Sn−1. Let S = Is. For this set

S, Equation (7) holds for at least half of the choices of f (by
Equation (8)). Fix any such choice f . For i = 1, 2, . . . , s, let
Ci = {x ∈ S : f(x) = i}. Consider the choice of ci = |Ci|,
for i = 1, 2, . . . , s. Fix i. For every g ∈ G and x ∈ [n], let
ḡ(x) denote the first d2 log cie bits of g(x). Consider the “bad"
event Ai = Ai(g) = ∃x, y ∈ Ci, x 6= y : ḡ(x) = ḡ(y).
As G is a pairwise independent family of hash functions, if g is
chosen uniformly at random in G, then Pr [Ai] ≤

`
ci
2

´
· 1
c2i
<

1
2

. Therefore, there exists a choice of g1 that is good for a set
J1 ⊂ [s] of buckets of cardinality |J1| = s

2
. Similarly, for j =

2, 3, . . . , log s − 1, there exists a choice of gj that is good for
a set Jj ⊂ [s] \

S
j′<j Jj′ of cardinality |Jj | = s

2j . Similarly,
there exists a choice of glog s that is good for both elements in
[s] \

S
j<log s Jj . So, for every f that satisfies Equation (7),

there is a choice of g, c, and a such that the resulting hash
function h is an injection on Is.
6The factor of log 2s can be saved by adding, prior to the appli-
cation of f , a preliminary mapping of [n] to [s2] using another
pairwise independent family of hash functions. The maps f
and g1, g2, . . . , glog s then need to be modified to have domain
[s2] instead of [n]. In our application, this does not affect the
asymptotic bounds beyond lower order terms.

Finally, we show that if there exists t ∈ [s − 1] such that
v2
it+1 ≤

1
64s
· ‖v[n]\It‖

2
2, then with high probability f satisfiesX

r∈[s]

min


‖vf−1(r)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

ff
≥ 1

2
· ‖v[n]\It‖

2
2.

(9)
Equation (9) implies Equation (1), as the gi-s only further split
hash buckets.

Let Xi
j be the indicator random variable for the event that

f(j) = i. As Pr[f(j) = i] = 1
s

, we have that

E
ˆ
‖vf−1(i)\It‖

2
2

˜
= E

"
nX

j=t+1

Xi
jv

2
j

#
=

1

s
·

nX
j=t+1

v2
j =

1

s
· ‖v[n]\It‖

2
2.

Moreover, as f comes from a pairwise independent family of
hash functions, for fixed i the random variablesXi

j are pairwise
independent, so

σ2 ˆ‖vf−1(i)\It‖
2
2

˜
= σ2

"
nX

j=t+1

Xi
jv

2
j

#
=

nX
j=t+1

σ2[Xi
j] · v4

j =

„
1− 1

s

«
· 1

s
·

nX
j=t+1

v4
j .

Thus, as v2
j ≤ 1

64s
· ‖v[n]\It‖

2
2 for all j > t (since the |vj |-s are

non-increasing), we have that

σ
ˆ
‖vf−1(i)\It‖

2
2

˜
≤ 1√

s
·

vuut nX
j=t+1

v4
j ≤

1√
s
· 1

8
√
s
· ‖v[n]\It‖2 ·

vuut nX
j=t+1

v2
j =

1

8s
· ‖v[n]\It‖

2
2.

Using Chebyshev’s inequality, we have that

Pr
h
‖vf−1(i)\It‖

2
2 ≥

r

s
· ‖v[n]\It‖

2
2

i
≤ 1

64(r − 1)2
.

It follows thatZ 2r+1

λ=2r

λ · Pr

»
‖vf−1(i)\It‖

2
2 =

λ

s
· ‖v[n]\It‖

2
2

–
dλ ≤

2r+1

64(2r − 1)2
.

Thus,

E
»
max


0, ‖vf−1(i)\It‖

2
2 −

2

s
· ‖v[n]\It‖

2
2

ff–
≤

1

64s
· ‖v[n]\It‖

2
2 ·
∞X
r=1

2r+1

(2r − 1)2
=

1

16s
· ‖v[n]\It‖

2
2 ·
∞X
r=1

2r−1

(2r − 1)2
<

1

16s
· ‖v[n]\It‖

2
2 ·
∞X
r=1

1

2r − 1
<

1

8s
· ‖v[n]\It‖

2
2.

Let Y i = max
˘

0, ‖vf−1(i)\It‖
2
2 − 2

s
· ‖v[n]\It‖

2
2

¯
. We have

that E
hP

i∈[s] Y
i
i
< 1

8
· ‖v[n]\It‖

2
2, so by Markov’s Inequal-

ity, Pr
hP

i∈[s] Y
i > 1

2
· ‖v[n]\It‖

2
2

i
< 1

2
. We now show that

when
P
i∈[s] Y

i ≤ 1
2
· ‖v[n]\It‖

2
2 then Equation (9) holds.

Let m be the number of i ∈ [s] such that ‖vf−1(i)\It‖
2
2 >

2
s
· ‖v[n]\It‖

2
2. We now get that

1

2
‖v[n]\It‖

2
2 ≥

X
i∈[s]

Y i =

X
i∈[s]

max


0, ‖vf−1(i)\It‖

2
2 −

2

s
· ‖v[n]\It‖

2
2

ff
=

X
i:‖v

f−1(i)\It
‖22>

2
s
·‖v[n]\It

‖22

„
‖vf−1(i)\It‖

2
2 −

2

s
· ‖v[n]\It‖

2
2

«
=

X
i:‖v

f−1(i)\It
‖22>

2
s
·‖v[n]\It

‖22

‖vf−1(i)\It‖
2
2 −

2m

s
· ‖v[n]\It‖

2
2.

Hence,
sX
i=1

min


‖vh−1(i)\It‖

2
2,

2

s
· ‖v[n]\It‖

2
2

ff
=

X
i:‖v

f−1(i)\It
‖22≤

2
s
·‖v[n]\It

‖22

‖vh−1(i)\It‖
2
2+

2m

s
·‖v[n]\It‖

2
2 =

‖v[n]\It‖
2
2−

X
i:‖v

f−1(i)\It
‖22>

2
s
·‖v[n]\It

‖22

‖vh−1(i)\It‖
2
2+

2m

s
·‖v[n]\It‖

2
2 ≥

1

2
‖v[n]\It‖

2
2,

and Equation (9) holds. Thus, there exists f ∈ F that satis-
fies both Equation (7) and Equation (9). This completes the
proof.

	Introduction
	Preliminaries
	k-wise independent distributions
	Expander graphs
	Perfect hash functions
	Concentration of Threshold functions

	Construction of a covering code
	The Main Construction
	Construction of -nets for Spherical Caps
	References
	Perfect Hashing

