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Abstract

Multi dimensional probability distributions are used in
many surveillance tasks such as modeling color distribution
of background pixels for Background Subtraction. Accurate
representation of such distributions, e.g. in a histogram,
requires much memory that may not be available when a
histogram is computed for each pixel. Parametric represen-
tations such as Gaussian Mixture Models (GMM) are very
efficient in memory but may not be accurate enough when
the distribution is not from the assumed model.

We propose a memory efficient representation for distri-
butions. Histograms cells usually have equal width, and
count the hits in each cell (Equi-width histograms). In most
cases a 1D distribution can be represented more efficiently
when cell sizes change so that each cell will have same num-
ber of hits (Equi-depth histograms). We propose to describe
compactly multi-dimensional distributions (e.g. color) us-
ing an equi-depth histograms. Online computation of such
histograms is described, and examples are given for back-
ground subtraction.

1. Introduction
Histograms are present everywhere in computer vision,

with uses ranging from background modeling in video
surveillance [8, 12], feature representations [11], and natu-
ral image modeling [9]. Histograms are very popular since
they make very few assumptions on the probability density
function (PDF) which they attempt to model. The only as-
sumption made is on the range of measurements, which to-
gether with the requirements on the quantization error de-
termine the number of bins in the histogram. Histograms
can therefore model very general probability densities. An-
other popular approach to model PDF is Kernel Density Es-
timation (KDE) [14, 3], a technique also known as Parzen
windows. This method stores a small number of data values
in memory. The probability of any given value is the sum of
kernel distances from each of the samples. Both equi-width
histograms and KDE will converge to the correct probabil-
ity, but an accurate estimate might require many histogram
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bins or many stored data points. This problem becomes es-
pecially unmanageable in higher dimensions, in which the
curse of dimensionality comes into play.

Much research on histogram methods has been carried
out by the database community, where several new his-
togram types were suggested [6] with different performance
guarantees, construction costs, and lookup costs. The ap-
proach most relevant to our needs concerns stream methods
(Online methods in computer algorithms terminology) that
update the histogram variables at run-time without storing
all data points.

In order to reduce memory requirements, semi-
parametric methods were proposed. An example of these
methods is GMM [16]. This method assumes that the prob-
ability density can be represented by a certain number of
clusters each represented by the Gaussian distribution. The
number of clusters as well as the means and covariance ma-
trices of each cluster are parameters to be estimated from
the data. This scheme works well when the assumption
of Gaussian clusters is correct, but might give poor results
otherwise . Another way to reduce memory needs is by de-
signing application specific semi-parametric models [7] that
fit better the target distribution or the application objective;
however it is not always obvious how to do so.

Most current approaches for background subtraction
model the probability distribution of various features (such
as color, texture[19], etc.) at each pixel in the background,
and use this model to determine if a current values is likely
to correspond to a background or a foreground object. As
there are on the order of a million pixels in an image, and
memory is limited, a memory efficient representation for
histograms is essential. As we will show, covariance be-
tween the multi-dimensional features is important for ac-
curate foreground detection and a multi-dimensional rep-
resentation gives a more accurate segmentation. Current
multi-dimensional models use either semi-parametric meth-
ods such as GMM [16] or non-probabilistic modeling meth-
ods such as a codebook [7]. We show an application of
our method that provides the advantages of the truly non-
parametric model of histogram methods without suffering
from its unmanageable memory requirements.
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(a) Original PDF (b) EW histogram (c) Quantiles

(d) KDE ω = 0.1 (e) KDE ω = 2.0 (f) GMM

Figure 1: Comparing different representations for a proba-
bility distribution. a) Original distribution. b) Equi-width
Histogram with 5 bins. c) Equi-depth histogram with 5
quantiles. d) KDE, 5 Gaussian kernels, bandwidth = 0.1.
e) KDE, 5 Gaussian kernels, bandwidth = 2.0. f) GMM us-
ing 2 Guassians.

The contributions of this paper address the following is-
sues: (1) A memory efficient multi-dimensional histogram
structure, and its online computation. (2) A generic memory
efficient solution for improving background models. We
hope that this work would showcase the utility of modern
histogram techniques in surveillance applications.

1.1. Comparison of PDF Estimation Approaches

In normal histograms (i.e. equi-width histograms) all
bins have an equal size, and the number of occurrences
within each bin is counted. Equi-depth histograms, on the
other hand, model the distribution by keeping the values of
several quantiles Q i

N
, i = (0..N). Qp is the p-th quan-

tile of the distribution, the smallest sample which is larger
than (100 · p)% of the observed samples. For example the
median is Q0.5. The probability of each segment between
two consecutive quantiles is 1/N , and the probability den-
sity is lower as the segement becomes wider. A comparison
of several approaches to the estimation of PDF are shown in
Fig. 1. It is shown that for low entropy distributions an equi-
depth histograms as in Fig. 1(c) can yield better probability
estimates with less memory. However, the online calcula-
tion of an equi-depth histogram is not trivial without storing
all data values. Another issue is that there is no consensus
how to generalize quantiles to multiple dimensions.

Online quantile estimations are treated both in statistics
and in the stream data literature (where “stream” is used
for “online”). Various types of multi-dimensional histogram
were proposed. Our method uses a multiple dimensional
representation which is close to that of Cormode et.al. [2],
and a statistical stream update method which has a very low
memory requirement and fast lookup time.

2. Related work

Non-parametric models: A good survey on histogram
techniques can be found in [6]. Several approaches have
been presented for stream (online) quantile representation
such as the Greenwald-Khanna [4] algorithm. Extensions of
stream methods were proposed for multiple dimensions us-
ing approaches such as Sketching [17]. These methods are
not appropriate for background distributions, and require
more memory than commonly available. An approach for
the multi-dimensional case similar to ours in presented in
Cormode et. al. [2], but it too requires much memory. Sev-
eral approaches were presented [1, 15] for online estimation
of quantiles, with required memory equal to the number of
quantiles. Our method leverages the statistical quantile es-
timator methods [1] to achieve a more efficient descriptor
than Cormode et al [2].

Background subtraction: A popular approach for back-
ground subtraction computes a background probability
model at each pixel. For every new frame, the model for
each pixel is updated in an online manner. The probabil-
ity density function (PDF) may depend on many possible
features such as color, texture [19], gradient [5] and opti-
cal flow[13]. For non-parametric one-dimensional proba-
bility representation it is common to use either a histogram
[8, 12] or KDE [3]. The problem with both methods is that
they scale badly with dimension and thus cannot be used to
model feature dependence. The Gaussian Mixture Models
(GMM) is suitable for multi-dimensional distributions but
suffers from the Gaussian assumption and is required to pre-
specify the number of modes in the distribution. This is a
particularly challenging issue as choosing too many modes
can be as bad as choosing too few, due to the sensitive on-
line update rule. Several attempts have been made to find a
good heuristic update rule, (for example [10]) however no
rigorous update rule is known. Another way to avoid the
curse of dimensionality is to rely on non-probabilistic mod-
els with heuristic similarity measures (such as the codebook
in [7]), however these methods require specifying heuristics
and non-intuitive parameters and are thus not naturally ex-
tended to include different features.

Another approach is to neglect dependence between vari-
ables altogether and thus avoid the curse of dimensional-
ity. In [5] SVM is used to try to learn the dependency
between variables as a means to avoid modeling the con-
ditional probability. This approach fails to work when the
dependency is not global but changes in different scene con-
texts.

Our approach is different from the above by its ability
to scale up to multiple-dimensions whilst using a general
probabilistic model and making very few assumptions on
the data distribution. We do not have to know in advance
the number of modes, nor the shape of the distribution.
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3. QuantileGrid representation of distribution
3.1. The problem with histogram methods

Equi-width histograms represent a quantized representa-
tion of the distribution. Using a sufficient number of bins
is essential for a good representation. As it is not easy to
know a-priori the range at which interesting behavior will
happen, histograms will require a large number of bins at
a high memory cost. In multiple dimensions the required
number of bins scales exponentially. This is known as the
curse of dimensionality, as for even a fairly moderate di-
mension the required number of bins would explode. These
histograms are therefore unsuitable for representation of
multi-dimensional distributions for each pixel.

The relative advantage of equi-depth histograms for
modeling probability distributions is the increased resolu-
tion in regions with highest concentration of samples, and
less bins in regions with fewer samples. Another advantage
of equi-depth histograms is that the scale of the interesting
behavior does not have to be pre-specified but is dynami-
cally determined by the data. The representation wastes no
bins in regions that contain no samples.

There are several challenges with equi-depth histograms.
Of primary concern to our work are finding online (stream)
update rules, and extending the representation to multi-
ple dimensions. An online update rule is essential for
surveillance video applications. Offline quantile computa-
tion strategy would require storing all the data samples and
sorting them. In surveillance settings we do not have the
memory capacity to store all data, and an online solution is
required. Another challenge is the multi-dimensional rep-
resentation. Quantiles are well defined only in 1D, and a
suitable definition is required in higher dimensions. An ex-
ample for such definition is Skyline descriptors [2]. In our
solution we break away from using the global quantiles as
we shall show in the next subsection.

Our proposed solution, ’QuantileGrid’, resolves both is-
sues having extremely low memory requirements. We shall
first address the online update rule.

3.2. An online quantile update rule

In the statistics literature [15] estimators are suggested
whose memory size equals the number of quantiles. Let a
PDF be described byN+1 quantiles {Qqi} where qi = i

N ,
i = (0..N). By definition, given L samples we expect qi ·L
of them to be smaller than Qqi , and (1−qi) · L to be larger.

The online update rule is as follows: When a new sam-
ple S arrives, it is compared to each of the quantiles. If
S > Qqi , Qqi is increased by qi · C (C is a pre-determined
constant), and if S < Qqi , Qqi is decreased by (1−qi) · C.
Equilibrium of this process occurs when q of the samples
are smaller than Qq and (1−q) of the samples are larger
than Qq [1]. A large constant C contributes to faster con-

vergence, while a small C gives a more stable tracking of
distributions. A possible constant C for grey level his-
tograms can start withC0 = 1, decrease by a factor of 0.977
at every additional sample, reaching the minimal value of
Cmin = 0.01 after 200 samples, and staying with this value
for all following samples.

There are several possible approaches to determine the
initial quantiles. One approach is to start by dividing the
range (when known) into equal sized cells. Another ap-
proach is to take the firstN+1 different samples, sort them,
and use as the initial quantiles. This update rule for quan-
tile computation has the minimal memory requirements for
quantile tracking while still preserving a good estimate for
the quantile position.

3.3. Multi-dimensional QuantileGrid

Various approaches have been suggested for multi-
dimensional data representation, but most of them cannot
be queried at every time step, can not be updated online,
and use extensive memory. Our method is similar to that
presented at [2], but needs less memory due to the use of
quantile estimators. We estimate the joint probability us-
ing 1D quantiles, and we present two different representa-
tions that are useful under different cases. For clarity, the
explanation is given only for 2D, and the extension to any
dimension is similar.

Joint probability matrix
The joint probability matrix, whose 2D example is

shown in Fig. 2.a, uses 1D quantiles computed as in the
previous section for each variable using its marginal distri-
bution. A 2 dimensional array is created where each axis
has its own quantiles, giving cells having variable sizes (as
in Fig. 2.a). The matrix value corresponding to each cell
gives the number of samples that fall in this cell. The total
memory cost of this array is N2 + 2(N + 1).

The online update process of this matrix, given a new
sample, is as follows:

1. The counter of the cell corresponding to the new sam-
ple is incremented by 1.

2. The quantiles in all dimensions are updated according
to the 1D update. This creates a new array of cells,
which is slightly different than the previous array.

3. The counters of every cell in the new array are com-
puted from the area of overlap with cells in the previ-
ous array. For example, if the new cell covers 50% of
the area of a previous cell with count 30, and 30% of
the area of a previous cell with count 10, the count of
the new cell with be 0.5 · 30 + 0.3 · 10 = 18.

4. The PDF at each cell is the count at the cell divided by
the total counts and the area of the cell.
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(a) Joint probability matrix (b) Adaptive Grid

Figure 2: Two approaches for 2D quantile grids.

The approximation of the joint probability matrix to the true
joint probability improves as the 1D quantiles converge and
becomes stable. The cost of the update step is linear in the
dimension and number of quantiles O(d ∗ q).

Adaptive grid
The adaptive grid is presented to better take into account

the joint probability between variables. A 2D example can
be seen in Fig. 2.b. Assume that variables are sorted by
order of increased marginal entropy. The data structure is
initialized by examining some samples, and computing 1D
quantiles for the first variable. Within each bin of the first
variable, 1D quantiles are computed for the second variable.

Given a new sample, the update steps are as follows:

1. Update the quantiles of the first variable using the new
sample.

2. Find the bin of the first variable in which the new sam-
ple falls.

3. Update the quantiles of the second variable within the
respective bin of the first variable.

Since in the adaptive grid all bins have on average an
equal number of hits, we do not need to store the counts
in each cell, only the positions of the quantiles are needed.
The PDF in each cell is inverse to its area. The cost of
the update step is linear in the dimension and number of
quantiles O(d ∗ q).

Features of QuantileGrid
Both representations have the same memory require-

ments. The joint matrix has the advantage of greater sta-
bility but lower expressiveness. The adaptive grid has the
advantage of encoding dependence at an earlier stage at the
price of longer convergence times.

Both representations work in real time, our unoptimized
C++ implementation operates at 15-20 fps, with 5 quantiles
in 2D.

The joint matrix representation is extended to higher di-
mensions by computing 1D quantiles for each dimension
and creating a d-dimensional tensor for the counts. The
adaptive grid representation is extended to higher dimen-
sions by preforming the above procedure recursively, split-
ting every cell created using the first d dimensions into
quantiles using the (d+ 1)st dimension.

32*32 Histogram 6*6 QuantileGrid
L1 Difference 0.82 0.77
L2 Difference 0.05 0.03

Table 1: Comparing accuracy of quantized histogram to
QuantileGrid by computing the difference from ground
truth. The difference is computed using the sum of ele-
mentwise L1 and L2 norms. A 2D QuantileGrid with 36
memory cells is more accurate than a 2D histogram with
1024 memory cells.

QuantileGrid is a non-parametric representation that
makes only a few assumptions about the data. The main
assumption is that the data has some structure. Also, there
should be at least twice as many quantiles as there are peaks.
Having too many quantiles will not hurt accuracy.

We also assume the distribution of colors at each pixel
is changing slowly, and therefore we can base our matrix
or grid update rules on previous quantile estimates, this is a
valid assumption for most practical scenarios.

3.4. Improvement over equi-width histograms

We compare the distributional accuracy of QuantileGrid
with that of Equi-Width histograms for a synthetic case.
The true 2D distribution has 8 equal height, non zero val-
ues in two well-separated clusters. We estimated the distri-
bution by representing its samples using 3 approaches. i)
A full 255 × 255 equi-width histogram (considered as the
ground truth). ii) A 32×32 equi-width histogram. iii) Quan-
tileGrid with 5 quantiles per dimension (using 36 mem-
ory locations). We smoothed the ground-truth histogram
with a Gaussian kernel (σ = 1.5) to compensate for slight
shifts. We then compared the smoothed ground truth vs. the
32× 32 histogram and the QuantileGrid using elementwise
L1 and L2 norms. The results are displayed in Table. 1,
and show that in this case a 2D QuantileGrid with 36 mem-
ory cells was more accurate than a 2D histogram with 1024
memory cells

We can see that although using just 3.6% of the amount
of memory used by the 2D histogram, QuantileGrid still
provided a better estimate of the distribution. This is due
to its better spatial resolution at the critical places.

4. Application to background subtraction

Background Subtraction is the first step in many surveil-
lance applications. Its objective is to separate the static
background from the moving foreground in a video taken
by a static camera. Most current approaches for background
subtraction operate at the pixel level, processing one frame
at a time. A model describing the typical background be-
havior is computed for each pixel. If this model gives to
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Figure 3: A single frame from the pendulum video. In the
video a pendulum is swinging periodically, until a white
hoop suddenly appears. The hoop is static and has similar
intensity as the pendulum.

a new sample a low probability of belonging to the back-
ground, it is labeled as foreground.

Due to the aforementioned memory issues, the model
must be specified with only a small number of values.
This forces the model designer to make a choice between
using non-parametric 1D models do not model the joint
distribution, or use less stable and semi-parametric multi-
dimensional methods such as GMM.

We offer a new solution that is both non-parametric,
multi-dimensional and uses little memory. Strongly depen-
dent features benefit the most from joint modeling. To il-
lustrate this concept, let us suppose that the probability of
background is determined by two binary factors, intensity
and optical flow. As shown in Fig. 3, the background con-
tains both a dark static background and a fast moving bright
pendulum. The joint probability density of intensity and op-
tical flow is showing high probabilities for either dark and
static or bright and moving:

P (I,OF |Background = true) =

(
1.0 0.0
0.0 1.0

)
.

The 1D marginal probabilities based on either intensity
or optical flow are uniform:
P (I|Background = true) = (0.5, 0.5) and

P (OF |Background = true) = (0.5, 0.5).
In this case the 1D representation will not be able to sep-

arate foreground from background. A joint representation
however, would be able to point out dark static pixels and
bright moving pixels as background. There is very little
probability that for other moving objects this dependency
would be observed. A global SVM learning of the correla-
tions such as suggested by [5] will therefore not be effective
here.

The scenario described above is shown in Fig. 3. In the
video a pendulum is swinging periodically, until a white
hoop suddenly appears. The hoop is static and has sim-
ilar intensity as the pendulum. Fig 4.a shows the mini-
mum of the two 1D probabilities (P (I|Foreground) and
P (OF |Foreground), and Fig 4.b shows the joint probabil-

(a) (b)

Figure 4: Background Probability given by various models.
a) Minimum of two 1D models. b) 2D Joint Probability.
The hoop is missing by the 1D models, but is detected by
the 2D model.

ity P (I,OF |Foreground). While both cases show some
compression artifacts as foreground, only the joint proba-
bility indicates the hoop as foreground. This is due to the
greater expressiveness of the 2D representation.

Another example is shown in Fig. 5. The video is a mod-
ified version of the Camouflage sequence in the Wallflower
dataset [18]. In the original sequence the clothes and screen
are well separated and can be detected by intensity alone.
We changed the color of the clothes to be more similar to
the screen in the H and S color components to make the
example more challenging. More accurately, the screen is
flickering with rolling bars between two modes with H, S
values of(140, 120) and (155,110) as shown in Fig. 5.a. A
person, whose cloths have H, S values of (140,110), enters
the scene and blocks the screen from the camera (Fig. 5.b).

We analyze this scene using the H and S color compo-
nents of the HSV domain. For comparison, 1D quantile his-
tograms are computed for both the H and S components, 2D
GMM, and 2D QuantileGrid (in the joint matrix representa-
tion). Foreground detection is shown in Fig. 5 using (d) two
1D histograms (min(P (H), P (S))), (e) GMM, and (f-g)
P (H,S) using QuantileGrid (using 5 quantiles in each di-
mension, 36 memory cells in total). In all cases result were
smoothed by a 9*9 median filter, as used in recent papers.

It can be observed that using two 1D projections of the
probability failed in the screen region. This is because both
the H and S color components are individually probable.
GMM has not preformed well, due to the effect of strong
HSV noise and flicker on its update scheme. QuantileGrid,
on the other hand, detected the foreground object well, even
in front of the screen. This is because the combination of the
two components is jointly unlikely. As before, this is a local
dependence and could not be learned globally. The com-
puter screen could just as easily have exhibited the oppo-
site dependence relation between the color channels. This
demonstrates the importance of QuantileGrid in modeling
pixel-level multi-dimensional distributions with very little
memory.

280



(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5: Segmentation of the camouflage sequence using
the 2D H,S color components. a) The background is a flick-
ering computer screen. b) The foreground is a person stand-
ing in front of the screen. c) Ground Truth segmentation. d)
Minimum of the two 1D probabilities (thresholded at 0.1).
The screen region is not detected. e) GMM has not detected
the screen region. f-g) The screen region is well detected by
QuantileGrid Matrix (f) and Adaptive Grid (g) (thresholded
at 0.1).

5. Concluding Remarks

In this work we proposed a new approach to probabil-
ity density representation. A highly memory-efficient data
structure, QuantileGrid, was presented for online estima-
tion of multi-dimensional probability distributions in a truly
non-parametric way. An application to background subtrac-
tion was presented, and showed the benefit of the method
over existing methods: both 1D methods and GMM. Quan-
tileGrid can be used also to collect high dimensional web-
scale pixel-level natural image statistics, with applications
to scene priors and recognition.
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