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A b s t r a c t  

We focus in this work on an aspect of online compu- 
tation that is not addressed by the standard compet- 
itive analysis. Namely, identifying request sequences 
for which non-trivial online algorithms are useful ver- 
sus request sequences for which all algorithms perform 
equMly bad. The motivation for this work are advanced 
system and architecture designs which allow the operat- 
ing system to dynamically allocate resources to online 
protocols such as prefetching and caching. To utilize 
these features the operating system needs to identify 
data streams that can benefit from more resources. 

Our approach in this work is based on the rela- 
tion between entropy, compression and gambling, ex- 
tensively studied in information theory. It has been 
shown that in some settings entropy can either fully 
or at least partially characterize the expected outcome 
of an iterative gambling game. Viewing online problem 
with stochastic input as an iterative gambling game, our 
goal is to study the extent to which the entropy of the 
input characterizes the expected performance of online 
algorithms for problems that arise in computer applica- 
tions. We study bounds based on entropy for three on- 
line problems - list accessing, prefetching and caching. 
We show that entropy is a good performance character- 
izer for prefetching, but not so good characterizer for 
online caching. 

1 I n t r o d u c t i o n  

Advanced system and architecture design allows dy- 
namic allocations of resources to online tasks such as 
prefetching and caching. To fully utilize this feature 
the system needs an efficient mechanism for estimating 
the expected gain from using these resources. Prefetch- 
ing, for example, is an expensive operation since it 
"burns instruction bandwidth"[17]. However, success- 
ful prefetching can significantly speedup computation. 
Thus, one needs to compare the gain from prefetching 
on a given data stream to the cost in instruction band- 
width. The tradeoff between resource allocation and 

" - ~ p u t e r  Science Department, Brown Univer- 
sity, Box 1910,  Providence, RI 02912-1910, USA. 
E-mail: {gopal, eli)~cs.bro~,m.edu. Supported in part by 
NSF grant CCR-9731477. 

gain is even more transparent in the case of malleable 
cache [21, 25, 8]. In this architecture the cache can be 
dynamically partitioned between different data streams. 
A data stream that can make better use of a larger cache 
is assigned more space, while a stream with very little 
structure or repeats is allocated a smaller cache space. 
Again, efficient utilization of this technology requires a 
mechanism for predicting caching gain for a given data 
stream. 

Online algorithms have been studied in the theory 
community mainly in the context of competitive analysis 
(see [5] for a comprehensive survey). Competitive anal- 
ysis compares the performance of different algorithms, 
but it gives no information about the actual gain from 
using them. In particular, even the best algorithm un- 
der the competitive analysis measure might fail on al- 
most all requests of some sequence. Thus, an entirely 
new approach is needed in order to quantify the amount 
of resources the system should allocate to a given online 
process. In this work we explore the relation between 
the entropy of the stream of requests and the gain ex- 
pected from online algorithm performing on this request 
sequence. Entropy measures the randomness or uncer- 
tainty of a random process. We expect online algorithms 
to perform well on highly predictive request sequences, 
generated by a source with low entropy, and to per- 
form poorly on sequences with little pattern, generated 
by a high entropy source. Our work is motivated by 
the extensive work in information theory relating data 
compression, entropy and gambling. It has been shown 
that for some special cases of gambling games the en- 
tropy of the stochastic process fully characterizes the 
maximum expected profit for any strategy for that game 
(see section 1.1). Our goal is to explore similar relations 
between entropy and online problems in computer ap- 
plications. We discuss here three online problems: list 
accessing, prefetching and caching. We show that in the 
case of prefetching entropy gives a good characterization 
of the best online performance that is possible, while in 
the case of caching entropy does not fully characterize 
the best online performance. 

1.1 Re la t ed  Work  The three online problems con- 
sidered here were extensively studied in the competi- 
tive analysis model. It has been shown in [24] that the 
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competitive ratio 1 of the move to front (MTF) algo- 
rithm for the list accessing problem is two [24]. In the 
case where the input sequence is drawn from a discrete 
memoryless source the MTF algorithm has been com- 
pared to the performance of a static offiine algorithm 
SOPT that  initially arranges the list in decreasing order 
of request probabilities and never reorders them there- 
after. It was shown in [15] that  MTF(D) < ~SOPT(D),  
where D is the distribution of the source. Albers 
et.al [1] analyze the performance of the TIMESTAMP 
algorithm on a discrete memoryless source with dis- 
tribution D and proved that  for any distribution D, 
TIMESTAMP(D) < 1.34 x SOPT(D) and with high 
probability, TIMESTAMP(D) < 1.5 x OPT(D).  The 
actual work done by the MTF algorithm was stud- 
ied when the request sequence is generated by a dis- 
crete memoryless source with probability distribution 
D[1, 4, 15]. 

For online caching (or demand paging) the well 
known LRU (Least Recently Used) has a competitive 
ratio of k [24], where k is the cache size, while the ran- 
domized MARKER algorithm is 2 log k competitive [10]. 
Franaszek and Wagner [13] studied a model in which ev- 
ery request is drawn from a discrete memoryless source. 
Karlin et.al [18] study Markov paging where the se- 
quence of page requests is generated by a Markov chain. 
Their main result is an efficient algorithm which for any 
Markov chain will achieve a fault-rate at most a con- 
stant times optimal. 

For the problem of prefetching, competitive analysis 
is meaningless as the optimal offline algorithm will 
always prefetch the correct item and hence incurs no 
cost. Vitter and Krishnan [26] consider a model where 
the sequence of page requests is assumed to be generated 
by a Markov source (defined in section 5), a model which 
is closest in spirit to (but less general than) our model of 
a stationary ergodic process. They show that  the fault 
rate of a Ziv-Lempel [27] based prefetching algorithm 
approaches the fault rate of the best prefetcher (which 
has full knowledge of the Markov source) for the given 
Markov source as the page request sequence length 

Kelly [19] was the first to study the relation between 
data compression, entropy and gambling, showing that  
the outcome of a horse race gambling with fair odds is 
fully characterized by the entropy of the stochastic pro- 
cess. It was shown [19, 2] that  the growth rate of invest- 
ment in the horse race is equal to log m - H,  where m is 
the number of horses and H is the entropy of the source. 

~ n  onl ine  a lgor i thm A L G  has  a compet i t ive  ra t io  of  c if 
the re  is a c o n s t a n t  a such  t h a t  for all finite i npu t  sequences  I,  
A L G ( I )  < c x O P T ( I )  + a ,  where  O P T  is t he  op t ima l  offline 
a lgor i thm.  

Similar results have been shown for portfolio selection 
strategies in equity market investments [3, 6]. Our re- 
sults on list accessing are based on the work of Bentley 
et.al [4] who showed that  any list update algorithm can 
be used to develop a data  compression scheme. They 
also showed that  for a discrete memoryless source the 
expected number of bits needed to encode an alpha- 
bet using MTF is linear in the entropy of the source. 
Similar results have been shown by Albers et.al [1] for 
the TIMESTAMP algorithm. Our results on prefetch- 
ing are motivated by the work of Feder and Merhav [11] 
relating entropy of a discrete random variable to the 
minimal attainable probability of error in guessing its 
value. In the context of prefetching their results can be 
viewed as giving a tight bound on the fault rate when 
the size of cache is 1. A tight lower bound on this er- 
ror probability is given by Fano's inequality [6, theorem 
2.11.1]. Their main result is a tight upper bound for the 
fault rate when k = 1. Feder and Merhav also showed 
that  the same lower and upper bounds (for k = 1) hold 
for a stationary ergodic source. However, their upper 
bound does not seem to generalize to higher values of 
k. Note that  there is more work in the information the- 
ory on predicting binary sequences (corresponding to 
prefetching in a universe of two pages with cache of size 
1) [12], however these results cannot be generalized to 
our prefetching scenario. Our approach to deriving the 
upper bound on the fault rate for an arbitrary ergodic 
source and arbitrary cache size k is different and is based 
on the well-known Liv Zempel universal algorithm for 
data  compression [27]. Our proof uses Rissanen's inter- 
pretation of the Liv Zempel Algorithm [23]. See Algoet 
[2] for further results on universal schemes for predic- 
tion, gambling and portfolio selection. 

1.2 N e w  R e s u l t s  We focus on three online problems 
in this paper: list accessing, prefetching, and caching. 
Our goM is to study the relation between the entropy 
of the sequence of requests and the best performance of 
an online algorithm for these problems. 

We assume that  the sequence of requests is gener- 
ated by a discrete stationary ergodic process [14, defini- 
tion 3.5.13] which is the most general stochastic source 
considered in information theory. It includes power- 
ful models such as memoryless and (stationary) Markov 
sources [14, 26, 7]. 

For the list accessing problem we show that  any 
deterministic online algorithm requires an average work 
of f~(2 H) steps per item access, where H is the entropy 
of the input source. 

For the prefetching problem we give an upper and 
lower bound showing that  the average number of faults 
of the best algorithm is linear in H,  the entropy of 
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the input source. Our lower bound on the fault rate 
can be seen as a generalization of Fano's inequality for 
k > 1. Our upper bound subsumes the well known 
upper bound of ½H on the minimal error probability 
for guessing the value of a discrete random variable (i.e. 
k = 1) shown by completely different techniques [14, 
pages 520-521], [11, 16]. 

In contrast, we consider the caching problem for two 
stationary ergodic sources with equal entropy. We show 
that  the best caching fault rate for the two sources fall in 
two disjoint intervals as a function of H,  the entropy of 
the source. Thus, in the case of caching, entropy alone 
is not a sufficient predictor for online performance. 

2 P r e l i m i n a r i e s  

We model a request sequence for an online process as 
an indexed sequence of (discrete) random variables (also 
called as a stochastic process), denoted by {Xi}. The 
range of {Xi}, for all i is the finite alphabet set 7"/. 
Let l = [7-/[. To define the entropy rate of {Xi} we 
recall some basic information theory terms. The entropy 
H ( X )  of a discrete random variable X with alphabet 7-/ 
and probability mass function p(x) = Pr{X = x} ,x  E 
7-/is 
(2.1) H ( X )  = -- E p(x)logp(x) 

xET-/ 

The joint entropy H(X1, X2) of a pair of discrete 
random variables (X1,X2) with a joint distribution 
p(x,,  x2) is 

(2.2)  H ( X , Y ) =  - E E p ( x l ' x 2 ) l ° g p ( x l , x 2 )  
xl ET-I ~2ETI 

The conditional entropy H(X2IX1) is 

H(X2IXa) = ~ p(xx)H(X=lXa = x) = 
xa¢~ 

(2.3)  -- E E p(Xl'X2) logp(x21Xl) 
xl ET"t x2E~ 

The entropy per letter H~(7"/) of a stochastic pro- 
cess {X~} in a sequence of n letters is defined as 

(2.4) Hn(Tt) = ~H(X1,  X2 , . . . ,  X~) 

DEFINITION 2.1. The entropy rate of a stochastic pro- 
cess {Xi} is defined by 

H(7-/) = lim H~(7--/) 
n -'-'+ O ~  

when the limit exists. 

DEFINITION 2.2. A stochastic process is stationary if 
the joint distribution of any subset of the sequence of 

random variables is invariant with respect to shifts in 
the time index, i.e., 

Pr{Xl  = Xl ,  X 2 = z 2 , . . .  , Xn = Xn} : 

P r { X l + t  = Xl ,  X2+t • x2 , . . .  , Xn+ t = Xn} 

for every shift t and for all xl ,x2, . . . ,Xn E ~ .  

It  can be shown that  [14, Theorem 3.5.1] for sta- 
tionary processes (with finite Hi( 'H))) the limit H(7-/) 
exists and 

lim H ~ ( ~ ) =  
n- ' - '+  OO 

(2.5~lin~ H(Xn [X~-l, X~-2 , . . . ,  X1) = H(~t) 

H ( X d X n - 1 , . . . ,  Xl) is 

(2.6) non-increasing with n 

(2.7) Hn(~)  _> H ( X ,  IX,_a, . . .  ,X1) 

(2.8) H~(7-/) is non-increasing with n 

In particular when X1, X2 , . . .  are independent and 
identically distributed random variables (also called as 
a discrete memoryless source) 

H(7-/) = lim 1H(X1 ,  X2 , . . . ,  Xn) = lim nH(XI____.~) = H(X1). 
n n 

Henceforth in the paper when we say entropy of 
a request sequence we mean the entropy rate of the 
stochastic process (or the source) generating the se- 
quence, denoted simply by H (or H,~ for a sequence 
of length n). 

3 List  A c c e s s i n g  

We start  with a simple example relating the cost of 
online list accessing to the entropy of the request 
sequence. As in Borodin & EI-Yaniv [5] we consider 
the static list accessing model in which a fixed set of 
l items, is stored in linked list. The algorithm has to 
access sequentially a sequence of n requests for items 
in the list. The access cost a(Xi) of an item is the 
number of links traversed by the algorithm to locate the 
item, starting at the head of the list. Before each access 
operation the algorithm can rearrange the order of items 
in the list by means of transposing an element with an 
adjacent one. The cost is 1 for a single exchange. Let 
c(Xi) be the total cost associated with servicing element 
Xi. c(Xi) includes both the access cost a(Xi) and any 
transposition cost incurred before servicing Xi. 

Following Bentley et al. [4] we explore the relation 
between list accessing and data compression by using 
the linked list as a data structure of a data  compression 
algorithm. Assume that  a sender and a receiver start  
with the same linked list, and use the same rules for 
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rearranging the list throughout the execution. Instead 
of sending item X, the sender needs only to send the 
distance i of X from the head of the linked list, i.e. 
the work involved in retrieving item X. We encode the 
integer distance by using a variable length prefix code. 
The lower bound depends on the particular encoding 
used for the distance. Consider an encoding scheme 
that  encodes an integer i using f ( i )  bits. To get a 
lower bound on the work done, we need f to be a 
concave nondecreasing function (when defined on the 
non-negative real). 

THEOREM 3.1. Let 5 be the average cost of accessing an 
item by any deterministic algorithm .A on a stationary 
ergodic sequence of requests < X > =  X1, X 2 , . . . ,  X~. 
Then ~ >_ f -X(H),  where H is the entropy of the 
sequence, and f is a concave nondecreasin9 invertible 
function such that there is an encoding scheme for the 
integers that encodes integer i with up to f ( i )  bits. 

1 n Proof: ~ > ~ ~i= lC(Xi ) ,  and c(Xi) >_ a(Xi), where 
a(Xi) is the distance of Xi from the head of the linked 
list at time i, which is the value sent by the sender 
at time i. If the sender encodes a(Xi) using f (a (Xi ) )  
bits, then by variable-length source coding theorem [14, 
theorem 3.5.2] and by equations 2.5 to 2.8, 

(3.9) -1 ~ f (a (XO ) _> Hn _> H 
n 

i = 1  

Since f is concave, by Jensen's inequality and using 3.9, 

f(e) > f(¼ ~ a ( X i ) )  >-- --nl f (a(Xi ) )  > H 
i = 1  i = 1  

Hence, e > f - l ( H ) .  [] 

We can now get concrete lower bounds by plugging 
in appropriate coding functions. A simple prefix coding 
scheme encodes an integer i using 1 + 2 [log i] bits [9]. 
The encoding of i consists of [log i] 0's followed by the 
binary representation of i which takes 1 + [log if bits, 
the first of which is a 1. This encoding function gives 
the following corollary to theorem 3.1. 

C O R O L L A R Y  3.1. Any deterministic online algorithm 
for list accessing has to incur an average cost of 2 ( H-1)/2 
per item, where H is the entropy rate of the sequence. 

We get a better lower bound by replacing the [log i] 
O's followed by a 1 in the above scheme by log[1 + log l] 
bits giving an encoding for i with [log if + log [1 + log If 
bits. Using this scheme we prove: 

C O R O L L A R Y  3.2. The average cost of accessing an item 
2 H for a deterministic online algorithm is at least ~i~F~, 

where l is the size of the alphabet. 

4 P r e f e t c h i n g  

As in [26] we consider the following formalization of the 
prefetching problem: we have a collection 7-I of pages in 
memory and a cache of size k, and typically k << ]~1. 
The system can prefetch k items to the cache prior to 
each page request. The fault rate is the average number 
of steps in which the requested item was not in the 
cache. 

Let l = I~I. Given a request sequence < X > =  
X1, X2,. • • Xn, we are interested in the expected minimal 
page fault rate of a request sequence i.e., the minimum 
long term frequency of page faults that  is possible for 
the sequence. We show the existence of this quantity 
when the request sequence is generated by a stationary 
ergodic process. 

4.1 Lower  B o u n d  We first prove the lower bound 
for a discrete memoryless source, generalizing the result 
in Feder and Merhav [11]. 

We observe that  the optimal prefetching strategy in 
a discrete memoryless source is obvious (a consequence 
of Bayes decision rule, for example see [16]): 

LEMMA 4.1. Let p(.) be a probability distribution on 
7-L. Suppose each page in the sequence is drawn i.i.d 
with probability distribution p(.). Then the expected 
minimal page fault rate can be obtained by picking 
the pages (in the cache) with the top k probabilities. 
Hence the expected minimal fault rate is given by 1 - 
~eT(p( . ) )P(X) ,  where T(p(.)) is the set of pages with 
the top k probabilities in the distribution p(.). 

Our goal is to relate the fault rate of the above 
strategy to the entropy of the source. Consider a 
discrete random variable X, and let p(i) = P r { X  = i} 
for i E 7-/. Assume without loss of generality that  
p(1) > p(2) _> . . .  > p(1). Let P = [p(1),. . . ,p(l)] 
be the probability vector and let Per = {P I p(i) _> 

l • k . 0, Vi, ~ i=xp(z)  = 1 and ~ i = l p ( z )  = 1 -  ~r} Let 
H(P)  (or H ( X ) )  be the entropy of the random variable 
having the distribution given by P. Given the expected 
minimal fault rate 7r(X) (or ~r for simplicity) we would 
like to find a upper bound on the entropy as H ( X )  <_ 
m a x P e p ~  H(P).  

LEMMA 4.2. Let the expected minimal page fault rate be 
7r. Then the maximum entropy H(Pma~(Tr) ) is given by 
(1 - ~r)lg(1_--~) + ~r lg(L~) .  

Proof: Given the expected minimal page fault rate 7r, 
the maximum entropy distribution Pma~ Gr) is given by 

1 - T r  1 - T r  7r 7r 

( k  " " '  k ' l - k ' " ' l  k ) 
k t e r m s  ( l - - k )  t e r m s  

730 



assuming ~" _< 1 - k/l (which is always true). This dis- 
tribution maximizes the entropy because of the follow- 
ing argument. Let p(x) be any probability distribution 
on 7-/. Then the relative entropy (or Kullback Leibler 
distance) between p(x) and Pma~(Tr) is given by [6, def- 
inition 2.26) 

E p(x)lg(p(x)/Pma~(Tr)) = 
xETii 

- H ( X )  + E p(x)lg 1/Pma~(~r)) 
xETl 

Since the relative entropy is always positive[6, Theorem 
2.6.3] we have 

k l 

k lg( ) E ) H(X) < lg(1 _ ~  ) ~ p ( x )  + = 
x = l  x = k + l  

[] 

COROLLARY 4.1. 7r > ~ - ~  
- -  l g ( i : - -  1 ) 

Proof: From lemma 4.2, 

H_< 

- ( 1  - 7r) lg(1 - 7r) - 7r lg ~- + (1  - ~r) l g  k + a" l o g ( l  - k )  

-- h(~') + (1 - ~) lg k + ~r l o g ( / -  k) 

where, h(rr) = -Trlog~r - (1 - ~r)log(1 - ~-) is the 
binary entropy function which takes values between 0 
and 1. Hence, H _< 1 + lg(k l -~( l  - k) r) which gives the 
result. [] 

We now show that  the same lower bound holds for any 
stationary ergodic process generalizing the argument of 
[11, Theorem 1]. First we need to define the following. 
Let (X,Y) be a pair of discrete random variables (each 
with range 7-l) with joint distribution p(x, y). For the 
following let T(.) be defined as in 4.1. Then by lemma 
4.1 the expected minimal fault rate that  can be obtained 
(using a cache of size k) given that  a page y of Y was 
observed is 

 (xly) = Z [ i -  Z = 
Y xeT(p(.ly)) 

(4.10) E ~(X[Y = y)p(y) 
Y 

Let {Xi}i~=l be a stationary ergodic process. Sim- 
ilar to (see equation 2.5) the entropy of a stationary 
process we define the fault rate of a stationary ergodic 
sequence as 

(4.11) II(~-/) = lira zr(Xn[X~-l,...,X1) 
n - - > o o  

To show that  the above limit exists, we need the 
following lemma which shows that  conditioning cannot 
increase expected minimal fault rate. 

LEMMA 4.3. Let (X, Y) be a pair of discrete random 
variables as defined above. Then, tII(XIY ) < H(X). 

Proof: 

(4.12) H ( X ) =  I- ~ p(x) 
xET(p(. ) ) 

(4.13)H(X[Y) = E ( 1 -  E p(xly)lp(y) 
y xET(p(.[y)) 

where p(.[y) is the conditional probability distribution 
of X given y. Hence, 

H(X) - H(XIY ) = 

p(xlyllp(y)- p(x) 
Y xET(p(.[y)) xET(p(.)) 

= E E E 
Y xET(P(.ly)) xET(p(.)) 

xeT(p(.)) Y xET(p(.)) 

LEMMA 4.4. The limit defined in 4.11 
discrete stationary ergodic process. 

Proof: 

n(xn+llX~,...,Xl) _< n(x~+llX,,...,x~) 
( 4 . 1 4 )  = n(x,  Ixn_~,...,x~) 

where the inequality follows from the fact that  
conditioning cannot increase the expected minimal fault 
rate and the equality follows from the stationarity of the 
process. Since II(XnIX,_i, . . . .  X1) is a non-increasing 
sequence of non-negative numbers, it has a limit. [] 

An immediate corollary of the following lemma (in 
conjunction with equations 2.5 and 4.11) is that  the 
same lower bound as in corollary 4.1 holds for stationary 
ergodic processes too. 

LEMMA 4.5. Ir(XIY ) > H(XiY)-l-lgk 
- ~g(~-i) 

Proof: H(XIY = y) and 7r(XJY = y) are the entropy 
and the minimal expected fault rate of a discrete 
random variable that  takes values in 7-/. Thus the lower 
bound of corollary 4.1 holds for every y, i.e., 

7 r ( X l Y  = y)  > H(XIY=Y)-- I - - Igk  
- -  Ig(~-l) 

n ( x l r )  = E ~  ~ ( X l r  = y)p(y) _> 

y~ lg(~-i) J~wJ 
__ H(XlY)--X-- lgk 
- l g ( ~ - i )  

[] 

exists for a 
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[] 

Thus we can state the following theorem where we 
have used ~r(H, k) to emphasize the dependence of 7r on 
H and k. 

THEOREM 4.1. The expected minimal page fault rate 
7r(H, k) on a request sequence generated by a stationary 
ergodie process with entropy H is lower bounded by 
L(H, k) = lg(~-l) " 

4.2 U p p e r  b o u n d  Our upper bound will use Rissa- 
nen's universal da ta  compression system [23] which is a 
variant of the Ziv-Lempel's universal compression algo- 
r i thm [27]. 

The Ziv-Lempel algorithm parses individual se- 
quences < X n > =  X1, X2,..., Xn into phrases. Each 
phrase starts with a comma, and consists of a max- 
imal length sequence that  has occurred as an earlier 
phrase, followed by the next symbol. We denote by v ,  
the number of complete phrases when parsing the fi- 
nite sequence < X n >. For example, the binary string 
< X "  > =  0101000100 with length n = 10 is parsed as 
,0, 1, 01,00,010, 0 and contains Vn = 5 complete phrases 
and an incomplete phrase at the end. The Ziv-Lempel 
parsing is obtained by maintaining a dynamically grow- 
ing tree data  structure. Initially this tree consists of 
a single node, the root. Edges of the tree are labeled 
with symbols of the alphabet 7-/. Processing of a new 
phrase starts at the root and proceeds down the tree 
through edges that  match the symbols of the input se- 
quence. When the process reaches a leaf it adds a new 
branch labeled with the next symbol of the input se- 
quence, which is the last symbol of this phrase. Let  Tn 
denote the tree after processing n symbols of the input. 

Rissanen [23] has studied a variant of this algorithm 
which generates a tree Tn. The nodes of Tn are the 
internal nodes of Tn" An internal node of T ,  has all 
its 1 = 17-/[ possible descendents. Thus, nodes in T ,  are 
either leaves or have I descendents. Thus, a processing 
of a phrase in Tn ends when the process reaches a leaf. 
The leaf is then converted to an internal node, and its 1 
descendents are added to the tree. Note that  Rissanen's 
variant generates exactly the same phrases as the Liv- 
Zempel parsing. Let Vn be the number of phrases in the 
parsing of the input string. It is easy to verify tha t  Tn 
contains Vn + 1 nodes, while Tn contains 1 + l(vn + 1) 
nodes, namely Vn + 1 interior nodes and 1 + (1-1)  (v ,  + 1) 
leaves. The advantage of Rissanen's version is tha t  all 
leaves in the the tree Tn have equM probability of being 
reached while searching for a new phrase [23, 2]. 

Consider the following prefetching algorithm using 
20n: Assume that  at step n the algorithm is at node 
z of the tree T,~. If z is a leaf we prefetch k symbols 

randomly and go to the root (after making the leaf an 
interior node and adding I children). If z is an interior 
node then we prefetch the k items that  correspond to 
the k subtrees, rooted at z, with the maximum number 
of leaves. When the n + 1 request is revealed the process 
proceeds through the corresponding branch. 

To analyze the above prefetching algorithm we 
need the following basic results proven by Ziv and 
Lempel [20, 27]. 

THEOREM 4.2. [20] The number of phrases vn in a 
distinct parsing of a sequence (from an alphabet of size 
l) X1, X2 , . . . ,  Xn satisfies 

nlgl  
vn <_ where l i m n ~ e n  = 0 

(1 - e . )  lg  n 

THEOREM 4.3. [27] Let {Xn} be a stationary ergodic 
process with entropy rate H(~)  and let Vn be the number 
of phrases in a distinct parsing of a sample of length n 
from this process. Then 

v~ lg Vn 
l i r n s u p n ~ o o - -  < H (~) 

n 

THEOREM 4.4. The expected minimal fault rate 7r(H, k) 
of the prefetching algorithm on a request sequence gen- 
erated by a stationary ergodic process with entropy H is 
upper bounded by U(H, k) = (k+l)~(k+l)" 

Proof: We assume that  1 _> k + 1, otherwise the fault 
rate is 0. Since we prefetch the k items corresponding 
to the k largest subtrees, whenever we incur a fault the 
symbol corresponds to a branch with at most 1/(k + 1) 
leaves of the current subtree. Since the total number of 
leaves in the completed tree is at most v~(l - 1) + 1 the 
number of faults incurred while traversing from the root 
to a leaf is at most lgk+l(vn(l - 1) + 1). Since all leaves 
have equal probability, the probability of a fault at a 
given branch is at most 1/(k + 1). Thus, the expected 
number of faults while processing a phrase is at most 
k+11 lgk+ l(vn(1 - 1) + 1), and the expected number of 
faults incurred while processing a sequence of length n 
is at most 

Vn 1 
n k + 1 l g k + l ( v n ( l -  1) + 1) 

1 vn (lg(v,  + 1) + lg l) 
<- ( k + l ) l g ( k + l )  

H 
< a s  n - - - ~  (x:~ 
- ( k + l ) l g ( k + l )  

using theorems 4.2 and 4.3. [] 

5 C a c h i n g  

In this section we study online caching or demand 
paging, where a page is fetched into cache only when 
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a page fault occurs. By comparing the fault rates of 
two request sequences with equal entropy we will show 
tha t  entropy of the request sequence alone does not fully 
capture the performance of online caching algorithms. 
Our construction uses the following two facts: 

A prefetching algorithm can "simulate" a caching 
algorithm by prefetching at each step the k elements 
that  are in the cache of the caching algorithm at tha t  
step. Thus, a lower bound on the fault rate of any 
prefetching algorithm for a given request sequence is 
also a lower bound on the fault rate of any caching 
algorithm on that  sequence. 

Consider a request sequence generated by a discrete 
memoryless source. I t  can be shown tha t  the optimal 
online algorithm for caching in this case always keeps 
the k -  1 pages with the highest probabili ty in the cache, 
and leaves one slot for cache miss [13]. Thus, we can 
state the following theorem which follows from theorems 
4.1 and 4.4. 

THEOREM 5.1. The best expected fault rate for any 
caching algorithm with cache size k on a request se- 
quence generated by a discrete memoryless source with 
entropy H, is 

L(H, k - 1) < 7r(k) <_ U(H, k - 1). 

Our construction uses request sequences generated 
by a Markov source. 

DEFINITION 5.1. [14] A probabilistic finite state 
automaton (probabilistic FSA ) as a quintuple 
(S ,~ ,g ,p ,  zo) where S is a finite set of states 
with [S] = s, ~ is a finite alphabet of size l, g is a 
deterministic "next state" function that maps SXT-t 
into S, pz is a "probability assignment function" for 
each z E S that maps ~ into [0, 1] with the restriction 
that ~ i e ~ P z ( i )  = 1 and Zo E S is the start state. 
A probabilistic FSA when used to generate strings is 
called a Markov source. A Markov source is ergodic if  
it is irreducible and aperiodic, meaning that each state 
can reach every other state, and the gcd of the possible 
recurrence times for each state is 1. A Markov source 
is stationary when the start state is chosen randomly 
according to the steady state probabilities of the states. 

A Markov source is a very general model and is not 
to be confused with a Markov chain on the page request 
sequence which is of first order. A Markov source can 
have infinite order. A stat ionary ergodic process can be 
approximated by a kth order Markov process, for large 
k [6]. We can define the entropy of a s tat ionary Markov 
source as follows. 

DEFINITION 5.2. [14] The entropy of a Markov source 
M denoted by ( S , ~ , g , p ,  zo) is given by 

HM = ~ q ( z )g ( z )  
z ~ l  

where q(z) is the stationary (steady state) probability 
corresponding to state z and H(z)  is the entropy of the 
state z defined as - E ~ e ~ p z ( x ) l g p z ( X ) .  

Consider a two state Markov source with the same 
probabili ty assignment function p(.) for both states. Let 
H be the entropy of p(.). Then the entropy of the 
Markov source is also H.  We consider two cases: 

C a s e  I The pages corresponding to the top k - 1 
probabilities are the same in both states. In this 
case the best caching s t ra tegy is similar to the 
discrete memoryless case, tha t  is keep the k - 1 
pages always in the cache. Hence, the fault rate 
~-(k) has the same bounds as in theorem 5.1. 

C a s e  2 The  set of k - 1 pages with the highest prob- 
abilities in state 1 is disjoint from the set of k - 1 
pages with the highest probabilities in s tate  2. Sup- 
pose the stat ionary probabilities of the two states 
are 1/2 each and the transit ion probabili ty from 
each state to the other is also 1/2. Then it can be 
shown that  the best caching Mgorithm is to keep 
the top (k - 1)/2 pages of each s tate  (assuming k 
is odd) in the cache. Hence the expected minimal 
fault rate is (by theorems 4.1 and 4.4) in the range: 

L(H, k/2) < r (k)  _< U(H, k/2) 

I t  can be shown tha t  the intervals corresponding in the 
above two cases are disjoint if k is sufficiently large. 
Thus, although the entropy in the two scenarios are 
equal, the fault rates are different. 
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