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ABSTRACT
Let k be a fixed integer. We consider the problem of par-
titioning an input set of points endowed with a distance
function into k clusters. We give polynomial time approxi-
mation schemes for the following three clustering problems:
Metric k-Clustering, `22 k-Clustering, and `22 k-Median. In
the k-Clustering problem, the objective is to minimize the
sum of all intra-cluster distances. In the k-Median problem,
the goal is to minimize the sum of distances from points in
a cluster to the (best choice of) cluster center. In metric
instances, the input distance function is a metric. In `22 in-
stances, the points are in Rd and the distance between two
points x, y is measured by ‖x−y‖2

2 (notice that (Rd, ‖·‖2
2) is

not a metric space). For the first two problems, our results
are the first polynomial time approximation schemes. For
the third problem, the running time of our algorithms is a
vast improvement over previous work.
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1. INTRODUCTION

Problem statement and motivation. The problem of
partitioning a data set into a small number of clusters of re-
lated items has a crucial role in many information retrieval
and data analysis applications, such as web search and clas-
sification [8, 12, 30, 16], or interpretation of experimental
data in molecular biology [29].

We consider a set V of n points endowed with a distance
function δ. These points have to be partitioned into a fixed
number k of subsets C1, C2, . . . , Ck so as to minimize the
cost of the partition, which is defined to be the sum over all
clusters of the sum of pairwise distances in a cluster. We call
this problem k-Clustering. We also deal with the k-Median
and the k-Center problems. In the k-Median problem the
cost of a clustering is the sum over all clusters of the sum
of distances between cluster points and the best choice for
a cluster center. In the k-Center problem, the cost of a
clustering is the maximum distance between a point and
its cluster center. In the settings that we consider, these
optimization problems are NP -hard to solve exactly even
for k = 2 (using arguments similar to those in [14, 13]).

Our results. Our algorithms deal with the case that δ is
an arbitrary metric. We also handle the non-metric case of
“`22 instances”, i.e. points in Rd where the distance between
two points x, y is measured by δ(x, y) = ‖x− y‖2

2.
For the metric and for the `22 k-Clustering problem, we

present algorithms for every fixed integer k and for every
fixed ε > 0 that compute a partition into k clusters of cost at
most 1+ ε times the cost of an optimum partition. The run-

ning time is O(f(k, ε)n3k) for the metric case, and nO(k/ε2)

for the `22 case. Our algorithms can be modified to han-
dle variants which exclude outliers. The details are omitted
from this extended abstract.

The k-Median problem can be solved optimally in polyno-
mial time for fixed k in finite metrics, because the number of
choices for centers is polynomial. However, if the points are
located in a larger space, such as Rd, and the centers can be
picked from this larger space, the problem may become hard.
For `22 instances, we give a randomized algorithm that parti-
tions the input point-set into k clusters of cost at most 1+ε of
the optimum cost in probabilistic time O(g(k, ε)n(log n)k).
Although we do not discuss it in this extended abstract, our



algorithms can be modified easily to derive polynomial time
approximation schemes for other objective functions, such
as the k-Center problem. (Similar results for k-Center were
known previously [1, 6].)

Related work. The k-Clustering problem was pro-
posed by Sahni and Gonzalez [27] in the setting of arbitrary
weighted graphs. Unfortunately, only poor approximation
guarantees are possible [23, 17]. Guttman-Beck and Has-
sin [20] initiated the study of the problem in metrics. Schul-
man [28] gave probabilistic algorithms for `22 k-Clustering.
(Thus he also handled other interesting cases of metrics that
embed isometrically into this distance space, such as Eu-
clidean metrics or L1 metrics.) His algorithms find a clus-
tering such that either its cost is within a factor of 1 + ε
of the optimum cost, or it can be converted into an op-
timum clustering by changing the assignment of at most
an ε fraction of the points. The running time is linear if
d = o(log n/ log log n) and otherwise the running time is

nO(log log n). Thus our results improve and extend Schul-
man’s result, giving a true polynomial time approximation
scheme for arbitrary dimension.

Earlier, Fernandez de la Vega and Kenyon [14] presented
a polynomial time approximation scheme for Metric Max
Cut, an objective function that is the complement of Metric
2-Clustering. Indyk [21] later used this algorithm to derive a
polynomial time approximation scheme for the latter prob-
lem. Thus our results extend Indyk’s result to the case of
arbitrary fixed k. Bartal, Charikar, and Raz [7] gave a poly-
nomial time approximation algorithm with polylogarithmic
performance guarantees for Metric k-Clustering where k is
arbitrary (i.e., part of the input).

As mentioned above, instances of k-Median in finite met-
rics with fixed k are trivially solvable in polynomial time.
(For arbitrary k, the problem is APX-hard [19] and has
elicited much work and progress [5, 11, 22, 10].) This is
not the case in geometric settings, including the `22 case dis-
cussed in this paper. This case was considered by Drineas,
Frieze, Kannan, Vempala, and Vinay [15], who gave a 2-
approximation algorithm. Ostrovsky and Rabani [26] gave
a polynomial time approximation scheme for this case and
other geometric settings. Our results improve significantly
the running time for the `22 case. Recently and indepen-
dently of our work, Bădoiu, Har-Peled, and Indyk [6] gave
a polynomial time approximation scheme for the Euclidean
case with much improved running time. (The running time
of their algorithm is similar to ours. Their paper includes
other results on other clustering objectives.) Their algo-
rithm and analysis are in some respects similar to our algo-
rithm (though it handles a different distance function).

It is interesting to note that both Schulman’s algorithm
for k-Clustering and the algorithm of Fernandez de la Vega
and Kenyon for Mertic Max Cut use a similar idea of sam-
pling data points at random from a biased distribution that
depends on the pairwise distances. In recent research on
clustering problems, sampling has been the core idea in
the design of provably good algorithms for various objec-
tive functions. Examples include [3, 2, 25].

Comments and notation. The function δ can be given
explicitly or implicitly (for example, if V ⊂ Rd and δ is
derived from a norm on Rd). Our time bounds count arith-
metic operations and assume that computing δ(x, y) is a

single operation. The reader may assume that the input is
rational to avoid having to deal with unrealistic computa-
tional models. Instances of points in Rd are usually compu-
tationally hard if d is part of the input.1

For simplicity, we omit the ceiling notation from expres-
sions such as d1/εe. Our proofs can be modified trivially
to handle the rounding error. Let X, Y ⊂ V and x ∈ V .
With a slight abuse of notation, we use δ(x, Y ) to denoteP

y∈Y δ(x, y), and we use δ(X, Y ) to denote
P

x∈X δ(x, Y ).

Notice that δ(·, ·) is a symmetric bilinear form. We use δ(X)
to denote δ(X, X). We use C∗

1 , C∗
2 , . . . , C∗

k to denote a clus-
tering of V of minimum cost c∗ (depending, of course, on
the objective function being discussed).

2. METRIC K-CLUSTERING
In this section we present our algorithm for clustering met-

ric spaces. Before we describe the algorithm, we discuss
some basic propositions and give some definitions.

Proposition 1. Let X, Y, Z ⊆ V . Then |Z|δ(X, Y ) ≤
|X|δ(Y, Z) + |Y |δ(Z, X).

Corollary 2. Let C ⊆ V . For every vertex v ∈ C we have
δ(v, C) ≥ δ(C)/(2|C|).

Let Ij = (εj+1, εj ]. Let n1 ≥ n2 ≥ · · · ≥ nk be the cluster
sizes. Let j0 ≤ k2 be the minimum j such that for every i, i′,
the ratio ni/ni′ is outside the interval Ij . Call a cluster index
i large if ni ≥ εj0n1 and small if ni < εj0+1n1. In our proofs,
the following quantities will come up frequently as upper or
lower bounds to various cluster sizes: M = n1 = max{ni},
m = min{ni | i large}, s = max{ni | i small}. Notice that
there is a large gap between the sizes of large and of small
clusters, much larger than between the sizes of any two large
clusters.

Fact 3. s/m ≤ ε2 ·m/M .

Let β = εM/m. We say that two large clusters A and B
are close iff δ(A, B) < β(δ(A)+δ(B)), and otherwise we say
that they are far.

Our algorithm uses random sampling. In fact, we will use
just one sample point per cluster. For the algorithm to work,
those sample points must be representative in the following
sense: Let C be a set of points. An element c of C is said
to be representative of C iff δ(c, C) ≤ 2δ(C)/|C|. (As usual,
we can always run the algorithm several times to boost up
its success probability.) The representatives satisfy a few
handy properties described in the lemmas below.

Lemma 4. Let c be a representative point of cluster C.
Then, for every x ∈ V , we have: |δ(x, C) − |C|δ(x, c)| ≤
2δ(C)/|C|.

Proof sketch: Apply Proposition 1.

Lemma 5. Consider a partition (C1, . . . , Ck) of V such
that Ci has size ni. For each large i, let ci be a ran-
dom uniform element of V . Then, with probability at least
(εj0/(2k))k, we have the following: For every large i, point
ci is a representative element of Ci.

1An exception to this rule is the case of Euclidean distance.
The hardness of the problems considered here in the Eu-
clidean case is still open.



Proof: We are trying to estimate the probability of the
conjunction of independent events, which is the product of
the probabilities. The largest cluster has size n1 ≥ n/k.
Since Ci is large, it has size at least εj0n1 ≥ nεj0/k. With
probability at least εj0/k, point ci is in Ci. Conditioning on
that happening, ci is a random uniform element of Ci, so on
average, δ(ci, Ci) equals δ(Ci)/|Ci|. By Markov’s inequality,
the probability that it is representative is then at least 1/2.
Overall, the probability that ci is representative of Ci is at
least εj0/(2k).

Lemma 6. Let C∗
i and C∗

j be two large clusters in an opti-
mal solution, and let ci, cj be their representatives. Assume
that C∗

i and C∗
j are close. Then: δ(ci, cj) ≤ 2(M/m)OPT/(m2ε).

Proof: By a variant of Proposition 1, we have:

ninjδ(ci, cj) ≤ njδ(ci, C
∗
i ) + δ(C∗

i , C∗
j ) + niδ(C

∗
j , cj).

Since the points are representatives, this implies:

δ(ci, cj) ≤
δ(C∗

i )

n2
i

+
δ(C∗

i , C∗
j )

ninj
+

δ(C∗
j )

n2
j

.

Since the two clusters are close to each other,

δ(C∗
i , C∗

j ) ≤ M

mε
(δ(C∗

i ) + δ(C∗
j )).

Thus:

δ(ci, cj) ≤
OPT

m2
(1 +

M

mε
).

Our algorithm uses, as a black box, an approximation
scheme for Metric Max-k-Cut which is already known in the
litterature. The Metric Max-k-Cut problem takes as input
a set V of n points from an arbitrary metric space, and
outputs a partition of V into k clusters C1, C2, . . . , Ck so
as to maximize the total distance between pairs of points
in different clusters,

P
i

P
j>i δ(Ci, Cj). For any partition

into k clusters, the sum of the Max-k-Cut value and of the
k-Clustering value is constant and equal to the sum of all dis-
tances, thus the same partition is optimal for both objective
functions. Unfortunately, from the viewpoint of approxima-
tion, which involves controlling the relative error, the two
problems are quite different, since in general the optimal
k-clustering value could be much smaller than the optimal
Max-k-Cut value. However, the Max-k-Cut approximation
algorithm is still useful when the clusters are close together.

Theorem 7. Let k be a fixed integer. Then there is a
polynomial time approximation scheme for Metric Max-k-

Cut.2 The running time is O(n2 + nk2O(1/ε3)).

We are now ready to describe and analyze the k-Clustering
algorithm. We present a randomized version of the algo-
rithm. Derandomizing it is straightforward. Fix ε > 0. Our
algorithm consists of taking the best of all partitions that
are generated by the code titled “the metric k-clustering
algorithm” at the end of the paper.

2Theorem 7 is an easy extension of the Max Cut approxima-
tion scheme of [14]: The same reduction which is used there
for Max Cut also applies to Max-k-Cut, and the resulting
weighted dense graph is only a variant of dense graphs in the
usual sense, so that the Max-k-Cut approximation schemes
for dense graphs (see [18, 4]) apply.

Theorem 8. For any fixed positive integer k, the Metric
k-Clustering algorithm is a polynomial time approximation
scheme. The running time of the algorithm is O(f(k, ε)·n3k),

where f(k, ε) is of the order of exp((1/ε)k2
).

The running time analysis can be proved by inspection
of the algorithm. The rest of this section will be devoted
to analyzing the cost of the clustering constructed by the
algorithm. We first analyze the mistakes made in step 4
of the algorithm. For any two large clusters i and j which
belong to different groups, let F (i, j) denote the set of points
x ∈ C∗

i such that min` n`δ(x, c`) = njδ(x, cj). These points,
which really should be in i’s group, are mistakenly placed
by the algorithm in j’s group.

Let Ci = C∗
i + ∪jF (j, i) − ∪jF (i, j) for i large, and let

Ci = C∗
i for i small.

Proposition 9.
P

i δ(Ci) ≤
P

i δ(C∗
i )(1 + 80k3ε).

To prove this Proposition, we need the following lemma.

Lemma 10. δ(F (j, i), C∗
i ) − δ(F (j, i), C∗

j ) ≤ 2
m

(δ(C∗
i ) +

δ(C∗
j ))|F (j, i)|.

Proof: Let x ∈ F (j, i). By Lemma 4, we have

δ(x, C∗
i ) ≤ niδ(x, ci) + 2

δ(C∗
i )

ni
.

By the choice of the algorithm, niδ(x, ci) ≤ njδ(x, cj). By
Lemma 4 again, we have

njδ(x, cj) ≤ δ(x, C∗
j ) + 2

δ(C∗
j )

nj
.

Thus

δ(x, C∗
i ) ≤ δ(x, C∗

j ) +
2

m
(δ(C∗

i ) + δ(C∗
j )).

Summing over x ∈ F (j, i) concludes the proof of the lemma.

To be able to use Lemma 10, we need an upper bound on
|F (j, i)|.

Lemma 11. |F (j, i)| ≤ 8
1−8ε

mε.

Proof: Let F = F (j, i) for shorthand. Since i and j are in
different groups, C∗

i and C∗
j are far from each other, so

δ(C∗
i ∪ C∗

j ) > β(δ(C∗
i ) + δ(C∗

j )). (1)

Consider x ∈ F . By Proposition 1, we have

δ(C∗
i ∪ C∗

j ) ≤ 2δ(x, C∗
i ∪ C∗

j )|C∗
i ∪ C∗

j |.

Summing over x ∈ F , we get

|F |δ(C∗
i ∪ C∗

j ) ≤ 4M(δ(F, C∗
i ) + δ(F, C∗

j )).

We now use the result of Lemma 10.

|F |δ(C∗
i ∪ C∗

j ) ≤ 4M(2δ(F, C∗
j ) +

2

m
(δ(C∗

i ) + δ(C∗
j ))|F |).

Since F ⊂ C∗
j , we have δ(F, C∗

j ) ≤ δ(C∗
j ). Combining with

Equation 1 and factoring in |F | gives

|F |(δ(C∗
i ) + δ(C∗

j )(β − 8M

m
) ≤ 8Mδ(C∗

j ).

We conclude that |F | ≤ 8M
β−8M/m

, and it only remains to

replace β by its value to get the statement of the Lemma.



Plugging the result of Lemma 11 into Lemma 10 (for
the first inequality), and using Proposition 1 followed by
Lemma 11 (for the next two inequalities), yields the follow-
ing Corollary.

Corollary 12.

1. δ(F (j, i), C∗
i )− δ(F (j, i), C∗

j ) ≤ ε 16
1−8ε

c∗;

2. δ(F (j, i)) ≤ ε 16
1−8ε

c∗;

3. δ(F (i, j), F (i, j′)) ≤ ε 16
1−8ε

c∗.

Lemma 13. δ(F (j, i), F (j′, i)) ≤ ε 16
1−8ε

c∗.

Proof: By Proposition 1, we have |C∗
i |δ(F (j, i), F (j′, i)) ≤

|F (j′, i)|δ(F (j, i), C∗
i )+|F (j, i)|δ(F (j′, i), C∗

i ). By Lemma 11,
this yields

δ(F (j, i), F (j′, i)) ≤ 8

1− 8ε
ε(δ(F (j, i), C∗

i )+δ(F (j′, i), C∗
i )).

By the first statement of Corollary 12, this can be replaced
by δ(F (j, i), F (j′, i)) ≤ 8

1−8ε
ε(δ(F (j, i), C∗

j )+δ(F (j′, i), C∗
j′)+

ε 32
1−8ε

c∗). Since F (j, i) ⊂ C∗
j and F (j′, i) ⊂ C∗

j′ , we have:

δ(F (j, i), C∗
j )+δ(F (j′, i), C∗

j′) ≤ c∗, hence the lemma.

Proof of Proposition 9: We write:
P

i δ(Ci) =
P

i δ(C∗
i +

∪jF (j, i) − ∪jF (i, j)) =
P

i δ(C∗
i ) + [

P
i,j δ(C∗

i , F (j, i)) −P
i,j δ(C∗

i , F (i, j))] +
P

i δ(∪jF (j, i) − ∪jF (i, j)). We ex-
change the roles of i and j on the right hand side to bound
the brackedted quantity using the first statement of Corol-
lary 12. We use bilinearity of δ(·, ·) and appeal to the rest
of the corollary to bound the other terms. This gives the
bound of the proposition.

Before we can continue modifying the clustering, we need
to prove that Ca is not too different from C∗

a . The following
lemma is an easy consequence of Lemma 11.

Lemma 14. ||Ca| − |C∗
a || ≤ 8k

1−8ε
ε|C∗

a |.

Let (C′
i) denote the clustering obtained from (Ci) as fol-

lows. Let G denote a group, and for each cluster Ci of G,
let Out(i) denote the elements of Ci which are (mistakenly)
removed from G by the algorithm. Let In(G) denote the el-
ements of S which (mistakenly) get to stay in G. We have:

|In(G)| =
X

i cluster of G

|Out(i)|.

Thus, we can pair up the vertices of ∪iOut(i) in a one-to-one
fashion with the vertices of In(G).

For i large, let C′
i denote the elements of Ci which get to

stay in G, plus the elements of In(G) which are paired up
with elements of Out(i).

For i small, let C′
i denote the elements of Ci which stay

outside the groups, plus the elements paired up with ele-
ments of Ci which end up in large groups.

By convention, we will always use (v, v′) for elements
which are paired, with v denoting the element which goes
out of the large cluster and v′ the element which goes out
of the small cluster.

Lemma 15.
P

δ(v, v′) ≤ (2 + 6kε2 + 2k2ε) c∗

m
.

Proof: Let a be a large cluster and v ∈ Out(a), and let v′

be the element which is paired with v, and let G denote a’s
group. Why did v′ end up in G rather than v ? Because
there is some large cluster b also in group G, such that

δ(v′, cb) = f(v′) < f(v) ≤ δ(v, ca).

This yields

δ(v, v′) ≤ δ(v, ca)+δ(ca, cb)+δ(cb, v
′) ≤ 2δ(v, ca)+δ(ca, cb).

Since a and b are in the same group, there is a chain of
at most k clusters connecting them, such that consecutive
clusters along the chain are close. By Lemma 6, this implies

δ(ca, cb) ≤ k
2M

mε

c∗

m2
.

By Proposition 1, we have:

δ(v, ca) ≤ δ(v, Ca) + δ(Ca, ca)

|Ca|
.

By the choice of the algorithm, we have

δ(ca, Ca) ≤ δ(ca, C∗
a)|Ca|/|C∗

a | ≤ 2(1+
8k

1− 8ε
ε)

δ(C∗
a)

|C∗
a |

≤ 3
c∗

m
.

Hence

δ(v, v′) ≤ 2
δ(v, Ca)

m
+ 6

c∗

m2
+ k

2M

mε

c∗

m2
.

Summing and realizing that the number of terms is at most
the sum of the cardinalities of the small clusters, which is
at most ks, we getX

δ(v, v′) ≤ (2 + 6k
s

m
+ k2 2M

mε

s

m
)
c∗

m
.

Now, remember Fact 3:X
δ(v, v′) ≤ (2 + 6kε2 + 2k2ε)

c∗

m
.

Equipped with this Lemma, we are now ready to attack
the analysis of the clustering (C′

i).

Lemma 16. For every small i, δ(C′
i) ≤ δ(Ci) + 3k(2 +

6kε2 + 2k2ε)ε2c∗.

Proof: Let b be a small cluster. Let C′
b = Cb +P (b)−M(b).

By bilinearity, we can write δ(C′
b) = δ(Cb) + [δ(Cb, P (b))−

δ(Cb, M(b))]+[δ(P (b))−δ(P (b), M(b))]+[δ(M(b))−δ(M(b), P (b))].
Since δ(u, v) − δ(u, v′) ≤ δ(v, v′), it is easy to see that
δ(P (b))− δ(P (b), M(b)) ≤ |P (b)|

P
δ(v, v′) ≤ ks(2 + 6kε2 +

2k2ε) c∗

m
≤ k(2 + 6kε2 + 2k2ε)ε2c∗. Similarly, δ(M(b)) −

δ(M(b), P (b)) ≤ k(2 + 6kε2 + 2k2ε)ε2c∗. Now, let v ∈ P (b)
and v′ paired with v. We write with Proposition 1 δ(v, Cb) ≤
|Cb|δ(v, v′) + δ(v′, Cb). Summing, we get

δ(P (b), Cb) ≤ ks
X

v

δ(v, v′) + δ(M(b), Cb).

We apply Lemma 15 to yield δ(P (b), Cb) − δ(M(b), Cb) ≤
ks(2 + 6kε2 + 2k2ε) c∗

m
≤ k(2 + 6kε2 + 2k2ε)ε2c∗. Summing

our various inequalities gives the lemma.
The only thing left to do is analyze the modifications to

the large clusters.

Lemma 17. For every large a, δ(C′
a) ≤ δ(Ca) + (6kε2 +

2k2ε)c∗.



Proof: We use the same notations as in the proof of Lemma 15.
Similarly to the pervious Lemma we can easily get

δ(C′
a) ≤ δ(Ca)+[δ(Ca, P (a))−δ(Ca, M(a))]+2k(3+2k2ε)ε2c∗.

Now, recall that δ(ca, Ca) ≤ 3c∗/m. By Proposition 1,

δ(v′, Ca) ≤ δ(v′, ca)|Ca|+ 3
c∗

m
.

δ(v′, ca) ≤ δ(v′, cb) + δ(cb, ca) ≤ δ(v, ca) + k
2M

mε

c∗

m2
.

Hence

δ(v′, Ca) ≤ |Ca|δ(v, ca) + k
2M

mε

c∗

m
+ 3

c∗

m
.

Now,

|Ca|δ(v, ca) ≤ δ(v, Ca) + δ(Ca, ca) ≤ δ(v, Ca) + 3
c∗

m
.

Replacing and summing over v′ ∈ P (a), and remembering
that |P (a) = |M(a)| ≤ ks, we obtain

δ(P (a), Ca) ≤ δ(M(a), Ca) + (6 + k
2M

mε
)
c∗

m
ks

≤ δ(M(a), Ca) + (6k
s

m
+ 2

k2

ε

M

m

s

m
)c∗

≤ δ(M(a), Ca) + (6kε2 + 2k2ε)c∗.

Finally, we need to analyze the use of Max-h-Cut in step 6
of the algorithm. We will present the analysis as if the group
was perfect, i.e. consisted of the clusters C∗

i . (It is easy to
see that the proof also goes through when replacing the C∗

i

by C′
i, at the cost of some bookkeeping of the small errors

introduced at every step of the calculation.) In the groups
of large clusters, we can prove that c∗ is Ω(

P
V ×V δ(x, y))

as follows.
Consider a group C∗

1 ∪ C∗
2 ∪ · · · ∪ C∗

h. Let c = δ(C∗
1 ) +

· · ·+ δ(C∗
h) and W = δ(C∗

1 ∪· · ·∪C∗
h) =

P
i,j δ(C∗

i , C∗
j ). We

have:

δ(C∗
i , C∗

j ) ≤ njδ(C
∗
i , ci) + ninjδ(ci, cj) + niδ(cj , C

∗
j )

≤ M2
δ(C∗

i )

m
+ M2k

2M

mε

c

m2
+ M2

δ(C∗
j )

m
.

Summing over the k2 terms gives

W ≤ 4
M

m
kc +

2k3

ε
(
M

m
)3c ≤ 3

k3

ε
(1/εj0)

3c.

Run the PTAS for Max-h-Cut with error parameter

ε′ =
εε3j0
3k3

ε.

The error is then at most ε′W ≤ εc.
Overall, the algorithm produces a cut of value at most

(1 + O(k4ε + k2ε2))c∗. Assuming that ε < 1/k, this is (1 +
O(k2ε2))c∗.

3. `2
2 K-CLUSTERING

In this section and the next section, δ(x, y) = ‖x−y‖2
2. We

denote by conv(X) the convex hull of X = {x1, x2, . . . , xn}
⊆ Rd. Let y =

Pn
i=1(qi/r)xi be a point in conv(X) which

is a rational convex combination of X (so r and qi are inte-
gers). We associate with y a multi-subset Y of X of size r,

obtained by taking qi copies of xi, for all i. Notice that the
center of mass Y of Y equals y. The following proposition
characterizes the cost of a cluster in terms of the center of
mass.

Proposition 18. For every finite X ⊂ Rd, δ(X) = |X|δ(X, X).

Proposition 19. Let Y be a multi-subset of Rd. Then Y
minimizes δ(Y, z) over z. In other words,

Y = arg min
z∈Rd

{δ(Y, z)} .

Proposition 20. For every x, y, z ∈ Rd, δ(x, z) ≤ δ(x, y)+

δ(y, z) + 2
p

δ(x, y) · δ(y, z).

Proposition 21. For every x ∈ Rd, for every multi-subset
Y of Rd, we have: δ(x, Y ) ≥ |Y |δ(x, Y ).

The first part of the following lemma is attributed to
Maurey [9]. We denote the diameter of Y by diam(Y ) =
maxx,y∈Y δ(x, y).

Lemma 22. Let Y ⊂ Rd and ε > 0.

1. (Maurey) For every x ∈ conv(Y ), there exists a
multi-subset Z of Y containing 1/ε points and whose
center of mass is close to x: δ(x, Z) ≤ ε · diam(Y ).

2. There exists a multi-subset Z of Y containing 1
ε

points
and whose center of mass is close to the center of mass
of Y : δ(Y , Z) ≤ εδ(Y, Y )/|Y |.

Proof: We start with the first assertion. Let t = 1/ε and
x =

P
y∈Y αyy, where the αy’s are non-negative and sum

up to 1. We use the probabilistic method. Pick a multiset
Z = {z1, z2, . . . , zt} at random, where the zi-s are i.i.d.
random variables with Pr

ˆ
zi = y

˜
= αy. Now, it is easy

to see that

E
ˆ
δ(x, Z)

˜
= E

"
1

t2

tX
i=1

tX
j=1

“
x− zi

”
·

“
x− zj

”#

=
1

t2

tX
i=1

(E
h
‖x− zi‖2

2

i
+

X
j 6=i

E
h“

x− zi
”
·

“
x− zj

”i
).

Since zi and zj are independent, we have E
ˆ`

x− zi
´
·

`
x− zj

´˜
=Pd

l=1 E
ˆ`

xl − zi
l

´˜
E

ˆ`
xl − zj

l

´˜
which is 0 by our choice of

distribution. Thus,

E(δ(x, Z)) =
1

t2

tX
i=1

E
h
‖x− zi‖2

2

i
≤ 1

t
diam(Y ).

Therefore there exists a choice of Z such that δ(x, Z) ≤
1
t
diam(Y ).
For the second assertion, we start the proof in the same

way, with x = Y , and replace the last part of the calculation
by the following slightly finer estimate:

1

t2

X
i

E(δ(Y , zi)) =
1

t2

X
i

X
y∈Y

1

|Y |δ(Y , y) =
δ(Y , Y )

t|Y | .

Lemma 22 can be used to derive a high-probability result
as follows.



Lemma 23. There exists a constant κ such that the fol-
lowing holds. Let Y ⊂ Rd and ε, ρ > 0. Let Z be a random
multi-subset of Y generated by taking κ · 1

ε2
· log 1

ρ
i.i.d.

points distributed uniformly in Y . Then, with probability
at least 1− ρ, we have: δ(Y , Z) ≤ εδ(Y, Y )/|Y |.

Our algorithm consists of taking the best of all partitions
that are generated by the code titled “the `22 k-Clustering
algorithm” at the end of the paper. Our algorithm is moti-
vated by the following bound.

Lemma 24. Let Y be a multi-subset of V and 1 ≥ ε > 0.
Then there exists a multi-subset Z of Y of size |Z| = 16/ε2

such that δ(Y, Z) ≤ (1 + ε)δ(Y, Y ).

Proof: By Proposition 20, for every y ∈ Y , δ(y, Z) ≤
δ(y, Y )+δ(Y , Z)+2

q
δ(y, Y )δ(Y , Z). By the Cauchy-Schwarz

inequality,
P

y∈Y

q
δ(y, Y ) ≤

q
|Y |

P
y∈Y δ(y, Y ). There-

fore, summing the previous expression over y ∈ Y , we get

that δ(Y, Z) ≤ δ(Y, Y )+ |Y |δ(Y , Z)+2
q
|Y |δ(Y, Y )δ(Y , Z).

Plugging in the bound for δ(Y , Z) from Lemma 22, we get

that δ(Y, Z) ≤ (1 + ε
2

+ ε2

16
)δ(Y, Y ) ≤ (1 + ε)δ(Y, Y ).

Theorem 25. The `22 k-Clustering algorithm is a poly-
nomial time approximation scheme. Its running time is

nO(k/ε2).

Proof: By Lemma 24 applied to Y = C∗
i , for every i =

1, 2, . . . , k, there exists a multi-subset Zi of C∗
i of size |Zi| =

16/ε2, such that δ(C∗
i , Zi) ≤ (1 + ε)δ(C∗

i , C∗
i ). Consider the

iteration of the algorithm where Ai = Zi and ni = |C∗
i | for

every i = 1, 2, . . . , k. Let C1, C2, . . . , Ck be the clustering
computed by the algorithm in this iteration, and let c be
the cost of this clustering. Then,

c =

kX
i=1

|Ci| ·
X

x∈Ci

δ(x, Ci)

≤
kX

i=1

ni ·
X

x∈Ci

δ(x, Ai)

≤
kX

i=1

ni ·
X

x∈C∗
i

δ(x, Ai)

≤ (1 + ε) ·
kX

i=1

|C∗
i | · δ(C∗

i , C∗
i )

= (1 + ε) · c∗.

The performance guarantee follows because the algorithm
finds a partition whose cost is at least as good as c.

As for the running time of the algorithm, there are less
than nk possible representations of n as a sum n1 + n2 +

· · ·+ nk. There are less than n16k/ε2 possible choices for A.
Computing a minimum cost assignment to clusters can be
done using a minimum cost perfect matching algorithm in
time O(n3 log n).

4. `2
2 K-MEDIAN

A simple variant of the above algorithm solves the k-
Median case and has similar running time. Here we give
a much faster randomized polynomial time approximation

scheme for `22 k-Median. The running time of our algorithm,
for fixed k, ε, and failure probability ρ, is just O(n(log n)O(1)).

The approximation scheme consists of taking the best of
all partitions that are generated by the code titled “the `22 k-
Median algorithm” at the end of the paper. We will proceed
with the analysis of the algorithm. Consider the iteration
of the algorithm where all the guesses are correct. For all
t = 1, 2, . . . , T , let at denote the index of the first and largest
cluster in the tth group (so mt = nat), and let bt denote the
index of the last and smallest cluster in that group.

Lemma 26. For all t ∈ {1, 2, . . . , T}, the number of points
in the smallest and in the largest clusters of group t are not

very different:
`

ε
16k

´2(k−1)
nat ≤ nbt ≤ nat .

Consider the situation when the algorithm starts iteration
t. For each j in group t, let Ujt = C∗

j ∩Ut denote the points
which have not yet been classified and which we hope the
algorithm will place in cluster j during iteration t. For j ∈
[at, bt], we say that j is well-represented iff |Ujt| ≥ ε3/163 ·nj .
Otherwise, we say that j is poorly represented.

Lemma 27. Fix a cluster index j and let t be j’s group.
For every ρ > 0 and for every sufficiently large λ > 0, there
exists γ > 0 (the γ used to define the size of Z) such that
with probability at least 1− ρ

k
, if j is well-represented then

we have |Aj | ≥ λ
ε4

ln k.

Proof sketch: Use Lemma 26 and the definition of being
well-represented to bound |Ujt|/|Ut| from below, then use
standard Chernoff bounds for Aj .

Lemma 28. For every ρ > 0 there exist λ > 0 and γ > 0
such that with probability at least 1 − ρ, we have, for all t
and for all well-represented j,˛̨

δ(Ujt, cj)− δ(Ujt, Ujt)
˛̨
≤ ε

8
· δ(Ujt, Ujt). (2)

Proof sketch: Apply Lemma 23 to the sample Aj in Ujt,
so that for j well-represented and |Aj | large enough, with
probability at least 1− ρ/(3k) we have

δ(cj , Ujt) ≤
ε2

210
· δ(Ujt, Ujt)/|Ujt|. (3)

(This defines λ.) Set γ according to Lemma 27 so that if j is
well-represented, then Aj is large enough with probability at
least 1−ρ/(3k). By the proof of Lemma 24, Equation 3 then
implies

˛̨
δ(Ujt, cj)− δ(Ujt, Ujt)

˛̨
≤ (ε/8) · δ(Ujt, Ujt). Sum-

ming failure probabilities then concludes the proof.

In the rest of the analysis we will assume that Equation 2
holds. For x ∈ X, denote by jx the index of the cluster
that x gets assigned to by the algorithm, and denote by j∗x
the index of the cluster that x gets assigned to by the op-
timal clustering. Let Dt denote the set of points which are
assigned during iteration t of the loop in step 3 of the algo-
rithm. Such points can be classified into three categories:

• Regular points: x ∈ Dt is regular iff its optimal cluster
j∗x has j∗x ≤ bt and is well-represented.

• Premature points: x ∈ Dt is premature if j∗x > bt, i.e.
the optimal cluster of x is too small to be taken into
consideration yet. Let Pt denote the premature points
in Dt.



• Leftover points: x ∈ Dt is leftover if j∗x ≤ bt and j∗x is
poorly represented. Let Lt denote the leftover points
of Dt.

We start the analysis with the easiest category, that of
regular points.

Lemma 29.X
x regular

δ(x, cjx) ≤
“
1 +

ε

8

”
·

X
j well-represented

δ(C∗
j , C∗

j ).

Proof: Take x a regular point and let t be the group con-
taining j∗x. Then x ∈ Uj∗xt. Thus the left hand side of the
sum ranges over Ujt, where j is well-represented. The as-
signment of x by the algorithm has value δ(x, cjx) ≤ δ(x, cj∗x)
by definition of the algorithm. Thus:X
x regular

δ(x, cjx) ≤
X

x regular

δ(x, cj∗x)

≤
X

j well-represented

δ(Ujt, cj)

≤ (1 +
ε

8
)

X
j well-represented

δ(Ujt, Ujt)

≤ (1 +
ε

8
)

X
j well-represented

δ(Ujt, C∗
j )

≤ (1 +
ε

8
)

X
j well-represented

δ(C∗
j , C∗

j ).

We now deal with the category of premature points. The
proof of this lemma crucially uses the specific feature of
the algorithm according to which one keeps assigning un-
sufficiently many points to the clusters under consideration.
Thus this is one of the key points in the analysis.

Lemma 30.X
x premature

δ(x, cjx) ≤ ε

8
·

X
x not premature

δ(x, cjx).

Proof: First note that by definition of premature points,
Pt has size at most | ∪j>bt C∗

j | ≤ kmt+1. By definition
of the algorithm, the number of points in Ut+1 is exactly
16k2mt+1/ε. Since | ∪j>bt C∗

j | has size at most kmt+1, in

Ut+1 there must be at least mt+1(16k2/ε− k) > mt+18k2/ε
points which belong to C∗

1 ∪ · · · ∪ C∗
bt

(hence which are not
premature). Among those, let St denote the |Pt| points such
that δ(x, cj∗c ) is smallest.

Since the algorithm chooses a minimum cost assignment
and prefers Pt over St in doing so during iteration t, we have
that

P
Pt

δ(x, cjx) ≤
P

St
δ(x, cj∗x). The right hand side is

at most

|St|
|Ut+1 ∩ (C∗

1 ∪ · · · ∪ C∗
bt

)|
X

x∈Ut+1,x not premature

δ(x, cjx),

and this in turn is at most
ε

8k

X
x not premature

δ(x, cjx).

Summing over t yields the lemma.
Finally, we deal with the leftover points.

Lemma 31.X
x leftover

δ(x, cjx) ≤
X

j poorly represented

δ(Cj , C∗
j )

+O(ε3)
X

y premature

δ(y, cjy )

+2
s X

j poorly represented

δ(Cj , C∗
j )O(ε3)

X
y premature

δ(y, cjy ).

Proof sketch: Let C∗
j be a poorly represented cluster and

t be its group. By definition of being poorly represented,
most of the points of C∗

j were assigned before their turn,
i.e., they got assigned to some cluster of index < at; thus
most of the points of C∗

j were premature. Take x ∈ C∗
j , x

leftover, and y ∈ C∗
j , y premature. We have:

δ(x, cjx) ≤ δ(x, cjy ) ≤ δ(x, y)+δ(y, cjy )+2
q

δ(x, y)δ(y, cjy ).

Summing over x ∈ C∗
j ∩ L (leftover) and y ∈ C∗

j ∩ P (pre-
mature), and using the Cauchy-Schwartz Inequality, we get:

|C∗
j ∩ P |

X
C∗

j ∩L

δ(x, cjx) ≤ δ(C∗
j ) + |C∗

j ∩ L|
X

C∗
j ∩P

δ(y, cjy )

+2
s

δ(C∗
j )|C∗

j ∩ L|
X

C∗
j ∩P

δ(y, cjy ).

Now, by definition of leftover points, we have

|C∗
j ∩ L| ≤ ε3

163
nj and |C∗

j ∩ P | ≥ nj(1−
ε3

163
).

Thus, replacing, we have:X
C∗

j ∩L

δ(x, cjx) ≤ (1 + O(ε3))
δ(C∗

j )

|C∗
j |

+ O(ε3)
X

C∗
j ∩P

δ(y, cjy )

+2

vuutδ(C∗
j )

|C∗
j |

O(ε3)
X

C∗
j ∩P

δ(y, cjy ).

It only remains to apply Proposition 18, sum over j, and
use Cauchy-Schwartz again to deduce the statement of the
lemma.

We are now ready to prove the main theorem of this sec-
tion.

Theorem 32. With constant probability the `22 k-Median
algorithm computes a solution whose cost is within a fac-
tor of 1 + ε of the optimum cost. The running time of
the algorithm is O(g(k, ε) · n · (log n)k), where g(k, ε) =
exp

`
1
ε8
· k3 ln k ·

`
ln 1

ε
+ ln k

´´
.

Proof sketch: Let c denote the cost of the clustering pro-
duced by the algorithm in the iteration analyzed above.
Clearly, the algorithm outputs a solution of cost at most
c. Assume that Equation 2 holds. (We will make sure
this happens with constant probability.) We have that c =Pk

j=1

P
x∈Cj

δ(x, Cj) ≤
Pk

j=1

P
x∈Cj

δ(x, cj) =
P

x∈X δ(x, cjx).

We separate the sums into three parts R, P, L corresponding
to regular, premature and leftover points, apply the three



lemmas above to the three parts, and then a short algebraic
manipulation yields that the cost is (1 + O(ε))c∗.

As for the running time of the algorithm, the number of se-
quences n1, n2, . . . , nk that the algorithms has to enumerate

over is O
“`

log1+ε n
´k

”
. The total number of sequences of

cluster representatives that are enumerated over is at most

2

“
1

ε4
·k3 ln k·(ln 1

ε
+ln k)

”
.

Computing the augmentation of a partial solution to the
next group given the representatives of its clusters requires
O(n) distance computations, where the hidden constant de-
pends mildly on k and ε.
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The Metric k-Clustering algorithm

1. By exhaustive search, guess the optimal cluster sizes n1 ≥ n2 ≥ · · · ≥ nk.

2. By exhaustive search, for each pair of large cluster indices i and j, guess whether C∗
i and C∗

j are close or
far.

3. Taking the equivalence relation which is the transitive closure of the relation “C∗
i and C∗

j are close”, define
a partition of large cluster indices into groups.

4. For each large cluster C∗
i , let ci be a random uniform element of V . Assign each point x ∈ V to the group

G which minimizes mini∈G[niδ(x, ci)].

5. By exhaustive search, for each group G thus constructed, guess |G∩ S|, where S = ∪
i smallC

∗
i is the union

of small clusters. For each x assigned to group G, let f(x) = mini∈G δ(x, ci). Remove from G’s assignment
the |G ∩ S| elements with largest value f(x).

6. Partition each group of large clusters into the appropriate number h of clusters using the PTAS for Max-h-
Cut with error parameter ε′ = ε2ε3j0/(3k3).

7. Recursively partition the removed elements into the appropriate number of clusters.

The `2
2 k-Clustering algorithm

1. By exhaustive search, guess the optimal cluster sizes |Ci| = ni. By exhaustive search, consider all possible
sequences A1, A2, . . . , Ak, where the Ai-s are mutually disjoint multisets, each containing 16/ε2 points from
V .

2. Compute a minimum cost assignment of points of V to clusters C1, C2, . . . , Ck, subject to the conditions
that exactly ni points are assigned to Ci, when the cost of assigning a point x to Ci is δ̂(x, Ci) = ni ·δ(x, Ai),
for all i = 1, 2, . . . , k.

The `2
2 k-Median algorithm

1. By exhaustive search, guess an approximation n1 ≥ n2 ≥ · · · ≥ nk on the sizes of the k clusters, where ni

is the power of (1 + ε) larger than and closest to |C∗
i |.

2. Partition the k clusters into groups in a greedy fashion: 1 goes into the first group, and for i going from
2 to k, i goes into the current group if ni ≥ (ε/16k)2ni−1, and into a new group otherwise. Let T be the
number of groups and let mt denote the size of the largest cluster in the tth group. Let mT+1 = 0.

3. For t going from 1 to T , do the following:

(a) Let Ut denote the points not yet clustered (initially U1 = V ).

(b) Let Z denote a random uniform sample of Ut, with replacement, of constant size (size k2k/(16ε)2k ·
(ln k)γ/ε6, where γ > 0 is a constant).

(c) By exhaustive search, guess Ai = Z ∩C∗
i for all i in the tth group. Define, for each such cluster Ci, the

representative point as ci = Ai. (If Ai = ∅, take an arbitrary point as the representative of Ci.)

(d) Assign |Ut|−mt+116k2/ε points from Ut to the clusters in groups 1 through t, where point x is assigned
to a cluster Ci that minimizes δ(x, ci).


