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Abstract

This paper considers the problems of admission control
and virtual circuit routing in high performance com-
puting and communication systems. Admission con-
trol and virtual circuit routing problems arise in nu-
merous applications, including video-servers, real-time
database servers, and the provision of permanent vir-
tual channels in large-scale communications networks.
The paper describes both upper and lower bounds on
the competitive ratio of algorithms for admission con-
trol and virtual circuit routing in trees, arrays, and
hypercubes (the networks most commonly used in con-
junction with high performance computing and com-
munication). Our results include optimal algorithms
for admission control and virtual circuit routing in
trees, as well as the first competitive algorithms for
these problems on non-tree networks. A key result
of our research is the development of on-line algo-
rithms that substantially outperform the greedy-based
approaches that are used in practice.

1 Introduction

1.1 The Problem

This paper considers the problems of admission con-
trol and virtual circuit routing in networks for high
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performance computing and communication. Admis-
sion control and virtual circuit routing problems can
arise whenever there is a request to send a large
amount of data from one node in a network to another
node. The admission control aspect of the problem is
to decide whether or not the network can or should
accommodate the request, and the virtual circuit rout-
ing aspect of the problem is to decide how to route the
data if the request is to be accommodated. (The data
is routed by establishing a path, called a virtual cir-
cuit, through the network that connects the two nodes
that wish to communicate. The data packets can then
be sent in a pipelined fashion along the path. In some
networks, the bandwidth along the path is explicitly
reserved.)

The admission control and virtual circuit routing
problems arise in a variety of applications. For exam-
ple, in parallel supercomputers, it is often necessary to
have fast access to potentially large amounts of data
that is stored remotely. Hence there needs to be a
communications network embedded in the supercom-
puter that is capable of supporting such requests for
data. In some supercomputers this data is routed us-
ing some form of virtual circuit routing. (In the past,
many supercomputers have used packet routing where
each packet uses its own path and no bandwidth reser-
vations can be made. While this approach works for
cooperative scientific applications, it may not be ef-
fective in commercial applications where the various
tasks may not be cooperating. By reserving a certain
amount of bandwidth on a virtual circuit, a particular
task can be assured good performance.)

A large-scale video server can be constructed by
using a supercomputer network to connect a large
disk farm to a set of telecommunications lines. The
network of the supercomputer is then used to route
video (e.g. movies) to subscribers in real time. Or-
acle’s Media Server, which currently runs on the
NCube supercomputer, is an example of such a sys-
tem [Buck94]. Each customer has a virtual circuit
through the NCube that connects the disk containing
the customer’s movie to the customer’s telecommu-



nications port. (This application demonstrates why
circuit routing is better than packet routing for many
tasks. Using packet routing, packets can arrive out
of order, some packet can be seriously delayed, and
performance guarantees are not possible. All of these
issues can have a serious negative effect on the quality
of the movie transmission.)

Real-time database servers represent another im-
portant application area. Many database applications,
such as the join of large tables in a relational database,
require the exchange of substantial amounts of data.
Virtual circuit routing is useful in such applications
since the operation, once it commences, can rely on a
particular level of service from the network.

Admission control and virtual circuit routing also
arise in the sale of bandwidth in telecommunica-
tions networks. In this situation, there is a company
that owns a large telecommunications network and
subscribers that purchase permanent virtual circuits,
which they can then use at their discretion [GKR94].
(This is an example of where the bandwidth for the
virtual circuit is explicitly reserved.)

Finally, we note that the supercomputer commu-
nity has recently shown interest in constructing sys-
tems by interconnecting workstation-like nodes via
high speed LANs [Lei93]. IBM’s SP-2 is an exam-
ple of such a supercomputer system. In view of the
emergence of the ATM standard, which is based on
virtual circuit routing, as the preferred architecture
for high speed data networks, virtual circuit routing
algorithms may become increasingly important for fu-
ture supercomputers.

In all of these applications, the admission control
and routing decisions need to be made in an on-line
fashion. In particular, each decision must be made
without knowledge of future requests. The on-line na-
ture of the problem is a significant complication since
a long virtual circuit path could block many poten-
tial short virtual circuit paths. Generally, systems at-
tempt to maximize the number of requests that can
be served. Thus complications due to the on-line na-
ture of the problem arise when a request for a long
path comes in just before several conflicting requests
for short paths.

In practice, the greedy algorithm is typically used
for admission control (i.e., if the bandwidth needed
for a requested virtual circuit is available, then it is
allocated). This greedy strategy seems natural espe-
cially when nothing is known about future requests.
This paper shows, however, that the greedy strat-
egy is often suboptimal over the long term. (Linear
lower bounds for virtual circuit routing in the absence

of admission control in general networks appear in
[GKR94].)

In this paper we focus on the development of op-
timal (or near optimal) on-line admission control al-
gorithms for trees, arrays, and hypercubes. We have
chosen to focus on these networks for several reasons.
First, these networks (or close variations thereof) form
the architectural basis of most high performance com-
munications networks. Second, the structure of these
networks is rich enough so that the task of designing
optimal algorithms for admission control and circuit
routing is nontrivial. As a consequence, the networks
provide a framework within which novel approaches
to these problems can be exhibited. Lastly, the task
of solving the admission control and circuit routing
problems for general networks is currently beyond our
reach. Indeed, any solution to these problems for gen-
eral networks would provide an approximation algo-
rithm for the maximum disjoint path problem, which
appears to be very difficult even if the on-line con-
straint is lifted. (Given a graph G with a collection
of source nodes s1, s2, . . . , sn and terminating nodes
t1, t2, . . . , tn the Maximum Disjoint Path Problem is
to connect as many of the sources to their respective
sinks as possible using edge disjoint paths in G.)

As a performance measure for our algorithms, we
will use competitive analysis [ST85, KMRS88]. The
competitive ratio of an on-line virtual circuit routing
algorithm is the maximum over all request sequences
of the ratio of the number of requests that the opti-
mal algorithm accepts for that sequence to the num-
ber of requests that the on-line algorithm accepts on
the same request sequence. Specifically, for request
sequence σ, let A(σ) be the number of requests ac-
cepted by algorithm A on σ and let O(σ) be the opti-
mal number of requests that can be accepted from σ.
Then the competitive ratio for A is the maximum over
all σ of A(σ)/O(σ). An algorithm with a low compet-
itive ratio is one that performs close to the optimal
algorithm on all request sequences. Since it does not
make assumptions about the sequence of virtual cir-
cuit requests offered to the network, the competitive
ratio provides a very robust performance measure.

Competitive analysis can be extended to random-
ized algorithms [BLS87]. Let E[A(σ)] be the expected
performance of randomized algorithm A on request se-
quence σ. Then the competitive ratio for A is the max-
imum over all request sequences σ of E[A(σ)]/O(σ).
This competitive ratio is called oblivious since the re-
quest sequence is chosen independently of the random
choices made by A. In contrast, an adaptive compet-
itive ratio permits the chosen sequence to depend on



the random choices of the algorithm [RS, BBK+90]. In
this paper we will be concerned with oblivious com-
petitive ratios. We note that all the lower bounds
on the competitive ratio for deterministic algorithms
mentioned in this paper are also lower bounds on the
adaptive competitive ratio for randomized algorithms.

1.2 Previous Work

Admission control and virtual circuit routing prob-
lems have been previously considered in a variety
of contexts. Garay and Gopal [GG92] and Garay,
Gopal, Kutten, Mansour, and Yung [GGK+93] devel-
oped competitive algorithms for these problems in the
scenario where preemption is allowed and the network
is constrained to be a straight line. When preemption
is allowed, the network may decide to terminate any
virtual circuit at any time. Preemption is undesirable
in most of the applications (such as video-servers and
the sale of permanent virtual circuits) that we men-
tioned previously.

Awerbuch, Azar and Plotkin [AAP93] develop com-
petitive algorithms for general networks, but with the
restriction that every virtual circuit request at most
1/ log n of the capacity of the lowest capacity link.
They provide an O(log nT ) competitive algorithm,
where n is the number of nodes in the network and
T is the ratio of the longest to the shortest duration
of any virtual circuit. If all virtual circuits have infi-
nite duration, the competitive ratio of the algorithm
in [AAP93] is O(log n). In many applications, the as-
sumption that each virtual circuit uses only 1/ log 2n
of the bandwidth of each link is unrealistic. For ex-
ample, permanent virtual circuits may have connec-
tions that use 45Mbps of bandwidth which is fairly
large compared to a typical backbone bandwidth of
155Mbps. Oracle’s Media Server has 7.5Mbps chan-
nels while an MPEG video stream uses 1.5Mbps. In
this case, the algorithm in [AAP93] can support at
most a 16 node network.

Aspnes, Azar, Fiat, Plotkin and Waarts [AAF+93]
consider a slightly different model. Here there is no
admission control problem since all requests are ac-
cepted. [AAF+93] presents a competitive algorithm
that on any link requires at most O(log n) more ca-
pacity than is required by the optimal off-line algo-
rithm, where n is the number of nodes in the network.
Note that the virtual circuits in [AAF+93] all have in-
finite duration. The result is extended to virtual cir-
cuit with finite duration in [AKP+93]. Both [AAF+93]
and [AAP93] use minimum cost routing where the cost
metric is an exponential function of the used band-
width [SM90].

In [ABFR94] Awerbuch, Bartal, Fiat and Rosen
consider the admission control and virtual circuit rout-
ing problem on trees. Their basic algorithm focuses
on virtual circuits that request the entire bandwidth
of a link and have infinite duration. The algorithm
is randomized and has an O(log n) competitive ratio.
For the line, they show a matching lower bound of
Ω(log n). By combining their basic algorithm with
the algorithm in [AAP93], the authors provide an
O(log2 n) competitive algorithm for virtual circuits of
arbitrary bandwidth. A previous, unpublished ver-
sion of the Awerbuch et al paper [ABFR93] includes a
non-greedy randomized admission control and virtual
circuit routing algorithm whose analysis can be mod-
ified trivially to give an O(log d) competitive ratio on
trees with radius d. This algorithm seems restricted
to virtual circuits that request the entire bandwidth
of a link. The basic algorithm in [ABFR94] can also
be extended to deal with finite duration requests at
the cost of an O(log T ) multiplicitive term in the com-
petitive ratio, where T is the ratio of the maximum
to the minimum duration of a virtual circuit. Blum,
Fiat, Karloff, and Rabani report a deterministic O(n)
algorithm for the n × n mesh, a deterministic Ω(

√
n)

lower bound on the n×n mesh, and an O(log n) deter-
ministic algorithm with preemption for n node trees
[BFKR93].

1.3 Our Results

In this paper, we improve upon and extend the work of
[ABFR94, BFKR93]. For simplicity, we initially focus
on the situation where each virtual circuit requests the
entire link bandwidth. This is the situation where the
O(log n) algorithm of [AAP93] fails. We also focus on
the case that the duration is infinite. For several of our
results, we show how these restrictions can be relaxed.
In particular our results for trees hold for virtual cir-
cuits that use a fixed fraction of the link bandwidth.
In general, the restriction to infinite durations can be
relaxed using the techniques in [ABFR94] at the cost
of an O(log T ) multiplicitive term in the competitive
ratio, where T is the ratio of the maximum duration
to the minimum duration of a virtual circuit.

In the case of trees, we give tight (up to a con-
stant factor) upper and lower bounds for all trees. For
trees with radius d, we show bounds of Θ(log d) on the
competitive ratio of randomized algorithms for virtual
circuit routing. If virtual circuits are requested be-
tween leaves only, we show tight bounds of Θ(log d′),
where d′ is the radius of the tree derived from the orig-
inal network by shrinking degree-2 vertices. We show
that these results hold even for trees with arbitrary



link capacity, as long as all links have the same capac-
ity. Thus, we extend the unpublished O(log d) result
of [ABFR93] to new domains. (Note, our algorithm
uses different techniques than the O(log d) algorithm
of [ABFR93].) Our randomized algorithms overcome
the trivial Ω(d) lower bound on the competitive ratio
for deterministic algorithms on trees.

For an n× n tree of meshes we develop a random-
ized algorithm that achieves an O(log log n) competi-
tive ratio. This matches the Ω(log log n) lower bound
we give.

The algorithm for the n× n tree of meshes can be
used to provide a randomized algorithm that achieves
a competitive ratio of O(log n log log n) on an n × n
mesh. Our algorithm overcomes the Ω(

√
n) lower

bound on the competitive ratio for deterministic al-
gorithms on an n× n mesh [BFKR93]. We also show
how to achieve a deterministic competitive ratio of
O(log2 n) for the hex, which is surprising given the
lower bound of Ω(

√
n) on the competitive ratio of an

n × n mesh. Our competitive algorithms for the grid
and hex are the first competitive algorithms for admis-
sion control and circuit routing on non-tree networks.
(We also improve the upper bound on the determin-
istic competitive ratio for the mesh to O(

√
n), but

we have omitted the details since the algorithm is not
particularly useful.) In addition, we are able to show
an Ω(log n) lower bound on the competitive ratio for
randomized algorithms for the n× n mesh.

Our technique for proving lower bounds on the com-
petitive ratio for randomized algorithms extends nat-
urally to several other networks. In particular, we
observe an Ω( 1

k log n) lower bound for a k dimensional
mesh with n nodes, an Ω(log log n) lower bound for
an n2-leaf tree of meshes, and an Ω(log log n) lower
bound for the log n dimensional hypercube. Finally,
we observe that there is an O(1) competitive random-
ized algorithm for routing permutations on the O(1)-
dilated hypercube, using a result of Aiello, Leighton,
Maggs, and Newman [ALMN91].

The remainder of the paper is organized as follows.
Our algorithms for trees are presented in Section 2.
Section 3 presents our algorithm for an n × n tree of
meshes. The algorithm for n×n meshes is presented in
Section 4. All lower bounds are presented in Section 5.

2 An Optimal Algorithm for
Trees

This section presents our algorithm for virtual circuit
routing and admission control on trees. Let n be the

number of nodes in the tree, let d be its diameter,
and let d′ be the diameter after shrinking degree-2
vertices. We describe in detail the algorithm for rout-
ing between leaves, then show how to extend it to the
case of routing between any pairs of vertices. In what
follows we assume that degree-2 vertices are already
shrunk. If the remaining tree has a single edge, ac-
cept the first request that comes in. The optimal off-
line algorithm accepts at most one call. So, we may
assume that the tree contains a non-leaf node. For
convenience, root the tree at one of its non-leaf nodes,
denoted r. This induces, for every vertex v 6= r, a
unique parent, which we denote by P (v). Also, for
every pair of nodes u, v, denote their least common
ancestor in the rooted tree by LCA(u, v). Denote by
PATH(u, v) the unique path connecting u and v.

First, we introduce the concept of a roadblock. In
response to a virtual circuit request, our algorithm
may place roadblocks at edges of the tree. The exis-
tence of a roadblock on an edge blocks future requests
whose paths use that edge, and causes them to be re-
jected.

Somewhat surprisingly, we will find that by denying
some requests at random and by also denying all fu-
ture requests that significantly overlap some denied
requests (where the measure of significance is also
random), we can significantly improve overall perfor-
mance. In other words, by denying requests in a spe-
cial randomized way, we will be able to accommodate
more requests overall.

2.1 The Algorithm

Consider a particular virtual circuit request ρ =
{u, v}. If PATH(u, v) either crosses a roadblock or
intersects with another virtual circuit request that
was accepted, reject it. Otherwise, ρ is a candidate.
If the request becomes a candidate, accept it with
probability 1/2. Otherwise, reject it and place road-
blocks as follows. Pick a random integer ` uniformly
in [1, log d′ + 1]. Consider PATH(u, v). Number the
edges 1, 2, . . . along the path from u to v (where we
assume wlog that u < v). Place a roadblock on edges
numbered i2` for all 0 < i ≤ d′/2`−1. The roadblocks
partition PATH(u, v) into segments of equal length
(except, perhaps, for the last segment). Also, place
an extra roadblock on the edge between LCA(u, v)
and P (LCA(u, v)). We call this roadblock an extra
roadblock.



2.2 The Analysis

Consider any request sequence σ = σ1σ2 · · ·σ|σ|. De-
note σi = {ui, vi}. Define C∗ to be the set of requests
accepted by the optimal off-line strategy for this se-
quence. We call the requests in C∗ the optimal re-
quests. For the purpose of analyzing the algorithm
we maintain a feasible subset C ⊆ C∗ that is updated
each time a candidate request is handled. Let C0 = C∗

be the initial value of C. Let Ci, i = 1, 2, . . . , |σ| be
the value of the subset after the ith request is handled.
For C ⊆ C∗ and a request ρ, let C ∩ ρ denote the set
of calls in C whose path intersects the path of ρ at
an edge. We also use tokens as a bookkeeping tool for
the analysis. The algorithm is not aware of their ex-
istence. Tokens are distributed by candidate requests
that are not accepted. A candidate request gives at
most one token in each of the segments its path gets
partitioned into by the roadblocks.

Next we explain how C is updated and how tokens
are distributed. Consider a request σi. There are three
cases:

Case 1. σi is not a candidate.
In this case Ci = Ci−1 and no tokens are distributed.

Case 2. σi is a candidate that is accepted.
Let C := Ci−1 and then remove from C the calls in
Ci−1 ∩ σi. Furthermore, for any previously rejected
candidate σj that σi intersects, consider the segment
of σj ’s path in which the intersection occurs (there
cannot be more than one segment, otherwise σi would
pass across a roadblock). If there is a call in Ci−1

that has tokens, intersects σj in the same segment,
and received its last token from σj , we remove it from
C. Now Ci := C. No tokens are distributed.

Case 3. σi is a candidate that is rejected.
In this case σi ’s path is divided by the roadblocks into
disjoint segments of equal length (except, perhaps the
last segment). For each segment, we give a token to
at most one optimal request in Ci−1∩σi. The optimal
requests that receive a token are determined as follows.
For every ρ ∈ Ci−1 ∩ σi, ρ is of level j if it will not
be blocked by roadblocks spaced 2j apart, but will be
blocked by roadblocks spaced 2j−1 apart on σi. If ` is
the random spacing picked for σi, we give a token to
every level ` optimal request in Ci−1 ∩ σi. Now define
C := Ci using the construction of Ci given for an
accepted candidate request. Return to C the optimal
requests that receive a token. If one of these requests
is blocked by the extra roadblock, remove it from C.
Now, set Ci := C.

We introduce some notation. Let a∗ = |C∗|. Let
a be the number of requests accepted by the algo-
rithm. Let c be the number of candidates. Let t be

the number of optimal requests that received tokens
(notice that a call may receive more than one token,
but we ignore multiple tokens). Let b be the number
of optimal requests that were removed by extra road-
blocks. Let f be the number of optimal requests that
did not intersect any other candidate and were not
even removed by extra roadblocks (notice that they
must have been candidates themselves). Notice that
a, c, t, b, and f are random variables By the definition
of the algorithm

Fact 1 E[a] = 1
2E[c].

Lemma 2

E[t + b + f ] ≥ a∗

2(log d′ + 1)
.

Proof. Consider any optimal request ρ. Consider the
event that it was not removed by an extra roadblock,
but it was overlapped by candidate requests. Consider
the first candidate σi that overlapped ρ. Obviously,
ρ ∈ Ci−1. With probability 1/2, σi was accepted and
ρ does not get any tokens. Otherwise, with probability
1/(log d′ + 1), the level picked is ρ’s level, and it gets
a token. In the complement event, ρ contributes 1 to
the sum b + f .

Lemma 3

E[c] ≥ 1
4
E[t].

Proof. Consider a candidate σi from ui to vi. We
show that it removes at most 4 calls with tokens from
Ci−1. σi might have tokens itself. The extra roadblock
σi lays may remove one call with tokens. So, it is suf-
ficient to show that at most two additional calls with
tokens are removed. Let x = LCA(ui, vi). We show
that each of the two parts of σi, PATH(ui, x) and
PATH(vi, x), can cause the removal of at most one
call with tokens. Without loss of generality, consider
PATH(ui, x). Notice that since PATH(ui, x) cannot
cross any extra roadblock, all previous rejected can-
didates it intersects must share the topmost edge of
PATH(ui, x), and therefore they all intersect among
themselves in the same segments that PATH(ui, x)
intersects with them. Therefore, there is at most one
surviving (i.e., not yet removed from C) call whose
last token was assigned from one of these segments,
namely, the one (if any) from the latest rejected can-
didate encountered. We consider several cases.

Case 1. PATH(ui, x) does not intersect any call
with tokens. The above argument shows that we re-
move at most one call with tokens.



Case 2. PATH(ui, x) intersects calls with tokens.
Follow the path starting at ui until it first intersects
a call ρ = {u, v} in Ci−1 with tokens. There are two
possibilities:

Case 2a. The remainder of PATH(ui, x) is con-
tained in PATH(u, v). In this case, since calls with
tokens belong to the optimal set C∗, we cannot in-
tersect any other call with tokens. Furthermore, ei-
ther we have not encountered any rejected candidates,
or ρ must be the call with tokens from the latest re-
jected candidate encountered, since the topmost edge
of PATH(ui, x) is contained in ρ.

Case 2b. PATH(ui, x) extends beyond w =
LCA(u, v). The previous case shows that the portion
PATH(ui, w) does not remove any other calls with
tokens. Since the edge e = (w,P (w)) must be con-
tained in the rejected candidate σj that gave ρ its last
token (otherwise ρ or σi would have been blocked by
the extra roadblock), the entire portion PATH(w, x)
is contained in σj ’s path. Since σj would have re-
moved any other optimal call intersecting the segment
containing both PATH(w, x) and the intersection of
σj with ρ (notice that e cannot delimit a segment),
PATH(w, x) cannot intersect any other non-removed
call with tokens. It is clear that σj is the latest re-
jected candidate encountered, since all other rejected
candidates encountered intersect σj in the same seg-
ment that contains ρ, and if anyone would have come
later, it either would have removed ρ or would have
placed a token on ρ.

Theorem 4 The above algorithm achieves a compet-
itive ratio of O(log d′).

Proof. Obviously, c ≥ b and c ≥ f . Combining this
with Fact 1 and Lemmas 2 and 3 we get:

E[a] =
1
2
E[c] ≥ 1

2
max

{
1
4
E[t], E[b], E[f ]

}
≥ 1

24
E[t + b + f ] ≥ a∗

48(log d′ + 1)
.

In order to handle requests between interior nodes,
we reduce the problem to the special case of requests
between leaves. Given a tree of diameter d, consider
every non-leaf node v. Let {e1, e2, . . . , ek} be the set of
edges adjacent to v. For every edge ej in that set, add
a new leaf vj connected to v. This does not increase
the diameter of the tree. Consider a request sequence.
In any request that has an interior node v as one of
its endpoints, find the edge ej adjacent to v through
which the path of this request must go, and replace v
in that request by vj .

The algorithm can also be extended to handle vir-
tual circuits that request less than the entire band-
width of a link. Let the capacity of each link in the
tree be k. In other words, k virtual circuits can si-
multaneously use any link. The algorithm views such
a tree as k virtual trees, T1, . . . , Tk, where each link
in each of the virtual trees has capacity one. When a
request ρ arrives, find a tree Ti such that ρ is a can-
didate in Ti. If no such Ti exists, reject ρ. Otherwise,
proceed with ρ on Ti as in the algorithm for capacity
one trees. A constant fraction of the optimal requests
can be accepted on these virtual trees. (To see that,
notice that the optimal requests can be colored with
2k colors so that no two overlapping requests have the
same color. There is a subset of k colors that con-
tains at least half of the optimal requests.) With this
assignment of optimal requests to virtual trees, the
analysis proceeds essentially the same as the analysis
for the capacity one tree.

3 Algorithm for Tree of Meshes

For n a power of 2, the n × n tree of meshes has
the following structure. The network has a total of
2n2 log n nodes. These are arranged in 2 log n levels,
each containing n2 nodes. The levels are numbered
0 through 2 log n − 1. Links connect nodes in the
same level or in adjacent levels. Level i is a collec-
tion of disjoint mi × ni meshes, where mi = n

2i and
ni = n

22bi/2c . Notice that for even i mi = ni = mi−1,
and for odd i 2mi = ni = ni−1. Each level i mesh
is connected to a unique pair of level i + 1 meshes.
For even i, nodes (1, 1), (1, 2), . . ., (1, ni) of the
level i mesh are connected to nodes (1, 1), (1, 2), . . .,
(1, ni+1), respectively, of one of the level i+1 meshes,
and nodes (mi, 1), (mi, 2), . . ., (mi, ni) of the level
i mesh are connected to nodes (mi+1, 1), (mi+1, 2),
. . ., (mi+1, ni+1), respectively, of the other level i + 1
mesh. For odd i, nodes (1, 1), (2, 1), . . ., (mi, 1) of
the level i mesh are connected to nodes (1, 1), (2, 1),
. . ., (mi+1, 1), respectively, of one of the level i + 1
meshes, and nodes (1, ni), (2, ni), . . ., (mi, ni) of the
level i mesh are connected to nodes (1, ni+1), (2, ni+1),
. . ., (mi+1, ni+1), respectively, of the other level i + 1
mesh.

Essentially, on-line routing and admission control
of requests between leaves (level 2 log n − 1 nodes) of
the n× n tree of meshes is equivalent, up to constant
factors in the competitive ratio, to routing on the fol-
lowing binary tree. Take a complete binary tree of
height 2 log n − 1 (the tree has n2 leaves). The root
(level 0 node) is connected to each of its children by



an edge with capacity n. In general, level i nodes are
connected to each of their children by an edge of ca-
pacity n/2i/2, if i is even, or by an edge of capacity
n/2(i−1)/2, if i is odd. The idea is that routes taken
on this tree can be duplicated on the tree of meshes
using the intermediate meshes as crossbars.

Viewing the routing problem on the tree of meshes
this way, it is easy to see that a deterministic greedy
algorithm is O(log n) competitive. This is because the
path of any accepted request is O(log n) long, and
therefore may block at most O(log n) optimal requests.
Our algorithm improves over the greedy algorithm by
achieving an O(log log n) competitive ratio. We show
a matching lower bound in Section 5.

The description of our algorithm also views the tree
of meshes as the above detailed binary tree. We divide
requests into local and long distance requests. For a
local request, the height of the lowest common ances-
tor must not be greater than 4 log log log n (the factor
of 4 is an overshoot). All requests that are not local
are long distance requests. Notice that the bandwidth
for all links above a node of height 4 log log log n is at
least (log log n)2. View the subtrees rooted at nodes
of height 4 log log log n as virtual nodes and call the
tree whose leaves are these virtual nodes the long dis-
tance tree. We will use the algorithm in [AAP93] to
route long distance requests in the long distance tree.
To see that [AAP93] is applicable to our situation,
we note that the analysis in [AAP93] can be modified
easily to show that their algorithm achieves a com-
petitive ratio of O(log d) for connections which use at
most a 1/ log 2d fraction of the bandwidth, where d is
the length of the longest simple path in the network.
For our long distance network d ≤ 2 log n. Our al-
gorithm proceeds as follows. Flip an unbiased coin.
With probability 1/2 route only local requests using
greedy admission control. With the remaining proba-
bility route only long distance requests. Upon arrival
of a long distance request, check if it is blocked in
either of the two virtual nodes that contain its end
points (in which case it has to be rejected). If not, use
the algorithm in [AAP93] to do the admission control
in the long distance tree.

Analysis.
Consider any request sequence. Let a∗ be the num-
ber of optimal requests; i.e., the number of requests
the optimal off-line algorithm accepts. Let a∗s be the
number of local optimal requests, and let a∗` be the
number of long distance optimal requests. Define the
following random variables. Let a be the number of re-
quests accepted by our algorithm, let as be the number
of accepted local requests, and let a` be the number of

accepted long distance requests. Finally, let a′` be the
number of long distance optimal requests that the al-
gorithm feeds to the [AAP93] algorithm. (Notice that
with probability 1/2, a′` = 0.)

Since local requests have paths of length at most
8 log log log n, each such request that is routed may
block at most that many optimal local requests. We
route local requests with probability 1/2. Therefore
we get:

E[as] ≥
a∗s

O(log log log n)
. (1)

With a simple modification of the proof in [AAP93],
we show that:

a` ≥
a′`

O(log log n)
. (2)

Consider the sum O(log log log n)a` + a′`. With prob-
ability 1/2 this sum is 0. Otherwise, it is at least
a∗` , because for each accepted long distance call, the
portions of its path contained in virtual nodes are of
total length O(log log log n) and therefore may block
at most that many optimal long distance calls (before
they are fed to the [AAP93] algorithm). Therefore, we
get:

E[O(log log log n)a` + a′`] ≥
a∗`
2

. (3)

Therefore,

Theorem 5 The above algorithm has a competitive
ratio of O(log log n).

Proof. Using 1, 2, and 3,

a∗ = a∗` + a∗s

≤ 2E[O(log log log n)a` + a′`] + O(log log log n)E[as]
≤ O(log log n)E[a`] + O(log log log n)E[as]
≤ O(log log n)E[a` + as]
= O(log log n)E[a].

4 Algorithms for Meshes

The two dimensional m×n mesh has the set of nodes
{(r, c) | 1 ≤ r ≤ m, 1 ≤ c ≤ n}. Two nodes are
connected by a link if their Hamming distance is one.
Where c is some constant, it is easy to embed an m×n
hex on a cm× cn mesh without reducing the optimal
throughput by replacing each node of the hex with
a c × c mesh that is used as a crossbar to route all
requests that pass through that node.

We use the tree of meshes to derive an
O(log n log log n) competitive randomized algorithm



for the mesh. Our algorithm for the mesh is based
on a 1–1 embedding of the nodes of the n× n tree of
meshes onto nodes of the n log n × n log n hex, such
that the maximum congestion at an edge is 1 [BL84].

To simplify the presentation, we consider a
Kn log n × Kn log n mesh, where K is some suffi-
ciently large constant. Divide the mesh into n2 dis-
joint K log n × K log n squares. Divide each square
into log2 n disjoint K × K squares. In each of these
n2 log2 n constant size squares, pick independently and
uniformly at random one vertex. Each such vertex
is an active vertex. Every active vertex controls the
K ×K square it was picked from.

Now, in each K log n × K log n square, we place
an H-embedding of a complete binary tree with log2 n
leaves. We can now connect every active vertex to such
a binary tree by a path that is contained in the square
controlled by that active vertex. (That is because ev-
ery K × K square contains a leaf of the tree.) We
now embed an n×n tree of meshes in our mesh. Each
K log n×K log n square contains one leaf of the tree of
meshes. We connect the root of the complete binary
tree embedded in such a square to the leaf of the tree
of meshes in the same square, using a path that does
not leave the square. Notice that we may have used
some of the edges of the mesh more than once. How-
ever, if K is large enough, we can move wires around
so that every edge gets used at most once.

Now for the algorithm. Flip an unbiased coin. With
probability 1/2 consider only requests that have both
endpoints within the same K log n × K log n square.
We name these requests local calls. We use a deter-
ministic algorithm routing those requests. Specifically,
let the row-column path be the path that travels in
the row of the source until it reaches the column of
the destination and then travels in the column of the
destination. A local call is accepted if its row-column
path is available. With the remaining probability, i.e.
1/2, consider only requests that have each endpoint
in a different square. We name these requests long
distance calls. Use the following method for these
calls. When a request comes in, reject it if either of
its two endpoints u, v is not an active vertex. Oth-
erwise, it is considered a candidate. A candidate call
uses the tree of meshes algorithm of Section 3 to de-
termine a path from u’s K log n × K log n square to
v’s K log n × K log n square in the embedded tree of
meshes. If the tree of meshes algorithm rejects the
call, the call is rejected for the mesh. If the tree of
meshes algorithm accepts the call, take the following
path: from u to the binary tree in its square, then
along the binary tree to its root, from there to a leaf

of the tree of meshes, from there to the leaf of the tree
of meshes in the square containing v, from there to the
root of the binary tree in that square, from there along
the binary tree to where v connects to the tree, from
there to v. Note that the path from the endpoints to
leaves of the tree of meshes can never be blocked since
each leaf in the tree of meshes can accept at most one
call.
Analysis.
Consider any request sequence. Let a∗ be the num-
ber of optimal requests, i.e. the number of requests
the optimal off-line algorithm accepts. Let a∗s be the
number of local optimal requests, and let a∗` be the
number of long distance optimal requests. We now
define some random variables. Let a be the number
of calls our algorithm accepts. Let as be the number
of local calls our algorithm accepts, and let a` be the
number of long distance calls our algorithm accepts.
Let c∗ be the number of optimal long distance requests
that are candidates.

Lemma 6 E[c∗] = a∗`
2K4 .

Proof. With probability 1/2 we choose to route
only local calls and there are no candidates in that
case. Otherwise, for every optimal request, each of
its two endpoints has a probability of 1/K2 to be an
active vertex. These events for the two end points are
independent.

Lemma 7 E[a`] ≥ c∗

O(log n log log n) , where the expec-
tation is over the coin tosses of the tree of meshes
algorithm.

Proof Sketch. Let c′ be the set of candidate
calls that would be accepted by an optimal off-line
algorithm for the embedded tree of meshes. c∗ ≤
O(log n)c′. (To see that, notice that by increasing the
capacity of the tree of meshes by a factor of O(log n),
all the c∗ optimal long distance calls that are candi-
dates can be routed on the tree [LS93]. Now, in gen-
eral, reducing the capacity of a network by a certain
factor may reduce the throughput by much more than
that factor, but this nasty behavior does not happen
in trees, as follows, e.g., from [GVY93].) Furthermore,
from Theorem 5 we know that c′ ≤ O(log log n)E[a`].
The lemma follows.

Lemma 8 E[as] ≥ a∗s
4K log n .

Proof. Any row-column path taken by a local call
blocks at most the calls whose endpoints are in the
same row and column as the row-column path. Thus,



it blocks at most 2K log n optimal calls. The result
follows from the fact that we accept local calls with
probability 1/2.

Theorem 9 The above algorithm achieves a compet-
itive ratio in O(log n log log n).

Proof. Using Lemmas 6 and 7, we have

E[a`] ≥ E[c∗]
O(log n log log n)

=
a∗`

O(log n log log n)
.

Together with Lemma 8 we get

E[a] = E[as + a`]

≥ a∗s
4K log n

+
a∗`

O(log n log log n)

≥ a∗

O(log n log log n)
.

In section 5 we prove an Ω(log n) lower bound on
the competitive ratio for any randomized algorithm on
the n× n mesh.

5 Lower Bounds

In this section we give the lower bound for the mesh,
the tree, the tree of meshes, and the hypercube. These
lower bounds share a common proof technique. We
give the details of the proof for meshes, and sketch
the remaining proofs.

We prove an Ω(log n) lower bound on the com-
petitive ratio for any randomized algorithm on the
n× n mesh. Using the principle of von Neumann (see
[Yao77, BLS87]), it suffices to demonstrate a proba-
bility distribution over inputs that forces an Ω(log n)
lower bound on the competitive ratio of any determin-
istic algorithm A.

Consider an n× n mesh. For simplicity we assume
that n is a power of 2. For every 0 ≤ i < log n, we
divide the mesh into 4i submeshes of size n/2i×n/2i.
For example, the top left hand submesh of the ith
division consists of the nodes:

(1, 1) . . . (n/2i, 1)
...

...
(1, n/2i) . . . (n/2i, n/2i)

Denote by Li the following requests. For
each of the 4i squares of size n/2i × n/2i re-
quest circuits from all top nodes to all bot-
tom nodes, e.g. {(1, 1), (1, n/2i)}, {(2, 1), (2, n/2i)}

. . . {(n/2i, 1), (n/2i, n/2i)} for the top left hand
square, and circuits from all left hand nodes to all right
hand nodes, e.g. {(1, 1), (n/2i, 1)}, {(1, 2), (n/2i, 2)}
. . . {(1, n/2i), (n/2i, n/2i)} for the top left hand
square. Note that routing all requests in Li would
use all links in the mesh.

We generate a random request sequence as follows.
With probability n−1, we give no requests. Otherwise,
the sequence consists of all requests in L0, . . . ,LX ,
where 0 ≤ X < log n is an integer random variable
which satisfies Pr[X = i] = 1

2 Pr[X = i− 1], for every
1 ≤ i < log n. In other words, for 0 ≤ i < log n − 1,
the probability of the sequence L0 . . .Li is 2−i−1.

Consider an off-line strategy that accepts all the
requests in Li given that the request sequence is
L0 . . .Li. The number of connections in Li is
4i2n/2i = 2i+1n. Furthermore, the probability that
the request sequence generated terminates with the
requests in Li is 2−i−1. Thus, the expected number of
requests routed by this strategy is bounded by

log n−1∑
i=0

2−i−12i+1n = n log n. (4)

Next we bound the expected number of connec-
tions a deterministic on-line algorithm A can accept.
Notice that any route for any call from Li consumes
at least n/2i − 1 links. Therefore, if k links remain
unused by calls accepted from L0, . . . ,Li−1, and re-
quests from Li arrive, we can hope to accept at most
k/(n/2i − 1) of those calls. Conditioning upon X ≥ i,
denote by A(i, k) the maximum expected number of
calls accepted from Li,Li+1, . . ., where the maximum
is taken over all possible ways to accept calls from
L0, . . . ,Li−1 so that at most k links are free. We have
the following recurrence relation.

A(i, k) ≤ max
`≤k/(n/2i−1)

{
` +

1
2
A(i + 1, k − `(n/2i − 1))

}
,

with the initial condition

A(log n− 1, k) ≤ k.

Clearly, A(0, 2n(n− 1)) is an upper bound on the ex-
pected number of calls that the on-line algorithm ac-
cepts.

Consider the following claim.

Claim 10 For all i, k, A(i, k) ≤ k/(n/2i − 1).

Proof. The proof is by induction on j = log n − i.
The base case (i = log n−1) follows immediately from



the initial condition on A. Now, assume that for all
k, A(i + 1, k) ≤ k/(n/2i+1 − 1). We have that

A(i, k) ≤ max
`≤k/(n/2i−1)

{
` +

1
2
A(i + 1, k − `(n/2i − 1))

}
≤ max

`≤k/(n/2i−1)

{
` +

k − `(n/2i − 1)
2(n/2i+1 − 1)

}
≤ k

n/2i − 1
.

As a corollary we get the following theorem.

Theorem 11 Any randomized on-line algorithm for
routing and admission control on n× n meshes has a
competitive ratio in Ω(log n).

Proof. By claim 10, A(0, 2n(n− 1)) ≤ 2n. Together
with Equation 4, the theorem follows.

The lower bounds for trees, for the hypercube, and
for the tree of meshes are derived by an argument
analogous to the one used for the mesh. We use the
following structure to describe the proofs for each of
these networks. To show a lower bound of Ω(log D),
we define log D sets of requests L0,L1, . . . ,Llog D−1.
These sets have the following properties.

1. For each set, accepting as many calls as possi-
ble from that set blocks the entire network (or a
portion of it that cannot be bypassed).

2. Any call that is accepted from set Li reduces the
number of calls that can be accepted from Li+1

by 2, from Li+2 by 4, etc.

We then generate a probability distribution over re-
quest sequences, by requesting all requests in L0∪L1∪
· · · ∪ LX , where 0 ≤ X < log D is an integer random
variable which satisfies Pr[X = i] = 1

2 Pr[X = i − 1],
for every 1 ≤ i < log D. The specific bound is
then proven as it is for the mesh. For each net-
work, we sketch the proof by giving the definition of
L0,L1, . . . ,Llog D−1 for that network.

Trees. For simplicity assume that the diameter d
of the tree is a power of 2. Take a path between two
leaves u, v whose length equals the diameter of the
tree. L0 consists of the single request {u, v}. To con-
struct L1, divide PATH(u, v) into two equal length
paths and request each of the two. To construct Li,
divide the path of each request in Li−1 into two equal
length paths, and request all those paths. Using the
above arguments gives a lower bound of Ω(log d) in
this case. A slight modification of this idea gives the
Ω(log d′) bound for requests between leaves. (Note

that this argument also provides an alternative proof
of the Ω(log n) lower bound of [ABFR94] for admission
control on an n node line.)

The hypercube. For simplicity, let n be an inte-
ger such that log n is a power of 2. Consider the log n
dimensional hypercube with node set {0, 1}log n and
edges connecting every pair of nodes with Hamming
distance 1. L0 consists of requests whose endpoints
are bitwise complements of each other. The resulting
paths have length log n. Assume that each request
uses a path that complements bits from left to right.
We wish to specify a set of requests so that the result-
ing paths use exactly all of the edges in the hypercube.
This is the first of the two above mentioned properties
for L0,L1, . . . ,Llog D−1. We call the property P1.

Consider the set of requests between every node and
its bitwise complement. That is, the pairs 000 · · · 00
and 111 · · · 11, 000 · · · 01 and 111 · · · 10, and so forth.
(Notice that every pair is requested twice.) We show
inductively that this request set can be partitioned
into two equal sized sets, each satisfying P1. For the
two dimensional hypercube, the two requests between
00 and 11 represent one such set and the two requests
between 01 and 10 the other set.

Now consider a log n-dimensional hypercube. Con-
sider the set of requests whose paths originate with a
node that has a left bit of 0. The paths do not in-
tersect on the first edge and the remaining edges of
each path are all in the (log n− 1)-dimensional hyper-
cube defined by the nodes with a left bit of 1. By the
induction hypothesis, these paths can be partitioned
into two equal subsets such that each satisfies P1 in
(log n−1)-dimensional hypercube and uses half of the
edges that connect the (log n− 1)-dimensional hyper-
cube to the (log n− 1)-dimensional hypercube defined
by the nodes with a left bit of 0. Pick one of the sub-
sets. Call it S1. Now, consider the set of requests
whose paths originate with a node that has a left bit
of 1 and where the first edge is not already used by
the path for a request in S1. Call it S2. It is easy to
see that the set of requests in S2 cover the remaining
edges in the hypercube. Thus, S1 ∪ S2 satisfies P1.
Furthermore, S1 ∪ S2 consists of exactly half of the
requests between every node and its bitwise comple-
ment. The set of requests not in S1 ∪S2 together also
satisfy P1.

Now, let L0 consist of the requests in S1 ∪ S2. In
order to construct L1, divide each of the paths sug-
gested for the L0 requests into two equal length paths,
then request the two endpoints of each of these shorter
paths. We can use the shorter paths to route all re-
quests in L1. In general, to construct Li take the paths



suggested for routing the requests in Li−1, divide each
of them into two equal length paths and request the
two endpoints of each of these paths. Use the parti-
tioned paths to route all requests in Li. The lower
bound we get is Ω(log log n).

The tree of meshes. Consider the simplified,
weighted binary tree of height 2 log n − 1 represen-
tation of the n × n tree of meshes. Each request we
give is routed from a leaf to the root of a subtree, from
there to a leaf in the other branch of that subtree. In
order to specify our sets of requests, we specify leaf-
to-root paths. The other half of each request’s path is
implied by symmetry. In each level of the tree, num-
ber the edges connecting that level’s nodes to their
children from left to right starting at 0. We refer to
the level of an edge as the minimum level of its two
endpoints. Our L0 requests all reach the root of the
tree. There are n of them. They congest edge 0 in
level 0, edges 0 and 2 in level 2, edges 0, 2, 8, and
10 in level 4, and in general, if edge j of level 2i is
congested, so are edges 4j and 4j + 2 in level 2(i + 1).
Notice that every path participates in the congestion
of one edge in every even level.

In order to construct L1, divide each path into two
equal length parts, removing the middle edge. We
want to place, for every path in L0, two paths in L1,
one overlapping the bottom part of the L0 path and
the other overlapping the top part. The bottom part
paths are easy to construct, since they contain a leaf.
To construct the top part paths, we take a look at the
log n high subtrees that contain L0 congested edges.
The edge connecting the root to its left child is con-
gested by L0 paths in each subtree. We use the subtree
rooted at the right child to connect all our top part
paths to leafs so that there will be no overlap with
bottom part paths. In general, we use similar ideas to
construct the set Li by dividing L0 paths into 2i parts
(removing some of the edges). We leave the formal de-
tails to the full version of the paper. This gives a lower
bound of Ω(log log n) for the n× n tree of meshes.
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