
Can Entropy Characterize Performance of Online Algorithms?

Gopal Pandurangan* Eli Upfal*

A b s t r a c t

We focus in this work on an aspect of online compu-
tation that is not addressed by the standard compet-
itive analysis. Namely, identifying request sequences
for which non-trivial online algorithms are useful ver-
sus request sequences for which all algorithms perform
equMly bad. The motivation for this work are advanced
system and architecture designs which allow the operat-
ing system to dynamically allocate resources to online
protocols such as prefetching and caching. To utilize
these features the operating system needs to identify
data streams that can benefit from more resources.

Our approach in this work is based on the rela-
tion between entropy, compression and gambling, ex-
tensively studied in information theory. It has been
shown that in some settings entropy can either fully
or at least partially characterize the expected outcome
of an iterative gambling game. Viewing online problem
with stochastic input as an iterative gambling game, our
goal is to study the extent to which the entropy of the
input characterizes the expected performance of online
algorithms for problems that arise in computer applica-
tions. We study bounds based on entropy for three on-
line problems - list accessing, prefetching and caching.
We show that entropy is a good performance character-
izer for prefetching, but not so good characterizer for
online caching.

1 I n t r o d u c t i o n

Advanced system and architecture design allows dy-
namic allocations of resources to online tasks such as
prefetching and caching. To fully utilize this feature
the system needs an efficient mechanism for estimating
the expected gain from using these resources. Prefetch-
ing, for example, is an expensive operation since it
"burns instruction bandwidth"[17]. However, success-
ful prefetching can significantly speedup computation.
Thus, one needs to compare the gain from prefetching
on a given data stream to the cost in instruction band-
width. The tradeoff between resource allocation and

" - ~ p u t e r Science Department, Brown Univer-
sity, Box 1910, Providence, RI 02912-1910, USA.
E-mail: {gopal, eli)~cs.bro~,m.edu. Supported in part by
NSF grant CCR-9731477.

gain is even more transparent in the case of malleable
cache [21, 25, 8]. In this architecture the cache can be
dynamically partitioned between different data streams.
A data stream that can make better use of a larger cache
is assigned more space, while a stream with very little
structure or repeats is allocated a smaller cache space.
Again, efficient utilization of this technology requires a
mechanism for predicting caching gain for a given data
stream.

Online algorithms have been studied in the theory
community mainly in the context of competitive analysis
(see [5] for a comprehensive survey). Competitive anal-
ysis compares the performance of different algorithms,
but it gives no information about the actual gain from
using them. In particular, even the best algorithm un-
der the competitive analysis measure might fail on al-
most all requests of some sequence. Thus, an entirely
new approach is needed in order to quantify the amount
of resources the system should allocate to a given online
process. In this work we explore the relation between
the entropy of the stream of requests and the gain ex-
pected from online algorithm performing on this request
sequence. Entropy measures the randomness or uncer-
tainty of a random process. We expect online algorithms
to perform well on highly predictive request sequences,
generated by a source with low entropy, and to per-
form poorly on sequences with little pattern, generated
by a high entropy source. Our work is motivated by
the extensive work in information theory relating data
compression, entropy and gambling. It has been shown
that for some special cases of gambling games the en-
tropy of the stochastic process fully characterizes the
maximum expected profit for any strategy for that game
(see section 1.1). Our goal is to explore similar relations
between entropy and online problems in computer ap-
plications. We discuss here three online problems: list
accessing, prefetching and caching. We show that in the
case of prefetching entropy gives a good characterization
of the best online performance that is possible, while in
the case of caching entropy does not fully characterize
the best online performance.

1.1 Re la t ed Work The three online problems con-
sidered here were extensively studied in the competi-
tive analysis model. It has been shown in [24] that the

727

competitive ratio 1 of the move to front (MTF) algo-
rithm for the list accessing problem is two [24]. In the
case where the input sequence is drawn from a discrete
memoryless source the MTF algorithm has been com-
pared to the performance of a static offiine algorithm
SOPT that initially arranges the list in decreasing order
of request probabilities and never reorders them there-
after. It was shown in [15] that MTF(D) < ~SOPT(D),
where D is the distribution of the source. Albers
et.al [1] analyze the performance of the TIMESTAMP
algorithm on a discrete memoryless source with dis-
tribution D and proved that for any distribution D,
TIMESTAMP(D) < 1.34 x SOPT(D) and with high
probability, TIMESTAMP(D) < 1.5 x OPT(D). The
actual work done by the MTF algorithm was stud-
ied when the request sequence is generated by a dis-
crete memoryless source with probability distribution
D[1, 4, 15].

For online caching (or demand paging) the well
known LRU (Least Recently Used) has a competitive
ratio of k [24], where k is the cache size, while the ran-
domized MARKER algorithm is 2 log k competitive [10].
Franaszek and Wagner [13] studied a model in which ev-
ery request is drawn from a discrete memoryless source.
Karlin et.al [18] study Markov paging where the se-
quence of page requests is generated by a Markov chain.
Their main result is an efficient algorithm which for any
Markov chain will achieve a fault-rate at most a con-
stant times optimal.

For the problem of prefetching, competitive analysis
is meaningless as the optimal offline algorithm will
always prefetch the correct item and hence incurs no
cost. Vitter and Krishnan [26] consider a model where
the sequence of page requests is assumed to be generated
by a Markov source (defined in section 5), a model which
is closest in spirit to (but less general than) our model of
a stationary ergodic process. They show that the fault
rate of a Ziv-Lempel [27] based prefetching algorithm
approaches the fault rate of the best prefetcher (which
has full knowledge of the Markov source) for the given
Markov source as the page request sequence length

Kelly [19] was the first to study the relation between
data compression, entropy and gambling, showing that
the outcome of a horse race gambling with fair odds is
fully characterized by the entropy of the stochastic pro-
cess. It was shown [19, 2] that the growth rate of invest-
ment in the horse race is equal to log m - H, where m is
the number of horses and H is the entropy of the source.

~ n onl ine a lgor i thm A L G has a compet i t ive ra t io of c if
the re is a c o n s t a n t a such t h a t for all finite i npu t sequences I,
A L G (I) < c x O P T (I) + a , where O P T is t he op t ima l offline
a lgor i thm.

Similar results have been shown for portfolio selection
strategies in equity market investments [3, 6]. Our re-
sults on list accessing are based on the work of Bentley
et.al [4] who showed that any list update algorithm can
be used to develop a data compression scheme. They
also showed that for a discrete memoryless source the
expected number of bits needed to encode an alpha-
bet using MTF is linear in the entropy of the source.
Similar results have been shown by Albers et.al [1] for
the TIMESTAMP algorithm. Our results on prefetch-
ing are motivated by the work of Feder and Merhav [11]
relating entropy of a discrete random variable to the
minimal attainable probability of error in guessing its
value. In the context of prefetching their results can be
viewed as giving a tight bound on the fault rate when
the size of cache is 1. A tight lower bound on this er-
ror probability is given by Fano's inequality [6, theorem
2.11.1]. Their main result is a tight upper bound for the
fault rate when k = 1. Feder and Merhav also showed
that the same lower and upper bounds (for k = 1) hold
for a stationary ergodic source. However, their upper
bound does not seem to generalize to higher values of
k. Note that there is more work in the information the-
ory on predicting binary sequences (corresponding to
prefetching in a universe of two pages with cache of size
1) [12], however these results cannot be generalized to
our prefetching scenario. Our approach to deriving the
upper bound on the fault rate for an arbitrary ergodic
source and arbitrary cache size k is different and is based
on the well-known Liv Zempel universal algorithm for
data compression [27]. Our proof uses Rissanen's inter-
pretation of the Liv Zempel Algorithm [23]. See Algoet
[2] for further results on universal schemes for predic-
tion, gambling and portfolio selection.

1.2 N e w R e s u l t s We focus on three online problems
in this paper: list accessing, prefetching, and caching.
Our goM is to study the relation between the entropy
of the sequence of requests and the best performance of
an online algorithm for these problems.

We assume that the sequence of requests is gener-
ated by a discrete stationary ergodic process [14, defini-
tion 3.5.13] which is the most general stochastic source
considered in information theory. It includes power-
ful models such as memoryless and (stationary) Markov
sources [14, 26, 7].

For the list accessing problem we show that any
deterministic online algorithm requires an average work
of f~(2 H) steps per item access, where H is the entropy
of the input source.

For the prefetching problem we give an upper and
lower bound showing that the average number of faults
of the best algorithm is linear in H, the entropy of

728

the input source. Our lower bound on the fault rate
can be seen as a generalization of Fano's inequality for
k > 1. Our upper bound subsumes the well known
upper bound of ½H on the minimal error probability
for guessing the value of a discrete random variable (i.e.
k = 1) shown by completely different techniques [14,
pages 520-521], [11, 16].

In contrast, we consider the caching problem for two
stationary ergodic sources with equal entropy. We show
that the best caching fault rate for the two sources fall in
two disjoint intervals as a function of H, the entropy of
the source. Thus, in the case of caching, entropy alone
is not a sufficient predictor for online performance.

2 P r e l i m i n a r i e s

We model a request sequence for an online process as
an indexed sequence of (discrete) random variables (also
called as a stochastic process), denoted by {Xi}. The
range of {Xi}, for all i is the finite alphabet set 7"/.
Let l = [7-/[. To define the entropy rate of {Xi} we
recall some basic information theory terms. The entropy
H (X) of a discrete random variable X with alphabet 7-/
and probability mass function p(x) = Pr{X = x} ,x E
7-/is
(2.1) H (X) = -- E p(x)logp(x)

xET-/

The joint entropy H(X1, X2) of a pair of discrete
random variables (X1,X2) with a joint distribution
p(x,, x2) is

(2.2) H (X , Y) = - E E p (x l ' x 2) l ° g p (x l , x 2)
xl ET-I ~2ETI

The conditional entropy H(X2IX1) is

H(X2IXa) = ~ p(xx)H(X=lXa = x) =
xa¢~

(2.3) -- E E p(Xl'X2) logp(x21Xl)
xl ET"t x2E~

The entropy per letter H~(7"/) of a stochastic pro-
cess {X~} in a sequence of n letters is defined as

(2.4) Hn(Tt) = ~H(X1, X2 , . . . , X~)

DEFINITION 2.1. The entropy rate of a stochastic pro-
cess {Xi} is defined by

H(7-/) = lim H~(7--/)
n -'-'+ O ~

when the limit exists.

DEFINITION 2.2. A stochastic process is stationary if
the joint distribution of any subset of the sequence of

random variables is invariant with respect to shifts in
the time index, i.e.,

Pr{Xl = Xl , X 2 = z 2 , . . . , Xn = Xn} :

P r { X l + t = Xl , X2+t • x2 , . . . , Xn+ t = Xn}

for every shift t and for all xl ,x2, . . . ,Xn E ~ .

It can be shown that [14, Theorem 3.5.1] for sta-
tionary processes (with finite Hi('H))) the limit H(7-/)
exists and

lim H ~ (~) =
n- ' - '+ OO

(2.5~lin~ H(Xn [X~-l, X~-2 , . . . , X1) = H(~t)

H (X d X n - 1 , . . . , Xl) is

(2.6) non-increasing with n

(2.7) Hn(~) _> H (X , IX,_a, . . . ,X1)

(2.8) H~(7-/) is non-increasing with n

In particular when X1, X2 , . . . are independent and
identically distributed random variables (also called as
a discrete memoryless source)

H(7-/) = lim 1H(X1 , X2 , . . . , Xn) = lim nH(XI____.~) = H(X1).
n n

Henceforth in the paper when we say entropy of
a request sequence we mean the entropy rate of the
stochastic process (or the source) generating the se-
quence, denoted simply by H (or H,~ for a sequence
of length n).

3 List A c c e s s i n g

We start with a simple example relating the cost of
online list accessing to the entropy of the request
sequence. As in Borodin & EI-Yaniv [5] we consider
the static list accessing model in which a fixed set of
l items, is stored in linked list. The algorithm has to
access sequentially a sequence of n requests for items
in the list. The access cost a(Xi) of an item is the
number of links traversed by the algorithm to locate the
item, starting at the head of the list. Before each access
operation the algorithm can rearrange the order of items
in the list by means of transposing an element with an
adjacent one. The cost is 1 for a single exchange. Let
c(Xi) be the total cost associated with servicing element
Xi. c(Xi) includes both the access cost a(Xi) and any
transposition cost incurred before servicing Xi.

Following Bentley et al. [4] we explore the relation
between list accessing and data compression by using
the linked list as a data structure of a data compression
algorithm. Assume that a sender and a receiver start
with the same linked list, and use the same rules for

729

rearranging the list throughout the execution. Instead
of sending item X, the sender needs only to send the
distance i of X from the head of the linked list, i.e.
the work involved in retrieving item X. We encode the
integer distance by using a variable length prefix code.
The lower bound depends on the particular encoding
used for the distance. Consider an encoding scheme
that encodes an integer i using f (i) bits. To get a
lower bound on the work done, we need f to be a
concave nondecreasing function (when defined on the
non-negative real).

THEOREM 3.1. Let 5 be the average cost of accessing an
item by any deterministic algorithm .A on a stationary
ergodic sequence of requests < X > = X1, X 2 , . . . , X~.
Then ~ >_ f -X(H), where H is the entropy of the
sequence, and f is a concave nondecreasin9 invertible
function such that there is an encoding scheme for the
integers that encodes integer i with up to f (i) bits.

1 n Proof: ~ > ~ ~i= lC(Xi) , and c(Xi) >_ a(Xi), where
a(Xi) is the distance of Xi from the head of the linked
list at time i, which is the value sent by the sender
at time i. If the sender encodes a(Xi) using f (a (Xi))
bits, then by variable-length source coding theorem [14,
theorem 3.5.2] and by equations 2.5 to 2.8,

(3.9) -1 ~ f (a (XO) _> Hn _> H
n

i = 1

Since f is concave, by Jensen's inequality and using 3.9,

f(e) > f(¼ ~ a (X i)) >-- --nl f (a(Xi)) > H
i = 1 i = 1

Hence, e > f - l (H) . []

We can now get concrete lower bounds by plugging
in appropriate coding functions. A simple prefix coding
scheme encodes an integer i using 1 + 2 [log i] bits [9].
The encoding of i consists of [log i] 0's followed by the
binary representation of i which takes 1 + [log if bits,
the first of which is a 1. This encoding function gives
the following corollary to theorem 3.1.

C O R O L L A R Y 3.1. Any deterministic online algorithm
for list accessing has to incur an average cost of 2 (H-1)/2
per item, where H is the entropy rate of the sequence.

We get a better lower bound by replacing the [log i]
O's followed by a 1 in the above scheme by log[1 + log l]
bits giving an encoding for i with [log if + log [1 + log If
bits. Using this scheme we prove:

C O R O L L A R Y 3.2. The average cost of accessing an item
2 H for a deterministic online algorithm is at least ~i~F~,

where l is the size of the alphabet.

4 P r e f e t c h i n g

As in [26] we consider the following formalization of the
prefetching problem: we have a collection 7-I of pages in
memory and a cache of size k, and typically k <<]~1.
The system can prefetch k items to the cache prior to
each page request. The fault rate is the average number
of steps in which the requested item was not in the
cache.

Let l = I~I. Given a request sequence < X > =
X1, X2,. • • Xn, we are interested in the expected minimal
page fault rate of a request sequence i.e., the minimum
long term frequency of page faults that is possible for
the sequence. We show the existence of this quantity
when the request sequence is generated by a stationary
ergodic process.

4.1 Lower B o u n d We first prove the lower bound
for a discrete memoryless source, generalizing the result
in Feder and Merhav [11].

We observe that the optimal prefetching strategy in
a discrete memoryless source is obvious (a consequence
of Bayes decision rule, for example see [16]):

LEMMA 4.1. Let p(.) be a probability distribution on
7-L. Suppose each page in the sequence is drawn i.i.d
with probability distribution p(.). Then the expected
minimal page fault rate can be obtained by picking
the pages (in the cache) with the top k probabilities.
Hence the expected minimal fault rate is given by 1 -
~eT(p(.))P(X) , where T(p(.)) is the set of pages with
the top k probabilities in the distribution p(.).

Our goal is to relate the fault rate of the above
strategy to the entropy of the source. Consider a
discrete random variable X, and let p(i) = P r { X = i}
for i E 7-/. Assume without loss of generality that
p(1) > p(2) _> . . . > p(1). Let P = [p(1),. . . ,p(l)]
be the probability vector and let Per = {P I p(i) _>

l • k . 0, Vi, ~ i=xp(z) = 1 and ~ i = l p (z) = 1 - ~r} Let
H(P) (or H (X)) be the entropy of the random variable
having the distribution given by P. Given the expected
minimal fault rate 7r(X) (or ~r for simplicity) we would
like to find a upper bound on the entropy as H (X) <_
m a x P e p ~ H(P).

LEMMA 4.2. Let the expected minimal page fault rate be
7r. Then the maximum entropy H(Pma~(Tr)) is given by
(1 - ~r)lg(1_--~) + ~r lg(L~) .

Proof: Given the expected minimal page fault rate 7r,
the maximum entropy distribution Pma~ Gr) is given by

1 - T r 1 - T r 7r 7r

(k " " ' k ' l - k ' " ' l k)
k t e r m s (l - - k) t e r m s

730

assuming ~" _< 1 - k/l (which is always true). This dis-
tribution maximizes the entropy because of the follow-
ing argument. Let p(x) be any probability distribution
on 7-/. Then the relative entropy (or Kullback Leibler
distance) between p(x) and Pma~(Tr) is given by [6, def-
inition 2.26)

E p(x)lg(p(x)/Pma~(Tr)) =
xETii

- H (X) + E p(x)lg 1/Pma~(~r))
xETl

Since the relative entropy is always positive[6, Theorem
2.6.3] we have

k l

k lg() E) H(X) < lg(1 _ ~) ~ p (x) + =
x = l x = k + l

[]

COROLLARY 4.1. 7r > ~ - ~
- - l g (i : - - 1)

Proof: From lemma 4.2,

H_<

- (1 - 7r) lg(1 - 7r) - 7r lg ~- + (1 - ~r) l g k + a" l o g (l - k)

-- h(~') + (1 - ~) lg k + ~r l o g (/ - k)

where, h(rr) = -Trlog~r - (1 - ~r)log(1 - ~-) is the
binary entropy function which takes values between 0
and 1. Hence, H _< 1 + lg(k l -~(l - k) r) which gives the
result. []

We now show that the same lower bound holds for any
stationary ergodic process generalizing the argument of
[11, Theorem 1]. First we need to define the following.
Let (X,Y) be a pair of discrete random variables (each
with range 7-l) with joint distribution p(x, y). For the
following let T(.) be defined as in 4.1. Then by lemma
4.1 the expected minimal fault rate that can be obtained
(using a cache of size k) given that a page y of Y was
observed is

 (xly) = Z [i - Z =
Y xeT(p(.ly))

(4.10) E ~(X[Y = y)p(y)
Y

Let {Xi}i~=l be a stationary ergodic process. Sim-
ilar to (see equation 2.5) the entropy of a stationary
process we define the fault rate of a stationary ergodic
sequence as

(4.11) II(~-/) = lira zr(Xn[X~-l,...,X1)
n - - > o o

To show that the above limit exists, we need the
following lemma which shows that conditioning cannot
increase expected minimal fault rate.

LEMMA 4.3. Let (X, Y) be a pair of discrete random
variables as defined above. Then, tII(XIY) < H(X).

Proof:

(4.12) H (X) = I- ~ p(x)
xET(p(.))

(4.13)H(X[Y) = E (1 - E p(xly)lp(y)
y xET(p(.[y))

where p(.[y) is the conditional probability distribution
of X given y. Hence,

H(X) - H(XIY) =

p(xlyllp(y)- p(x)
Y xET(p(.[y)) xET(p(.))

= E E E
Y xET(P(.ly)) xET(p(.))

xeT(p(.)) Y xET(p(.))

LEMMA 4.4. The limit defined in 4.11
discrete stationary ergodic process.

Proof:

n(xn+llX~,...,Xl) _< n(x~+llX,,...,x~)
(4 . 1 4) = n(x, Ixn_~,...,x~)

where the inequality follows from the fact that
conditioning cannot increase the expected minimal fault
rate and the equality follows from the stationarity of the
process. Since II(XnIX,_i, X1) is a non-increasing
sequence of non-negative numbers, it has a limit. []

An immediate corollary of the following lemma (in
conjunction with equations 2.5 and 4.11) is that the
same lower bound as in corollary 4.1 holds for stationary
ergodic processes too.

LEMMA 4.5. Ir(XIY) > H(XiY)-l-lgk
- ~g(~-i)

Proof: H(XIY = y) and 7r(XJY = y) are the entropy
and the minimal expected fault rate of a discrete
random variable that takes values in 7-/. Thus the lower
bound of corollary 4.1 holds for every y, i.e.,

7 r (X l Y = y) > H(XIY=Y)-- I - - Igk
- - Ig(~-l)

n (x l r) = E ~ ~ (X l r = y)p(y) _>

y~ lg(~-i) J~wJ
__ H(XlY)--X-- lgk
- l g (~ - i)

[]

exists for a

731

[]

Thus we can state the following theorem where we
have used ~r(H, k) to emphasize the dependence of 7r on
H and k.

THEOREM 4.1. The expected minimal page fault rate
7r(H, k) on a request sequence generated by a stationary
ergodie process with entropy H is lower bounded by
L(H, k) = lg(~-l) "

4.2 U p p e r b o u n d Our upper bound will use Rissa-
nen's universal da ta compression system [23] which is a
variant of the Ziv-Lempel's universal compression algo-
r i thm [27].

The Ziv-Lempel algorithm parses individual se-
quences < X n > = X1, X2,..., Xn into phrases. Each
phrase starts with a comma, and consists of a max-
imal length sequence that has occurred as an earlier
phrase, followed by the next symbol. We denote by v ,
the number of complete phrases when parsing the fi-
nite sequence < X n >. For example, the binary string
< X " > = 0101000100 with length n = 10 is parsed as
,0, 1, 01,00,010, 0 and contains Vn = 5 complete phrases
and an incomplete phrase at the end. The Ziv-Lempel
parsing is obtained by maintaining a dynamically grow-
ing tree data structure. Initially this tree consists of
a single node, the root. Edges of the tree are labeled
with symbols of the alphabet 7-/. Processing of a new
phrase starts at the root and proceeds down the tree
through edges that match the symbols of the input se-
quence. When the process reaches a leaf it adds a new
branch labeled with the next symbol of the input se-
quence, which is the last symbol of this phrase. Let Tn
denote the tree after processing n symbols of the input.

Rissanen [23] has studied a variant of this algorithm
which generates a tree Tn. The nodes of Tn are the
internal nodes of Tn" An internal node of T , has all
its 1 = 17-/[possible descendents. Thus, nodes in T , are
either leaves or have I descendents. Thus, a processing
of a phrase in Tn ends when the process reaches a leaf.
The leaf is then converted to an internal node, and its 1
descendents are added to the tree. Note that Rissanen's
variant generates exactly the same phrases as the Liv-
Zempel parsing. Let Vn be the number of phrases in the
parsing of the input string. It is easy to verify tha t Tn
contains Vn + 1 nodes, while Tn contains 1 + l(vn + 1)
nodes, namely Vn + 1 interior nodes and 1 + (1-1) (v , + 1)
leaves. The advantage of Rissanen's version is tha t all
leaves in the the tree Tn have equM probability of being
reached while searching for a new phrase [23, 2].

Consider the following prefetching algorithm using
20n: Assume that at step n the algorithm is at node
z of the tree T,~. If z is a leaf we prefetch k symbols

randomly and go to the root (after making the leaf an
interior node and adding I children). If z is an interior
node then we prefetch the k items that correspond to
the k subtrees, rooted at z, with the maximum number
of leaves. When the n + 1 request is revealed the process
proceeds through the corresponding branch.

To analyze the above prefetching algorithm we
need the following basic results proven by Ziv and
Lempel [20, 27].

THEOREM 4.2. [20] The number of phrases vn in a
distinct parsing of a sequence (from an alphabet of size
l) X1, X2 , . . . , Xn satisfies

nlgl
vn <_ where l i m n ~ e n = 0

(1 - e .) lg n

THEOREM 4.3. [27] Let {Xn} be a stationary ergodic
process with entropy rate H(~) and let Vn be the number
of phrases in a distinct parsing of a sample of length n
from this process. Then

v~ lg Vn
l i r n s u p n ~ o o - - < H (~)

n

THEOREM 4.4. The expected minimal fault rate 7r(H, k)
of the prefetching algorithm on a request sequence gen-
erated by a stationary ergodic process with entropy H is
upper bounded by U(H, k) = (k+l)~(k+l)"

Proof: We assume that 1 _> k + 1, otherwise the fault
rate is 0. Since we prefetch the k items corresponding
to the k largest subtrees, whenever we incur a fault the
symbol corresponds to a branch with at most 1/(k + 1)
leaves of the current subtree. Since the total number of
leaves in the completed tree is at most v~(l - 1) + 1 the
number of faults incurred while traversing from the root
to a leaf is at most lgk+l(vn(l - 1) + 1). Since all leaves
have equal probability, the probability of a fault at a
given branch is at most 1/(k + 1). Thus, the expected
number of faults while processing a phrase is at most
k+11 lgk+ l(vn(1 - 1) + 1), and the expected number of
faults incurred while processing a sequence of length n
is at most

Vn 1
n k + 1 l g k + l (v n (l - 1) + 1)

1 vn (lg(v, + 1) + lg l)
<- (k + l) l g (k + l)

H
< a s n - - - ~ (x:~
- (k + l) l g (k + l)

using theorems 4.2 and 4.3. []

5 C a c h i n g

In this section we study online caching or demand
paging, where a page is fetched into cache only when

732

a page fault occurs. By comparing the fault rates of
two request sequences with equal entropy we will show
tha t entropy of the request sequence alone does not fully
capture the performance of online caching algorithms.
Our construction uses the following two facts:

A prefetching algorithm can "simulate" a caching
algorithm by prefetching at each step the k elements
that are in the cache of the caching algorithm at tha t
step. Thus, a lower bound on the fault rate of any
prefetching algorithm for a given request sequence is
also a lower bound on the fault rate of any caching
algorithm on that sequence.

Consider a request sequence generated by a discrete
memoryless source. I t can be shown tha t the optimal
online algorithm for caching in this case always keeps
the k - 1 pages with the highest probabili ty in the cache,
and leaves one slot for cache miss [13]. Thus, we can
state the following theorem which follows from theorems
4.1 and 4.4.

THEOREM 5.1. The best expected fault rate for any
caching algorithm with cache size k on a request se-
quence generated by a discrete memoryless source with
entropy H, is

L(H, k - 1) < 7r(k) <_ U(H, k - 1).

Our construction uses request sequences generated
by a Markov source.

DEFINITION 5.1. [14] A probabilistic finite state
automaton (probabilistic FSA) as a quintuple
(S ,~ ,g ,p , zo) where S is a finite set of states
with [S] = s, ~ is a finite alphabet of size l, g is a
deterministic "next state" function that maps SXT-t
into S, pz is a "probability assignment function" for
each z E S that maps ~ into [0, 1] with the restriction
that ~ i e ~ P z (i) = 1 and Zo E S is the start state.
A probabilistic FSA when used to generate strings is
called a Markov source. A Markov source is ergodic if
it is irreducible and aperiodic, meaning that each state
can reach every other state, and the gcd of the possible
recurrence times for each state is 1. A Markov source
is stationary when the start state is chosen randomly
according to the steady state probabilities of the states.

A Markov source is a very general model and is not
to be confused with a Markov chain on the page request
sequence which is of first order. A Markov source can
have infinite order. A stat ionary ergodic process can be
approximated by a kth order Markov process, for large
k [6]. We can define the entropy of a s tat ionary Markov
source as follows.

DEFINITION 5.2. [14] The entropy of a Markov source
M denoted by (S , ~ , g , p , zo) is given by

HM = ~ q (z)g (z)
z ~ l

where q(z) is the stationary (steady state) probability
corresponding to state z and H(z) is the entropy of the
state z defined as - E ~ e ~ p z (x) l g p z (X) .

Consider a two state Markov source with the same
probabili ty assignment function p(.) for both states. Let
H be the entropy of p(.). Then the entropy of the
Markov source is also H. We consider two cases:

C a s e I The pages corresponding to the top k - 1
probabilities are the same in both states. In this
case the best caching s t ra tegy is similar to the
discrete memoryless case, tha t is keep the k - 1
pages always in the cache. Hence, the fault rate
~-(k) has the same bounds as in theorem 5.1.

C a s e 2 The set of k - 1 pages with the highest prob-
abilities in state 1 is disjoint from the set of k - 1
pages with the highest probabilities in s tate 2. Sup-
pose the stat ionary probabilities of the two states
are 1/2 each and the transit ion probabili ty from
each state to the other is also 1/2. Then it can be
shown that the best caching Mgorithm is to keep
the top (k - 1)/2 pages of each s tate (assuming k
is odd) in the cache. Hence the expected minimal
fault rate is (by theorems 4.1 and 4.4) in the range:

L(H, k/2) < r (k) _< U(H, k/2)

I t can be shown tha t the intervals corresponding in the
above two cases are disjoint if k is sufficiently large.
Thus, although the entropy in the two scenarios are
equal, the fault rates are different.

Acknowledgments
We are thankful to John Savage and Ye Sun for useful
discussions.

R e f e r e n c e s

[1] S. Albers and M. Mitzenmacher, Average Case Anal-
ysis of List Update Algorithms, with Applications to
Data Compression, Algorithmica, 21, 1998, 312-329.

[2] P. Algoet, Universal Schemes for Prediction, Gambling
and Portfolio Selection, Annals of Probability, 20(2),
1992, 901-941.

[3] P. Atgoet and T.M. Cover, Asymptotic Optimality and
Asymptotic Equipartition Property of Log-Optimal
Investment, Annals of Probability, 16, 1988, 876-898.

733

[4] J.L. Bentley, D.D. Sleator, R. E. Tarjan and V.K.
Wei, A Locally Adaptive Data Compression Scheme,
Communications of the ACM, 29(4), 1986, 320-330.

[5] A. Borodin and R. E1-Yaniv, Online Computation
and Competitive Analysis, Cambridge University Press,
1998.

[6] T.M. Cover and J.A. Thomas, Elements of Information
Theory, Wiley, New York, 1991.

[7] K. Curewitz, P. Krishnan and J.S. Vitter, Practical
Prefetching Via Data Compression, In Proceedings
of the A CM SIGMOD International Conference on
Management of Data, 1993, 257-266.

[8] Derek Chiou, Prabhat Jain, Srinivas Devadas and
Larry Rudolph, Dynamic Cache Partitioning via
Columnization, in Proceedings of Design Automation
Conference, Los Angeles, June 2000.

[9] P. Elias, Universal Codeword Sets and the Representa-
tion of the Integers, IEEE Transactions on Information
Theory, 21(2), 1975, 194-203.

[10] A. Fiat, R.M. Karp, M. Luby, L. A. McGeoch, D.D.
Sleator and N.E. Young, On Competitive Algorithms
for Paging Problems, Journal of Algorithms, 12, 1991,
685-699.

[11] M. Feder and N. Merhav, Relations between Entropy
and Error Probability, IEEE Transactions on Informa-
tion Theory, 40(1), 1994, 259-266.

[12] M. Feder, N. Merhav and M. Gutman, Universal
Prediction of Individual Sequences, IEEE Transactions
on Information Theory, 38, 1992, 1258-1270.

[13] P.A. Franaszek and T.J. Wagner. Some Distribution-
free Aspects of Paging Performance, Journal of the
ACM, 21, 1974, 31-39.

[14] R.G. Gallager, Information Theory and Reliable Com-
munication, Wiley, New York, 1968.

[15] G.H. Gonnet, J.I. Munro, and H. Suwanda. Exegesis
of Self-organizing Linear Search, SIAM Journal of
Computing, 10, 1982, 613-637.

[16] M.E. Hellman and J. Raviv, Probability of Error,
Equivocation and the Chernoff Bound, IEEE Trans-
actions on Information Theory, 16(4), 1970, 368-372.

[17] J.L. Hennessey and D.A. Patterson, Computer Archi-
tecture: A Quantitative Approach, 2nd edition, Morgan
Kaufmann, 1996.

[18] A.R. Karlin, S.J. Phillips and P. Raghavan, Markov
Paging, In Proc. of the 33rd IEEE Symposium on the
Foundations of Computer Science (FOCS), 1992, 208-
217.

[19] J. Kelly, A New Interpretation of Information Rate,
Bell Sys. Tech. Journal, 35, 1956, 917-926.

[20] A. Lempel and J. Ziv, On the Complexity of Finite
Sequences, IEEE Transactions on Information Theory,
22, 1976, 75-81.

[21] The Malleable Caches Project at MIT,
http://www.csg.lcs.mit.edu/mcache/index.html

[22] D. Ornstein, Guessing the Next Output of a Stationary
Process, Israel J. Math., 30, 292-296.

[23] J. Rissanen, A Universal Data Compression System,
IEEE Transactions on Information Theory, 29(5),

1983, 656-664.
[24] D.D. Sleator and R.E. Tarjan. Amortized Efficiency of

List Update and Paging Rules, Communications of the
ACM, 28(2), 1985, 202-208.

[25] Edward Suh and Larry Rudolph, Adaptive Cache Par-
titioning, CSG-Memo 332, Lab. for Computer Science,
MIT, June 2000.

[26] J.S. Vitter and P. Krishnan. Optimal Prefetching Via
Data Compression, Journal of the ACM, 43(5), 1996,
771-793.

[27] J. Ziv and A. Lempel, Compression of Individual Se-
quences via Variable Rate Coding, IEEE Transactions
on Information Theory, 24(5), 1978, 530-536.

734

