ACM Transactions on Graphics (Proc. SIGGRAPH) August 2011

NRDC: Non-Rigid Dense Correspondence with Applications for Image Enhancement

Yoav HaCohen Eli Shechtman Dan B Goldman Dani Lischinski
Hebrew University Adobe Systems Adobe Systems Hebrew University
Color transfer using our method. The reference image (a) was taken indoors using a flash, while the source image (b) was taken outdoors, against a completely different background, and under natural illumination. Our correspondence algorithm detects parts of the woman's face and dress as shared content (c), and fits a parametric color transfer model (d). The appearance of the woman in the result (e) matches the reference (a).


This paper presents a new efficient method for recovering reliable local sets of dense correspondences between two images with some shared content. Our method is designed for pairs of images depicting similar regions acquired by different cameras and lenses, under non-rigid transformations, under different lighting, and over different backgrounds. We utilize a new coarse-to-fine scheme in which nearest-neighbor field computations using Generalized PatchMatch [Barnes et al. 2010] are interleaved with fitting a global non-linear parametric color model and aggregating consistent matching regions using locally adaptive constraints. Compared to previous correspondence approaches, our method combines the best of two worlds: It is dense, like optical flow and stereo reconstruction methods, and it is also robust to geometric and photometric variations, like sparse feature matching. We demonstrate the usefulness of our method using three applications for automatic example-based photograph enhancement: adjusting the tonal characteristics of a source image to match a reference, transferring a known mask to a new image, and kernel estimation for image deblurring.


Correspondence Evaluation:

Image Enhancement Applications: