
An Improved Approximation Algorithm for Multiway
Cut

Gruia Călinescu∗ Howard Karloff† Yuval Rabani‡

Abstract

Given an undirected graph with edge costs and a subset of k nodes called terminals, a
multiway cut is a subset of edges whose removal disconnects each terminal from the rest.
Multiway Cut is the problem of finding a multiway cut of minimum cost. Previously, a
very simple combinatorial algorithm due to Dahlhaus, Johnson, Papadimitriou, Seymour, and
Yannakakis gave a performance guarantee of 2

(
1− 1

k

)
. In this paper, we present a new linear

programming relaxation for Multiway Cut and a new approximation algorithm based on
it. The algorithm breaks the threshold of 2 for approximating Multiway Cut, achieving a
performance ratio of at most 1.5 − 1

k . This improves the previous result for every value of k.
In particular, for k = 3 we get a ratio of 7

6 < 4
3 .

∗College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280, U.S.A. Research supported
in part by NSF grant CCR-9319106. E-mail: gruia@cc.gatech.edu.

†College of Computing, Georgia Institute of Technology, Atlanta, Georgia 30332-0280, U.S.A. Research supported
in part by NSF grant CCR-9319106. E-mail: howard@cc.gatech.edu.

‡Computer Science Department, Technion — IIT, Haifa 32000, Israel. Work supported by BSF grant 96-00402,
and by grants from the S. and N. Grand Research Fund, from the Smoler Research Fund, and from the Fund for the
Promotion of Research at the Technion. E-mail: rabani@cs.technion.ac.il.

1 Introduction

We consider the problem Multiway Cut: Given an undirected graph with nonnegative edge costs
and a set of k specified nodes in the graph (called terminals), find a cheapest multiway cut, i.e., a
subset of the edges whose removal disconnects each terminal from the rest. This is one of several
generalizations of the classical undirected s-t cut problem, and it has applications in parallel and
distributed computing [24], as well as in chip design.

Dahlhaus, Johnson, Papadimitriou, Seymour, and Yannakakis [8] initiated the study of Multiway
Cut. In the published version of their paper [9], they prove that Multiway Cut is MAX SNP-
hard even when restricted to instances with three terminals and unit edge costs. Therefore, unless
P=NP, there is no polynomial-time approximation scheme for Multiway Cut [3]. For k = 2,
the problem is identical to the undirected version of the extensively studied s-t min-cut problem of
Ford and Fulkerson [11], and thus has polynomial-time algorithms (see, e.g., [21, 1]). Prior to this
paper, the best (and essentially the only) approximation algorithm for k ≥ 3 was due to the above-
mentioned paper of Dahlhaus et al. They give a very simple combinatorial isolation heuristic that
achieves an approximation ratio of 2

(
1− 1

k

)
. Specifically, for each terminal i, find a minimum-cost

cut separating i from the remaining terminals, and then output the union of the k − 1 cheapest of
the k cuts. For k = 4 and for k = 8, Alon (see [9]) observed that the isolation heuristic can be
modified to give improved ratios of 4

3
and 12

7
, respectively.

In special cases, far better results are known. For fixed k in planar graphs, the problem is solvable in
polynomial time [9]. For trees and 2-trees, there are linear-time algorithms [6]. For dense unweighted
graphs, there is a polynomial-time approximation scheme [2, 12].

Chopra and Rao [6] and Cunningham [7] develop a polyhedral approach to Multiway Cut, further
extended by Chopra and Owen [5]. These provide useful tips to the implementation of branch-and-
cut type heuristics that are reported by the authors to work well in practice. Bertsimas et al. [4]
propose a non-linear formulation of Multiway Cut and related problems. They suggest several
polynomial time-solvable relaxations, and give a simple randomized rounding argument yielding the
same bounds as in [9] (and for essentially the same reasons). Their approach appears incapable of
producing better bounds.

In this paper, we present a new approximation algorithm for Multiway Cut. The algorithm
is based on a new linear programming relaxation for Multiway Cut, which is derived from a
straightforward system of inequalities similar to those of Bertsimas et al., to which we add two sets
of valid inequalities. In contrast to previous work on a polyhedral approach, our relaxation provably
gives better approximation guarantees. Our algorithm gives a ratio substantially below 2 for all k.
We present an algorithm with a performance ratio of at most 1.5 − 1

k
. Notice that this algorithm

improves upon the approximation guarantee of Dahlhaus et al. for every value of k (including the
better bounds for k = 4 and k = 8 of Alon). In particular, for k = 3 the ratio we get is 7

6
, whereas

the best previous bound was 4
3
.

From a broader perspective, there are several problems of related interest. Erdős and Székely [10]
consider a problem of extending a partial k-coloring of a graph, which is equivalent to Multiway
Cut (see [9] for further discussion). In Minimum k-Way Cut, there are no specified terminals, and
we are expected to cut the graph into k components. Hochbaum and Shmoys [17] give an algorithm
for a special case and Goldschmidt and Hochbaum [15] and Karger and Stein [19] give polynomial-

1

time algorithms for the case of fixed k. Saran and Vazirani [22] give a 2
(
1− 1

k

)
-approximation

algorithm for Minimum k-Way Cut.

Garg et al. [13] study a variation of Multiway Cut in which nodes have costs and the goal is to
remove a minimum cost set of nodes so as to disconnect each terminal from the others. They give
a 2

(
1− 1

k

)
-approximation algorithm for this problem. For the multiway cut problem in directed

graphs, Naor and Zosin [20], significantly improving upon previous results of Garg et al. [13], give
a 2-approximation algorithm. Garg et al. [13] show that for unbounded k, the approximation
guarantees for the node multiway cut and the directed multiway cut problems are at least as large
as those for Vertex Cover. As obtaining a ratio better than two for Vertex Cover remains a
challenging open problem [23], it appears that Multiway Cut in undirected graphs is easier than
its node or directed variations.

Finally, Hu [18] proposed Minimum Multicut as an integral dual to maximum multicommodity
flow. In this problem, we have to disconnect a list of pairs of terminals. Multiway Cut is a
special case, in which the list of pairs forms a clique. Garg et al. [14] give a O(log k)-approximation
algorithm for Minimum Multicut. As noted in [9], a multiway cut algorithm can be used to
approximate minimum multicut by the same ratio with running time polynomial in n and 2k.
Therefore, our algorithm gives better approximation guarantees for Minimum Multicut when k
is O(log n).

The rest of this paper is organized as follows. In Section 2 we present the necessary notation,
define the relaxation, and prove some basic properties, and in Section 3 we describe and analyze
the algorithm.

2 Preliminaries

Let G = (V, E) be an undirected graph on V = {1, 2, ..., n} in which each edge uv ∈ E has a non-
negative cost c(u, v) = c(v, u), and let T = {1, 2, . . . , k} ⊆ V be a set of terminals. Multiway Cut
is the problem of finding a minimum cost set C ⊆ E such that in (V, E \ C), each of the terminals
1, 2, . . . , k is in a different component. Let MWC = MWC(G) be the value of the optimal solution
to Multiway Cut.

Notation. ∆k denotes the (k − 1)-simplex, i.e., the (k − 1)-dimensional convex polytope in IRk

given by {x ∈ IRk|(x ≥ 0) ∧ (
∑

i xi = 1)}.
For x ∈ IRk, ‖x‖ is its L1 norm: ‖x‖ =

∑
i |xi|. For j = 1, 2, . . . , k, ej ∈ IRk denotes the unit vector

given by (ej)j = 1 and (ej)i = 0 for all i 6= j.

A semimetric is a pair (V, d) where V is a set and d is a function d : V × V → IR such that
d(u, v) = d(v, u) ≥ 0 for all u, v; d(u, u) = 0 for all u; and d(u, w) ≤ d(u, v) + d(v, w) for all u, v, w.
We sometimes refer to the elements of V as points, and to d(u, v) as the distance between u and v.

We denote by uv an (undirected) edge with endpoints u and v.

The relaxation. Multiway Cut with edge costs can be formulated as the following integer

2

program. The variables in the program are d(u, v) for all u, v ∈ V .

Minimize
∑

uv∈E

c(u, v)d(u, v) subject to

(V, d) is a semimetric (1)

d(t1, t2) = 1
∀t1, t2 ∈ T,

t1 6= t2,
(2)

d(u, v) ∈ {0, 1} ∀u, v ∈ V. (3)

By relaxing the integrality constraints (3) to

0 ≤ d(u, v) ≤ 1 ∀u, v ∈ V,

we obtain a linear programming relaxation for Multiway Cut with edge costs, which we denote by
LP1. The integrality ratio for LP1 is precisely the Dahlhaus et al. guarantee. To see this, consider
a k-leaf star, with the leaves as the terminals (all edge costs are 1). The optimal integral solution
places k − 1 edges in the multiway cut, but a feasible (and optimal) fractional solution assigns
length 1

2
to each of the k edges. A simple rounding argument gives an algorithm with identical

performance guarantee: for each terminal t ∈ T , pick ρt ∈ (0, 1
2
) such that the cost of edges crossing

the boundary of Bd(t, ρt) (the ball around t having radius ρt in metric d) is minimized. Notice that
by removing these edges, we isolate t from the other terminals. Take the k − 1 smallest such cuts
as the multiway cut.

In order to do better, we strengthen the relaxation. We add the following valid inequalities:∑
t∈T d(u, t) = k − 1 ∀u ∈ V, (4)

d(u, v) ≥ ∑
t∈S[d(u, t)− d(v, t)]

∀u, v ∈ V,
∀S ⊆ T.

(5)

We denote this stronger relaxation by LP2. Notice that constraint (5) implies that d(u, v) ≥
|∑t∈S[d(u, t)− d(v, t)]|, because d(u, v) = d(v, u). In this formulation, there is an exponential
number of constraints (5). However,

∑
t∈S[d(u, t)−d(v, t)] is maximized at the set S of all terminals

t for which d(u, t) − d(v, t) > 0. Therefore, we have a polynomial time separation oracle for LP2.
This implies that we can find the optimum to LP2 in polynomial time [16]. In fact, this observation
leads to a polynomial size formulation: For every u, v ∈ V and t ∈ T , add the pair of constraints
d′(u, v, t) ≥ d(u, t)−d(v, t) and d′(u, v, t) ≥ 0. Replace the constraints (5) by d(u, v) ≥ ∑

t d
′(u, v, t).

Thus we can use interior-point algorithms to solve LP2.

Another possible relaxation for Multiway Cut with edge costs is the following:

Minimize
1

2

∑
uv∈E

c(u, v) · ‖xu − xv‖ subject to

xu ∈ ∆k ∀u ∈ V (6)

xt = et ∀t ∈ T. (7)

3

In other words, we place the terminals at the vertices of the (k − 1)-simplex, and the other nodes
anywhere in the simplex, and measure an edge’s length by the total variation distance between its
endpoints. Clearly, placing all nodes at simplex vertices gives an integral solution: the lengths of
edges are either 0 (if both endpoints are at the same vertex) or 1 (if the endpoints are at different
vertices), and the removal of all unit length edges disconnects the graph into at least k components,
each containing at most one terminal. We denote this relaxation by SLP .

Proposition 1. LP2 and SLP are equivalent.

Proof. Given a feasible solution d to LP2 we compute a feasible solution x to SLP with no greater
value as follows. For all t ∈ T , set xt = et. For all u ∈ V \ T , for all i ∈ T , set xu

i = 1 − d(u, i).
As

∑
i∈T d(u, i) = k − 1, we have

∑
i∈T xu

i = 1. Since d(u, i) ≤ 1, xu
i ≥ 0. Thus, xu ∈ ∆k.

Furthermore, for all u, v ∈ V , 1
2
‖xu − xv‖ =

∑
i max{0, xu

i − xv
i }. Put S = {i|xu

i − xv
i > 0}. We get

1
2
‖xu − xv‖ =

∑
i max{0, xu

i − xv
i } =

∑
i∈S(xu

i − xv
i) =

∑
i∈S(d(v, i)− d(u, i)) ≤ d(u, v).

Conversely, given a feasible solution x to SLP , we compute a feasible solution d to LP2 with the
same value as follows. For all u, v ∈ V , set d(u, v) = 1

2
‖xu − xv‖. Feasibility and equality of the

objective function value are obvious.

Subdivisions. Let uv ∈ E. Let G′ be the graph obtained from G by subdividing the edge uv at
a point w. Formally, let w 6∈ V , and define V ′ = V ∪ {w} and E ′ = (E \ {uv}) ∪ {uw, wv}; w is a
nonterminal of G′. The new edges uw and wv have c(u, w) = c(w, v) = c(u, v), while the edge uv
disappears.

Proposition 2. Given a multiway cut C ′ ⊆ E ′ in G′ of cost Z, one can construct a multiway cut
C ⊆ E in G of cost at most Z.

Proof. If C ′ ⊆ E then let C = C ′, and otherwise let C = (C ′ \ {uw, wv}) ∪ {uv}.

We need some special properties of solutions to SLP . We obtain these properties using subdivisions.

Lemma 3. Let x be a feasible solution to SLP for a weighted graph G = (V, E). We can construct
a graph G̃ = (Ṽ , Ẽ), derived from G by a sequence of at most k|E| subdivisions, and a corresponding
feasible solution x̃, such that
(i) the value of x̃ is at most the value of x, and
(ii) for all edges uv ∈ Ẽ, the k-vectors xu and xv differ in at most two coordinates.

Proof. We exploit the additivity of the L1 norm. Let uv be an edge in E such that the k-
dimensional vectors xu and xv differ in more than two coordinates. Let i be a terminal such
that xu

i < xv
i . As

∑k
l=1 xu

l = 1 =
∑k

l=1 xv
l , there is a terminal j 6= i such that xu

j > xv
j . Put

α = min{xv
i − xu

i , x
u
j − xv

j}. Let w 6∈ V and define xw
l = xu

l for l ∈ {1, 2, . . . , k} \ {i, j}, xw
i = xu

i + α

and xw
j = xu

j −α. It is immediate that
∑k

l=1 xw
l = 1 and that 0 ≤ xw

i ≤ 1. We have 1
2
‖xu − xw‖ = α

and that xu and xw differ in only two coordinates. Also, it is easy to verify that 1
2
‖xv − xw‖ =

1
2
‖xu − xv‖ − α and that the number of coordinates in which xv and xw differ is smaller than the

number of coordinates in which xu and xv differ. As described above, we subdivide the edge uv into
uw and wv, and extend the solution to SLP to include the new node. The value of the extended
solution does not increase. We continue, if necessary, to subdivide the new edge wv. We need to do
this at most k − 2 times, since each time the number of coordinates in which the new node differs

4

from xv decreases. We stop when all edges yz obtained from subdividing uv have the property that
xy and xz differ in at most two coordinates.

We repeat the process described above for all edges of G. In this process we create at most k|E|
new nodes and associated k-vectors. At the end, we have a graph G̃ with at most n + k|E| nodes.
We also have a feasible solution x̃, which extends x to all the new nodes of G̃ and has the same
cost as x.

3 The Algorithm

Here we present our algorithm which finds a multiway cut with cost within a factor of 1.5− 1/k of
optimal. After presenting a randomized algorithm, we provide a simple derandomization.

We begin by computing an optimal solution to SLP , for instance by solving the linear program LP2
and then transforming the solution. Clearly, the value Z∗ of this solution is a lower bound on the
cost of the minimum multiway cut MWC. In fact, assume that we have a feasible (optimal) solution
x to SLP of value Z, such that for all uv ∈ E, xu and xv differ in at most two coordinates. The
rounding proceedure will construct a multiway cut C ⊆ E of expected cost at most (1.5 − 1/k)Z.
Then, using Lemma 3 and Proposition 2, one can (trivially) extend the multiway cut construction
to the general case.

We then apply a rounding algorithm to get an integral solution in which all the nodes are at the
vertices of ∆k. The rounding algorithm iteratively assigns some nodes to terminal 1, then some
of the remaining nodes to terminal 2, then some of the remaining ones to terminal 3, and so on,
and then some to terminal k − 1. Any nodes left over are assigned to terminal k, which acts as an
“overflow” bin. (In fact, the algorithm does this only with probability 1/2. In the complementary
case, the algorithm first assigns some nodes to terminal k − 1, then some of the others to terminal
k − 2, then some of the rest to terminal k − 3, ..., and then some to terminal 1. Terminal k again
acts as an overflow bin, taking any nodes that remain at the end.) An edge {u, v} ends up in the
multiway cut if and only if u and v are assigned to different terminals.

Rounding. Set B(i, ρ) = {u ∈ V | xu
i > 1 − ρ}, the set of nodes suitably “close” to terminal

i in the simplex. Choose a permutation σ = 〈σ1, σ2, ..., σk〉 to be either 〈1, 2, 3, . . . , k − 1, k〉 or
〈k − 1, k − 2, k − 3, . . . , 1, k〉 with probability 1

2
each. Independently, choose ρ ∈ (0, 1) uniformly

at random. Then, process the terminals in the order σ(1), σ(2), σ(3), . . . , σ(k). For each j from 1
to k − 1, place the nodes that remain in B(σj, ρ) at eσj . Place whatever nodes remain at the end
at ek. The following code specifies the rounding procedure more formally. We use x̄ to denote the
rounded solution.

The Rounding Procedure
1 Let σ = 〈1, . . . , k − 3, k − 2, k − 1, k〉 or 〈k − 1, k − 2, k − 3, . . . , 1, k〉, each with probability 1/2
2 Let ρ be a random real in (0, 1) /* See note below. */
3 for j = 1 to k − 1 do
4 for all u such that xu ∈ B(σj, ρ) \ ∪i:i<jB(σi, ρ) do
5 x̄u := eσj /* assign node u to terminal σj */

5

6 endfor
7 endfor
8 for all u such that xu 6∈ ∪i:i<kB(σi, ρ) do
9 x̄u := ek

10 endfor

We can implement this algorithm to run in random polynomial time, as follows. (Because the
algorithm can easily be derandomized (see Section 3.2), we ignore the fact that in reality one
cannot choose ρ uniformly from (0, 1).) After choosing σ and ρ, we maintain k lists of nodes, list i
eventually containing the nodes assigned to terminal i. Initially, the kth list contains all the nodes,
and the other lists are empty. For each terminal we scan each node in the kth list and check if it is
close enough to the terminal. If so, we move it to that terminal’s list. Otherwise, it remains in the
kth list.

Let C be the set of edges whose endpoints are at different vertices of ∆k in the rounded solution x̄.
Clearly, the value of this solution is exactly the sum of costs of the edges in C. Furthermore, these
edges form a multiway cut. In what follows we relate the expected total cost of edges in C to the
value Z of the fractional solution x.

3.1 Analysis

We are assuming that for every edge uv ∈ E, the k-vectors xu and xv differ in at most two
coordinates. Let uv ∈ E. It is impossible for xu and xv to differ in exactly one coordinate.
Therefore, we can partition the edges of G into E = (∪i<jEij) ∪ E0, where

Eij = Eji = {uv ∈ E | (xu
i 6= xv

i) ∧ (xu
j 6= xv

j)}

for i 6= j, and
E0 = {uv ∈ E | xu = xv}.

Let uv be an edge in E. If uv 6∈ E0, then there are two terminals i, j such that uv ∈ Eij. Assume,
without loss of generality, that xu

i = max{xu
i , x

u
j , x

v
i , x

v
j}, i.e., the smallest distance between one of

the terminals i, j and one of the nodes u, v is achieved between i and u. (The smallest distance is
not necessarily unique.)

Proposition 4. For any edge uv ∈ Eij, either xu
i ≥ xv

i ≥ xv
j ≥ xu

j or xu
i ≥ xv

j ≥ xv
i ≥ xu

j .

Proof.
∑

t x
u
t = 1 =

∑
t x

v
t . As xu

t = xv
t for all t 6∈ {i, j}, we have xu

i + xu
j = xv

i + xv
j . As xu

i is the
largest among these four coordinates, it follows that xv

i ≥ xu
j and xv

j ≥ xu
j .

Define d(u, v) = 1
2
‖xu − xv‖.

Lemma 5. For any edge uv ∈ E \ ∪t:t<kEtk,

Pr[uv ∈ C] ≤ 1.5 d(u, v).

Proof. For i 6= j, by i ≺ j denote the fact that i precedes j in σ.

If xu = xv, then regardless of σ and ρ, x̄u = x̄v (i.e., the two nodes get assigned to the same
terminal). Therefore, Pr[uv ∈ C] = 0.

6

So we may assume that uv ∈ Eij for a pair of terminals i 6= j. Assume, without loss of generality,
that xu

i = max{xu
i , x

u
j , x

v
i , x

v
j}.

For any l ∈ {1, 2, . . . , k} \ {i, j}, xu
l = xv

l , and therefore either both u, v ∈ B(l, ρ) or both u, v 6∈
B(l, ρ). So uv is cut only if one of its endpoints is assigned to either i or j. Thus the only way we
can possibly put uv in C is to have either ρ ∈ IL = (1 − xu

i , 1 − xv
i] or ρ ∈ IR = (1 − xv

j , 1 − xu
j]

(each interval is open on the left and closed on the right). IL and IR are not necessarily disjoint (see
Proposition 4). We have 1 − xv

i ≤ 1 − xu
j . Both intervals IL and IR have the same length d(u, v).

Clearly IL ∪ IR = IL ∪ (IR \ IL), so that for uv to be in C, either ρ ∈ IL or ρ ∈ IR \ IL.

Now suppose that i ≺ j and that by the time i is processed, neither u nor v has been assigned to a
vertex. For uv to be cut, we must have ρ ∈ IL ∪ (IR \ IL). The crux of the whole proof is that, if
ρ ∈ IR \IL, then in both cases of Proposition 4, ρ > 1−xv

i ≥ 1−xu
i . Therefore, when i is processed,

both u and v are assigned to terminal i, ensuring that uv is not in C. Using this crucial fact and
the independence of ρ and σ, we have

Pr[uv ∈ C] ≤ Pr [(j ≺ i) ∧ (ρ ∈ IL ∪ IR)] + Pr [(i ≺ j) ∧ (ρ ∈ IL)]

≤ 1

2
2d(u, v) +

1

2
d(u, v)

= 1.5 d(u, v).

Lemma 6. For any edge uv ∈ ∪t:t<kEtk, Pr[uv ∈ C] ≤ d(u, v).

Proof. Similar to the previous lemma. The difference is that terminal k is always processed last,
so that for uv ∈ Eik, the only way that u and v are placed at different terminals is if one of them,
but not the other, is placed at i when i is processed. Thus

Pr[uv ∈ C] = Pr [ρ ∈ (1− xu
i , 1− xv

i]] = d(u, v).

Theorem 7. The expected weight of the multiway cut found by the algorithm is at most (1.5 −
1/k)Z∗.

Proof. Let x∗ be an optimal solution to SLP for the graph G, and let Z∗ be its value. By
Lemma 3, we can construct in polynomial time a graph G̃ = (Ṽ , Ẽ) and a feasible solution x̃ to
SLP for G̃ with the following properties: (i) G̃ is derived from G through a sequence of subdivisions
(so it has the same set of terminals); (ii) the value of x̃ is Z∗; and (iii) x̃ satisfies our simplifying
assumption (i.e., for every edge uv, x̃u and x̃v differ in at most two coordinates).

Rename the terminals so that for

Zi =
∑

uv∈∪t:t6=iEti

c(u, v)d(u, v),

i ∈ {1, 2, ..., k}, Zi is maximized at i = k. Let

Z ′ =
∑

uv∈E\E0

c(u, v)d(u, v) ≤ Z∗.

As Z ′ =
∑

i
1
2
Zi, we have Zk ≥ 2

k
Z ′. Let x̄ be the (random) solution output by the rounding

procedure given x̃. Combining Lemmas 5 and 6, and using linearity of expectation, the expected
value of x̄ is at most 1.5Z ′ − 0.5Zk ≤

(
1.5− 1

k

)
Z ′, and we are done, since Z ′ ≤ Z∗.

7

3.2 Derandomization

Instead of choosing ρ from a continuous distribution in line 2, we show in Theorem 8 that it
is sufficient to choose ρ from a small finite sample space. Therefore, we can enumerate over all
possible choices of σ and ρ.

Theorem 8. There is a deterministic polynomial time algorithm that finds a multiway cut of cost
at most (1.5− 1/k)Z∗.

Proof sketch. By the proof of Theorem 7, there exists a choice of σ, ρ that gives an integral
solution of value at most the expectation. There are two possible choices for σ. For a given
permutation σ, two different values of ρ, ρ1 < ρ2, produce combinatorially distinct solutions only
if there is a terminal i and a node u such that xu

i ∈ (1− ρ2, 1− ρ1]. Thus we may enumerate over
at most k|Ṽ | “interesting” values of ρ. We can determine these values easily, by sorting the nodes
according to each coordinate separately. The resulting discrete sample space for (σ, ρ) has size at
most 2k|Ṽ |, so we can search it exhaustively to find a point that produces a solution of cost at most
the expectation. Thus we can construct, in polynomial time, a multiway cut for G̃ of cost at most(
1.5− 1

k

)
Z ′. By Proposition 2, we can use this multiway cut to construct a multiway cut for G in

polynomial time.

4 Concluding Remarks

We do not know the integrality ratio for the relaxation we propose. It is possible that a better
rounding procedure can be discovered. Here are the worst examples of which we are aware. For k =
3, the following example (which also appeared in [7]) satisfies all the new constraints and shows that
the integrality ratio is at least 16

15
. Consider the graph G = (V, E). V = {S ⊆ {1, 2, 3}| 1 ≤ |S| ≤ 2},

where {1}, {2}, {3} are the terminals. E = {{S, T}| S 6= T, |S ∩ T | = 1}. The edges {S, T} with S
or T of size 1 (between a terminal and a nonterminal) have cost 2, and the edges with |S| = |T | = 2
(between two nonterminals) have cost 1. It is not hard to see that the optimum multiway cut has
cost 8 (by enumerating over all distinct assignments of the nonterminals to terminals). On the
other hand, assigning length 1

2
to all the edges is a feasible (optimal) solution to the relaxation (i.e.,

place nonterminal {i, j} midway between terminals {i} and {j} in the 2-simplex). This solution
has value 7.5. Thus, the ratio of the integral optimum to the fractional optimum for this example
is at least 16

15
.

The example can be generalized to k = 4. The graph has node set V = {S ⊆ {1, 2, 3, 4}| 1 ≤ |S| ≤
2}, where {1}, {2}, {3}, {4} are the terminals. The edge set is defined as in the previous example:
E = {{S, T}| S 6= T, |S ∩ T | = 1}. The 12 edges {S, T} such that |S| = 1 or |T | = 1 (between a
terminal and a nonterminal) have cost 3, and the 12 edges {S, T} such that |S| = |T | = 2 (between
two nonterminals) have cost 1. By exhaustive search, one can verify that the optimum multiway
cut has cost 26. There is a feasible fractional solution in which all edges have length 1

2
. Its cost is

24, so the integrality ratio in this case is at least 13
12

.

We do not know the exact approximation ratio for the algorithm we presented. For k = 3, the
following example (based on the gadget used in [9] for proving the NP-hardness of the problem)
shows that the approximation ratio of the algorithm is at least 16

15
. Consider the complete graph

8

with vertex set V = {1, 2, 3} × {1, 2, 3}, where (1, 1), (2, 2), (3, 3) are the terminals. For pairwise
distinct i, j, k ∈ {1, 2, 3}, the edges of type {(i, i), (i, j)} and {(i, i), (j, i)} have cost 2, the edges of
type {(i, k), (i, j)} and {(k, i), (j, i)} have cost 1, and the remaining edges have cost 0. Using the
dual, one can verify that x(i,j) = (1/2)(ei + ej) ∈ IR3 for all i, j is an optimal solution to SLP . All
the multiway cuts made by the rounding procedure have cost 16, while a multiway cut of cost 15
exists: the nodes that get assigned to terminal i are (i, 1), (i, 2), (i, 3).

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows. Prentice-Hall, Upper Saddle
River, NJ, 1993.

[2] S. Arora, D. Karger, and M. Karpinski. Polynomial-time Approximation Schemes for Dense
Instances of NP-hard Problems. In Proc. 27th ACM STOC, pages 284-293, 1995.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and Hardness
of Approximation Problems. In Proc. 33rd IEEE FOCS, pages 14-23, 1992.

[4] D. Bertsimas, C. Teo, and R. Vohra. Nonlinear Formulations and Improved Randomized Ap-
proximation Algorithms for Multicut Problems. In Proc. 4th Conference on Integer Program-
ming and Combinatorial Optimization, Lecture Notes in Computer Science 920, Springer-
Verlag, pages 29–39, 1995.

[5] S. Chopra and L. H. Owen. Extended Formulations for the A-cut Problem. Preprint, 1994.

[6] S. Chopra and M. R. Rao. On the Multiway Cut Polyhedron. Networks, 21:51–89, 1991.

[7] W. H. Cunningham. The Optimal Multiterminal Cut Problem. In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 5, pages 105–120, 1991.

[8] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis. The
Complexity of Multiway Cuts. Extended abstract, 1983.

[9] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakis.
The Complexity of Multiterminal Cuts. SIAM Journal on Computing 23:864-894, 1994.
Preliminary version appeared in STOC ’92.

[10] P. Erdős and L. A. Székely. On Weighted Multiway Cuts in Trees. Math Programming
65:93–105, 1994.

[11] L. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, Princeton,
NJ, 1962.

[12] A. Frieze and R. Kannan. The Regularity Lemma and Approximation Schemes for Dense
Problems. In Proc. 37th IEEE FOCS, pages 12–20, 1996.

9

[13] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway Cuts in Directed and Node Weighted
Graphs. Manuscript. Preliminary version appeared in Proc. 21st ICALP, Lecture Notes in
Computer Science 820, Springer-Verlag, pages 487-498, 1994.

[14] N. Garg, V. V. Vazirani, and M. Yannakakis. Approximate Max-Flow Min-(multi)cut The-
orems and Their Applications. SIAM Journal on Computing 25:235-251, 1996. Preliminary
version appeared in STOC ’93.

[15] O. Goldschmidt and D. S. Hochbaum. Polynomial Algorithm for the k-Cut Problem. In
Proc. 29th IEEE FOCS, pages 444-451, 1988.

[16] M. Grötschel, L. Lovász, and A. Schrijver. Geometric Algorithms and Combinatorial Opti-
mization. Springer-Verlag, 1993 (2nd edition).

[17] D. S. Hochbaum and D. B. Shmoys. An O(|V |2) Algorithm for the Planar 3-Cut Problem.
SIAM J. Algebraic and Discrete Methods 6:707–712, 1985.

[18] T. C. Hu. Integer Programming and Network Flows. Addison-Wesley, Reading, MA, 1969.

[19] D. R. Karger and C. Stein. A New Approach to the Minimum Cut Problem. Journal of the
ACM 43:601–640, 1996.

[20] J. Naor and L. Zosin. A 2-Approximation Algorithm for the Directed Multiway Cut Problem.
In Proc. 38th IEEE FOCS, pages 548–553, 1997.

[21] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, New York, NY, 1988.

[22] H. Saran and V. V. Vazirani. Finding k-Cuts Within Twice the Optimal. In Proc. 32nd
IEEE FOCS, pages 743-751, 1991.

[23] D. B. Shmoys. Computing Near-Optimal Solutions to Combinatorial Optimization Problems.
In Combinatorial Optimization, DIMACS Series in Discrete Mathematics and Theoretical
Computer Science (20), W. Cook and L. Lovász (eds.), AMS Publications, 1995.

[24] H. S. Stone. Multiprocessor Scheduling with the Aid of Network Flow Algorithms. In IEEE
Transactions on Software Engineering SE-3, pages 85-93, 1977.

10

